

Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.6

Dedekind Sums with Arguments near Certain Transcendental Numbers

Kurt Girstmair Institut für Mathematik Universität Innsbruck Technikerstr. 13/7 A-6020 Innsbruck Austria Kurt.Girstmair@uibk.ac.at

Abstract

We study the asymptotic behavior of the classical Dedekind sums $s(s_k/t_k)$ for the sequence of convergents s_k/t_k $k \ge 0$, of the transcendental number

$$\sum_{j=0}^{\infty} \frac{1}{b^{2^j}}, \ b \ge 3$$

In particular, we show that there are infinitely many open intervals of constant length such that the sequence $s(s_k/t_k)$ has infinitely many transcendental cluster points in each interval.

1 Introduction and result

Dedekind sums have quite a number of interesting applications in analytic number theory (modular forms), algebraic number theory (class numbers), lattice point problems and algebraic geometry (for instance [1, 6, 7, 10]).

Let n be a positive integer and $m \in \mathbb{Z}$, (m, n) = 1. The classical Dedekind sum s(m/n) is defined by

$$s(m/n) = \sum_{k=1}^{n} ((k/n))((mk/n))$$

where $((\cdots))$ is the usual sawtooth function (for example, [7, p. 1]). In the present setting it is more natural to work with

$$S(m/n) = 12s(m/n)$$

instead.

In the previous paper [3] we used the Barkan-Hickerson-Knuth-formula to study the asymptotic behavior of $S(s_k/t_k)$ for the convergents s_k/t_k of transcendental numbers like e or e^2 . In this situation the limiting behavior of $S(s_k/t_k)$ was fairly simple. It is much more complicated, however, for the transcendental number

$$x(b) = \sum_{j=0}^{\infty} \frac{1}{b^{2^j}}, \ b \ge 3.$$
(1)

In fact, we have no full description of what happens in this case. Its complexity is illustrated by the following theorem, which forms the main result of this paper.

Theorem 1. Let s_k/t_k , $k \ge 0$, be the sequence of convergents of the number x(b) of (1). Then the sequence $S(s_k/t_k)$, $k \ge 0$, has infinitely many transcendental cluster points in each of the intervals

$$\left(b - 10 - 2i + \frac{1}{b}, b - 9 - 2i + \frac{1}{b - 1}\right), \ i \ge 0.$$

Note that each of the intervals of Theorem 1 has the length 1 + 1/(b(b-1)), whereas the distance between two neighboring intervals is 1 - 1/(b(b-1)).

2 The integer part

We start with the continued fraction expansion $[a_0, a_1, a_2, \ldots]$ of an arbitrary irrational number x. The numerators and denominators of its convergents

$$s_k/t_k = [a_0, a_1, \dots, a_k]$$
 (2)

are defined by the recursion formulas

$$s_{-2} = 0, \quad s_{-1} = 1, \quad s_k = a_k s_{k-1} + s_{k-2} \text{ and} t_{-2} = 1, \quad t_{-1} = 0, \quad t_k = a_k t_{k-1} + t_{k-2}, \text{ for } k \ge 0.$$
(3)

Henceforth we will assume 0 < x < 1, so $a_0 = 0$. Then the Barkan-Hickerson-Knuth formula says that for $k \ge 0$

$$S(s_k/t_k) = \sum_{j=1}^k (-1)^{j-1} a_j + \begin{cases} (s_k + t_{k-1})/t_k - 3, & \text{if } k \text{ is odd;} \\ (s_k - t_{k-1})/t_k, & \text{if } k \text{ is even;} \end{cases}$$
(4)

see [2, 4, 5].

In the case of the number x = x(b), the continued fraction expansion has been given in [9]. It is defined recursively. To this end put

$$C(1) = C(1,b) = [0, b-1, b+2]$$

in the sense of (2) and (3). If C(j) = C(j,b) has been defined for $j \ge 1$ and $C(j) = [0, a_1, \ldots, a_n]$ (where $n = 2^j$), then

$$C(j+1) = C(j+1,b) = [0, a_1, \dots, a_n, a_n - 2, a_{n-1}, a_{n-2}, \dots, a_2, a_1 + 1].$$

Then $x = \lim_{j\to\infty} C(j)$. In particular, $x = [0, a_1, a_2, \ldots]$, where a_k is the corresponding partial denominator of each C(j) with $2^j \ge k$.

In view of formula (4) for x = x(b), it is natural to investigate

$$L(k) = L(k,b) = \sum_{j=1}^{k-1} (-1)^{j-1} a_j, \ k \ge 0,$$

first. For the sake of simplicity we call L(k) the *integer part* of the Dedekind sum $S(s_k/t_k)$.

The following lemma comprises three easy observations.

Lemma 2. Let $[0, a_1, a_2, \ldots]$ be the continued fraction expansion of x = x(b) and $n = 2^j$, $j \ge 0$. (a) If n > 4, then

(b) If $n \ge 8$, then (c) If $n \ge 8$, then $a_{k} = a_{n-k+1}$ for $2 \le k \le n/2 - 1$. $a_{k} = a_{n+k}$ for $2 \le k \le n/2 - 1$.

Proof. Obviously, assertion (c) follows from (a) and (b). Assertion (a) is immediate from the definition of the continued fraction expansion of x(b). In order to deduce (b) from (a), we assume $n \ge 4$ and put l = n - k + 1, $2 \le k \le n - 1$. Then $a_l = a_{n-k+1} = a_{n+k}$, by (a). Since k = n - l + 1, this gives $a_l = a_{n+(n-l+1)} = a_{2n-l+1}$. So we have, for $n \ge 8$ and $2 \le l \le n/2 - 1$: $a_l = a_{n-l+1}$, which is (b).

Lemma 3. Let $n = 2^j$, $n \ge 4$. For $1 \le k \le n-1$ we have

$$L(n+k) = -2 + L(n-k)$$

Proof. Since $L(n+1) = L(n-1) + (-1)^{n-1}a_n + (-1)^n(a_n-2) = L(n-1) - 2$, the assertion holds for k = 1. Let $2 \le k \le n - 1$. Then

$$L(n+k) = L(n-1) - 2 + \sum_{i=2}^{k} (-1)^{n+i-1} a_{n+i}.$$

By assertion (a) of Lemma 2, the sum on the right hand side equals

$$\sum_{i=2}^{k} (-1)^{n+i-1} a_{n-i+1} = \sum_{i=2}^{k} (-1)^{i-1} a_{n-i+1} = \sum_{i=1}^{k-1} (-1)^{i} a_{n-i}.$$

We observe

$$\sum_{i=1}^{k-1} (-1)^i a_{n-i} = \sum_{i=n-k+1}^{n-1} (-1)^i a_i.$$

This gives

$$L(n+k) = -2 + \sum_{i=1}^{n-1} (-1)^{i-1} a_i + \sum_{i=n-k+1}^{n-1} (-1)^i a_i = -2 + L(n-k).$$

Remark 4. By the construction of the sequence C(j), we have $a_n = b$ for each $n = 2^j, j \ge 2$. From Lemma 3 we obtain $L(2n) = L(2n-1) + (-1)^{2n-1}a_{2n} = L(n+(n-1)) - b = L(1) - 2 - b = b - 1 - 2 - b = -3$.

Lemma 5. Let $n = 2^{j}$, $n \ge 8$. For $2 \le k \le n/2 - 1$,

$$L(n+k) = -4 + L(k).$$

In particular, $L(n+k) = L(2n+k) = L(4n+k) = \cdots$

Proof. We have L(n) = -3, by the remark. Hence $L(n+1) = L(n) + (-1)^n a_{n+1} = -3 + b - 2 = b - 5$. From Lemma 2, (c) we obtain

$$L(n+k) = b - 5 + (-1)^{n+1}a_{n+2} + \dots + (-1)^{n+k-1}a_{n+k} = b - 5 + (-1)^1a_2 + \dots + (-1)^{k-1}a_k = b - 5 + L(k) - a_1 = -4 + L(k).$$

Let $n = 2^{j}$, $n \ge 8$. We define a sequence k_i , $i \ge 0$, in the following way:

$$k_0 = n - 1. \tag{5}$$

If k_{i-1} has been defined, $i \ge 1$, then

$$k_i = 2^i n - k_{i-1}.$$
 (6)

Induction based on (5) and (6) gives

$$2 \le k_i \le 2^i n - 1,\tag{7}$$

and

$$k_i = \frac{2^{i+1} + (-1)^i}{3} n + (-1)^{i-1}$$
(8)

for all $i \ge 0$. We have

$$L(k_0) = L(n-1) = L(n) + a_n = -3 + b$$

from the remark. Further, Lemma 3 gives, by induction,

$$L(k_i) = -3 - 2i + b_i$$

Indeed, if $L(k_{i-1}) = -3 - 2(i-1) + b$, $L(k_i) = L(2^i n - k_{i-1}) = L(2^{i-1}n + (2^{i-1}n - k_{i-1})) = -2 + L(k_{i-1}) = -3 - 2i + b$. Altogether, we know the numbers k_i and the integer part of $S(s_{k_i}/t_{k_i})$ explicitly, namely

Lemma 6. Let $n = 2^j$, $n \ge 8$. For $i \ge 0$ let k_i be defined by (8). Then

$$L(k_i) = b - 3 - 2i$$

Lemma 6 says that the integer part $L(k_i)$ of $S(s_{k_i}/t_{k_i})$ is independent of n if $n \ge 8$ is a power of 2. Suppose, therefore, that $n_l = 2^{2+l}$, $l = 1, \ldots, r$. Fix $i \ge 0$ for the time being and define

$$k_{i,l} = \frac{2^{i+1} + (-1)^i}{3} n_l + (-1)^{i-1}.$$
(9)

By (7),

$$k_{i,l} \le 2^i n_l - 1 \le 2^i n_r - 1 = 2^{i+r+2} - 1.$$

Suppose that \hat{n} is a power of 2, $\hat{n} \ge 2^{i+r+3}$. Then we have

$$2 \le k_{i,l} \le \frac{\widehat{n}}{2} - 1$$

for all $l = 1, \ldots, r$. Therefore, Lemma 5 and Lemma 6 give

Proposition 7. Let $i \ge 0$ and $r \ge 1$ be given and $n_l = 2^{2+l}$, $l = 1, \ldots r$. Suppose that the numbers $k_{i,l}$ are defined as in (9). If \hat{n} is a power of 2, $\hat{n} \ge 2^{i+r+3}$, then

$$L(\hat{n} + k_{i,l}) = -4 + L(k_{i,l}) = b - 7 - 2i.$$

3 The fractional part

Note that the numbers $k_{i,l}$ of the foregoing section are all odd. Hence Lemma 9 and the Barkan-Hickerson-Knuth formula give

$$S(s_{\hat{n}+k_{i,l}}/t_{\hat{n}+k_{i,l}}) = b - 7 - 2i + \frac{s_{\hat{n}+k_{i,l}}}{t_{\hat{n}+k_{i,l}}} + \frac{t_{\hat{n}+k_{i,l-1}}}{t_{\hat{n}+k_{i,l}}} - 3.$$
(10)

If \hat{n} tends to infinity $s_{\hat{n}+k_{i,l}}/t_{\hat{n}+k_{i,l}}$ tends to x = x(b). Accordingly, we have to investigate the limiting behavior of $t_{\hat{n}+k_{i,l-1}}/t_{\hat{n}+k_{i,l}}$ in order to understand the fractional part of formula (10).

To this end we suppose that n is a power of 2, $n \ge 8$, and k is an integer, $2 \le k \le n/2-1$. From (3) we have $t_{n+k} = a_{n+k}t_{n+k-1} + t_{n+k-2}$, hence

$$\frac{t_{n+k}}{t_{n+k-1}} = a_{n+k} + \frac{t_{n+k-2}}{t_{n+k-1}} = [a_{n+k}, \frac{t_{n+k-1}}{t_{n+k-2}}].$$

When we repeat this procedure, we obtain the well-known fact

$$\frac{t_{n+k}}{t_{n+k-1}} = [a_{n+k}, a_{n+k-1}, \frac{t_{n+k-2}}{t_{n+k-3}}] = [a_{n+k}, a_{n+k-1}, \dots, a_1].$$

From Lemma 2, (c), we infer

$$a_{n+k} = a_k, a_{n+k-1} = a_{k-1}, \dots, a_{n+2} = a_2.$$

Moreover, $a_{n+1} = a_n - 2 = b - 2$ and $a_n = b$. Finally, Lemma 2, (b) says

$$a_{n-1} = a_2, a_{n-2} = a_3, \dots, a_{n/2+2} = a_{n/2-1}.$$

Altogether,

$$\frac{t_{n+k}}{t_{n+k-1}} = [a_k, a_{k-1}, \dots, a_2, b-2, b, a_2, a_3, \dots, a_{n/2-1}, a_{n/2+1}, \dots, a_1].$$

The final terms $a_{n/2+1}, a_{n/2}, \ldots, a_1$ are not of interest. It suffices to write

$$\frac{t_{n+k}}{t_{n+k-1}} = [a_k, a_{k-1}, \dots, a_2, b-2, b, a_2, a_3, \dots, a_{n/2-1}, c(n)]$$
(11)

for some $c(n) \in \mathbb{Q}$. From [9, Theorem 8] we know that all numbers a_1, a_2, \ldots are ≥ 1 and $\leq b+2$, hence we have

$$1 \le c(n) \le b+3.$$

Proposition 8. Suppose that k remains fixed, $2 \le k \le n/2 - 1$, but $n = 2^j$ tends to infinity. Then t_{n+k}/t_{n+k-1} converges to

$$t(k) = t(k, b) = [a_k, a_{k-1}, \dots, a_2, b - 2, (x+1)/x],$$

where x = x(b) is defined by (1).

Proof. We have $x = \lim_{i \to \infty} C(i) = [0, b - 1, y]$ with $y = [a_2, a_3, \ldots]$. A short calculation shows

$$[b, y] = [b, a_2, a_3, \ldots] = (x+1)/x.$$

Let p_i/q_i , i = 0, 1, 2, ... be the convergents of t_{n+k}/t_{n+k-1} (where the numbers p_i , q_i are defined in the same way as the numbers s_i , t_i in (3)). We have, by (11),

$$\frac{t_{n+k}}{t_{n+k-1}} = \frac{pc(n) + p'}{qc(n) + q'}$$

with $p = p_{k+n/2-1}, p' = p_{k+n/2-2}, q = q_{k+n/2-1}, q' = q_{k+n/2-2}$. We write
 $t(k) = [a_k, \dots, a_2, b-2, b, a_2, \dots, a_{n/2-1}, z(n)],$

where z(n) satisfies $1 \le z(n) \le b+3$ by the argument above. Accordingly,

$$t(k) = \frac{pz(n) + p'}{qz(n) + q'}$$

This gives

$$t(k) - \frac{t_{n+k}}{t_{n+k-1}} = \frac{pz(n) + p'}{qz(n) + q'} - \frac{pc(n) + p'}{qc(n) + q'}.$$
(12)

The expression on the right hand side of (12) simplifies to

$$\frac{(pq' - p'q)z(n) + (p'q - pq')c(n)}{(qz(n) + q')(qc(n) + q')}$$

However, it is well-known that $pq' - p'q = \pm 1$. Observing $1 \le z(n), c(n) \le b + 3$, we obtain

$$\left| t(k) - \frac{t_{n+k}}{t_{n+k-1}} \right| \le \frac{2b+6}{(q+q')^2}$$

Since q and q' tend to infinity for $n \to \infty$, our proof is complete.

We conclude this section with two observations.

Lemma 9. In the above setting, let $2 \le k < k'$ be integers. Then $t(k) \ne t(k')$. Proof. Suppose t(k) = t(k'), so

$$[a_{k'},\ldots,a_{k+1},t(k)] = t(k).$$

An identity of this kind can only hold if t(k) is a quadratic irrationality. However, t(k) is a transcendental number since x is transcendental (see [8, p. 35, Satz 8]).

Lemma 10. Let $k \ge 2$ be an integer. Then x + 1/t(k) is a transcendental number.

Proof. Suppose $\alpha = x + t(k)$ is algebraic. Since we may write

$$1/t(k) = [0, t(k)] = \frac{p(x+1)/x + p'}{q(x+1)/x + q'} = \frac{p(x+1) + p'x}{q(x+1) + q'x}$$

with integers $p, p', q, q', q > 0, q' \ge 0$, we obtain

$$x + \frac{p(x+1) + p'x}{q(x+1) + q'x} = \alpha$$

This, however, means that x satisfies a quadratic equation over the field $\mathbb{Q}(\alpha)$. Accordingly, x is algebraic, a contradiction.

4 Proof of Theorem 1

As in the setting of Proposition 7, let $i \ge 0$ and $r \ge 1$ be given and $n_l = 2^{2+l}$, $l = 1, \ldots, r$. Suppose that the numbers $k_{i,l}$ are defined as in (9). Let \hat{n} be a power of 2, $\hat{n} \ge 2^{i+r+3}$. By Proposition 7,

$$L(\widehat{n} + k_{i,l}) = b - 7 - 2i.$$

If \hat{n} tends to infinity, Proposition 8 says that $t_{\hat{n}+k_{i,l}}/t_{\hat{n}+k_{i,l}-1}$ tends to

$$t(k_{i,l}) = [a_{k_{i,l}}, a_{k_{i,l}-1}, \dots, a_2, b-2, (x+1)/x]$$

Therefore $t_{\hat{n}+k_{i,l}-1}/t_{\hat{n}+k_{i,l}}$ tends to $1/t(k_{i,l})$. Altogether, we have

$$S(s_{\widehat{n}+k_{i,l}}/t_{\widehat{n}+k_{i,l}}) \to b - 10 - 2i + x + \frac{1}{t(k_{i,l})}.$$

For $l < l' \leq r$ we obtain $k_{i,l} < k_{i,l'}$ from (9). By Lemma 9, $t(k_{i,l}) \neq t(k_{i,l'})$. Accordingly, the numbers $1/t(k_{i,l})$ are pairwise different for $1 \leq l \leq r$. Further, $x + 1/t(k_{i,l})$ is transcendental, by Lemma 10. The inequalities

$$1/b < x < 1/(b-1)$$
 and $0 < 1/t(k_{i,l}) < 1$

are obvious by (1) and $x = [0, b - 1, ...], 1/t(k_{i,l}) = [0, a_{k_{i,l}}, ...]$. Therefore, the sequence $S(s_j/t_j), j \ge 1$, has r distinct transcendental cluster points in the interval

$$\left(b - 10 - 2i + \frac{1}{b}, b - 9 - 2i + \frac{1}{b - 1}\right)$$

Since r can be chosen arbitrarily large, this proves Theorem 1.

References

- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, 1976.
- [2] Ph. Barkan, Sur les sommes de Dedekind et les fractions continues finies, C. R. Acad. Sci. Paris Sér. A-B 284 (1977) A923–A926.
- [3] K. Girstmair, Dedekind sums with arguments near Euler's number e, J. Integer Seq. 15 (2012), Article 12.5.8.
- [4] D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113–116.
- [5] D. E. Knuth, Notes on generalized Dedekind sums, Acta Arith. 33 (1977), 297–325.

- [6] C. Meyer, Die Berechnung der Klassenzahl Abelscher Körper über Quadratischen Zahlkörpern, Akademie-Verlag, 1957.
- [7] H. Rademacher and E. Grosswald, *Dedekind Sums*, Mathematical Association of America, 1972.
- [8] Th. Schneider, Einführung in die Transzendenten Zahlen, Springer, 1957.
- [9] J. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209–217.
- [10] G. Urzúa, Arrangements of curves and algebraic surfaces, J. Algebraic Geom. 19 (2010), 335–365.

2010 Mathematics Subject Classification: Primary 11F20; Secondary 11A55. Keywords: asymptotic behavior of Dedekind sums, continued fraction expansion of transcendental numbers.

Received April 9 2013; revised version received June 20 2013. Published in *Journal of Integer Sequences*, July 29 2013.

Return to Journal of Integer Sequences home page.