Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.6

Dedekind Sums with Arguments near Certain Transcendental Numbers

Kurt Girstmair
Institut für Mathematik
Universität Innsbruck
Technikerstr. 13/7
A-6020 Innsbruck
Austria
Kurt.Girstmair@uibk.ac.at

Abstract

We study the asymptotic behavior of the classical Dedekind sums $s\left(s_{k} / t_{k}\right)$ for the sequence of convergents $s_{k} / t_{k} k \geq 0$, of the transcendental number $$
\sum_{j=0}^{\infty} \frac{1}{b^{2^{j}}}, b \geq 3 .
$$

In particular, we show that there are infinitely many open intervals of constant length such that the sequence $s\left(s_{k} / t_{k}\right)$ has infinitely many transcendental cluster points in each interval.

1 Introduction and result

Dedekind sums have quite a number of interesting applications in analytic number theory (modular forms), algebraic number theory (class numbers), lattice point problems and algebraic geometry (for instance [1, 6, 7, 10]).

Let n be a positive integer and $m \in \mathbb{Z},(m, n)=1$. The classical Dedekind sum $s(m / n)$ is defined by

$$
s(m / n)=\sum_{k=1}^{n}((k / n))((m k / n))
$$

where $((\cdots))$ is the usual sawtooth function (for example, [7, p. 1]). In the present setting it is more natural to work with

$$
S(m / n)=12 s(m / n)
$$

instead.
In the previous paper [3] we used the Barkan-Hickerson-Knuth-formula to study the asymptotic behavior of $S\left(s_{k} / t_{k}\right)$ for the convergents s_{k} / t_{k} of transcendental numbers like e or e^{2}. In this situation the limiting behavior of $S\left(s_{k} / t_{k}\right)$ was fairly simple. It is much more complicated, however, for the transcendental number

$$
\begin{equation*}
x(b)=\sum_{j=0}^{\infty} \frac{1}{b^{2^{j}}}, b \geq 3 \tag{1}
\end{equation*}
$$

In fact, we have no full description of what happens in this case. Its complexity is illustrated by the following theorem, which forms the main result of this paper.

Theorem 1. Let $s_{k} / t_{k}, k \geq 0$, be the sequence of convergents of the number $x(b)$ of (1). Then the sequence $S\left(s_{k} / t_{k}\right), k \geq 0$, has infinitely many transcendental cluster points in each of the intervals

$$
\left(b-10-2 i+\frac{1}{b}, b-9-2 i+\frac{1}{b-1}\right), i \geq 0
$$

Note that each of the intervals of Theorem 1 has the length $1+1 /(b(b-1))$, whereas the distance between two neighboring intervals is $1-1 /(b(b-1))$.

2 The integer part

We start with the continued fraction expansion $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ of an arbitrary irrational number x. The numerators and denominators of its convergents

$$
\begin{equation*}
s_{k} / t_{k}=\left[a_{0}, a_{1}, \ldots, a_{k}\right] \tag{2}
\end{equation*}
$$

are defined by the recursion formulas

$$
\begin{align*}
& s_{-2}=0, \quad s_{-1}=1, \quad s_{k}=a_{k} s_{k-1}+s_{k-2} \quad \text { and } \\
& t_{-2}=1, \quad t_{-1}=0, \quad t_{k}=a_{k} t_{k-1}+t_{k-2}, \quad \text { for } k \geq 0 . \tag{3}
\end{align*}
$$

Henceforth we will assume $0<x<1$, so $a_{0}=0$. Then the Barkan-Hickerson-Knuth formula says that for $k \geq 0$

$$
S\left(s_{k} / t_{k}\right)=\sum_{j=1}^{k}(-1)^{j-1} a_{j}+ \begin{cases}\left(s_{k}+t_{k-1}\right) / t_{k}-3, & \text { if } k \text { is odd } \tag{4}\\ \left(s_{k}-t_{k-1}\right) / t_{k}, & \text { if } k \text { is even }\end{cases}
$$

see $[2,4,5]$.
In the case of the number $x=x(b)$, the continued fraction expansion has been given in [9]. It is defined recursively. To this end put

$$
C(1)=C(1, b)=[0, b-1, b+2]
$$

in the sense of (2) and (3). If $C(j)=C(j, b)$ has been defined for $j \geq 1$ and $C(j)=$ $\left[0, a_{1}, \ldots, a_{n}\right]$ (where $n=2^{j}$), then

$$
C(j+1)=C(j+1, b)=\left[0, a_{1}, \ldots, a_{n}, a_{n}-2, a_{n-1}, a_{n-2}, \ldots, a_{2}, a_{1}+1\right] .
$$

Then $x=\lim _{j \rightarrow \infty} C(j)$. In particular, $x=\left[0, a_{1}, a_{2}, \ldots\right]$, where a_{k} is the corresponding partial denominator of each $C(j)$ with $2^{j} \geq k$.

In view of formula (4) for $x=x(b)$, it is natural to investigate

$$
L(k)=L(k, b)=\sum_{j=1}^{k-1}(-1)^{j-1} a_{j}, k \geq 0
$$

first. For the sake of simplicity we call $L(k)$ the integer part of the Dedekind sum $S\left(s_{k} / t_{k}\right)$.
The following lemma comprises three easy observations.
Lemma 2. Let $\left[0, a_{1}, a_{2}, \ldots\right]$ be the continued fraction expansion of $x=x(b)$ and $n=2^{j}$, $j \geq 0$.
(a) If $n \geq 4$, then

$$
a_{n+k}=a_{n-k+1} \text { for } 2 \leq k \leq n-1
$$

(b) If $n \geq 8$, then

$$
a_{k}=a_{n-k+1} \text { for } 2 \leq k \leq n / 2-1
$$

(c) If $n \geq 8$, then

$$
a_{k}=a_{n+k} \text { for } 2 \leq k \leq n / 2-1
$$

Proof. Obviously, assertion (c) follows from (a) and (b). Assertion (a) is immediate from the definition of the continued fraction expansion of $x(b)$. In order to deduce (b) from (a), we assume $n \geq 4$ and put $l=n-k+1,2 \leq k \leq n-1$. Then $a_{l}=a_{n-k+1}=a_{n+k}$, by (a). Since $k=n-l+1$, this gives $a_{l}=a_{n+(n-l+1)}=a_{2 n-l+1}$. So we have, for $n \geq 8$ and $2 \leq l \leq n / 2-1: a_{l}=a_{n-l+1}$, which is (b).
Lemma 3. Let $n=2^{j}, n \geq 4$. For $1 \leq k \leq n-1$ we have

$$
L(n+k)=-2+L(n-k) .
$$

Proof. Since $L(n+1)=L(n-1)+(-1)^{n-1} a_{n}+(-1)^{n}\left(a_{n}-2\right)=L(n-1)-2$, the assertion holds for $k=1$. Let $2 \leq k \leq n-1$. Then

$$
L(n+k)=L(n-1)-2+\sum_{i=2}^{k}(-1)^{n+i-1} a_{n+i}
$$

By assertion (a) of Lemma 2, the sum on the right hand side equals

$$
\sum_{i=2}^{k}(-1)^{n+i-1} a_{n-i+1}=\sum_{i=2}^{k}(-1)^{i-1} a_{n-i+1}=\sum_{i=1}^{k-1}(-1)^{i} a_{n-i} .
$$

We observe

$$
\sum_{i=1}^{k-1}(-1)^{i} a_{n-i}=\sum_{i=n-k+1}^{n-1}(-1)^{i} a_{i}
$$

This gives

$$
L(n+k)=-2+\sum_{i=1}^{n-1}(-1)^{i-1} a_{i}+\sum_{i=n-k+1}^{n-1}(-1)^{i} a_{i}=-2+L(n-k) .
$$

Remark 4. By the construction of the sequence $C(j)$, we have $a_{n}=b$ for each $n=2^{j}, j \geq 2$. From Lemma 3 we obtain $L(2 n)=L(2 n-1)+(-1)^{2 n-1} a_{2 n}=L(n+(n-1))-b=L(1)-2-b=$ $b-1-2-b=-3$.

Lemma 5. Let $n=2^{j}, n \geq 8$. For $2 \leq k \leq n / 2-1$,

$$
L(n+k)=-4+L(k) .
$$

In particular, $L(n+k)=L(2 n+k)=L(4 n+k)=\cdots$
Proof. We have $L(n)=-3$, by the remark. Hence $L(n+1)=L(n)+(-1)^{n} a_{n+1}=-3+b-2=$ $b-5$. From Lemma 2, (c) we obtain

$$
\begin{gathered}
L(n+k)=b-5+(-1)^{n+1} a_{n+2}+\cdots+(-1)^{n+k-1} a_{n+k}= \\
b-5+(-1)^{1} a_{2}+\cdots+(-1)^{k-1} a_{k}=b-5+L(k)-a_{1}=-4+L(k) .
\end{gathered}
$$

Let $n=2^{j}, n \geq 8$. We define a sequence $k_{i}, i \geq 0$, in the following way:

$$
\begin{equation*}
k_{0}=n-1 . \tag{5}
\end{equation*}
$$

If k_{i-1} has been defined, $i \geq 1$, then

$$
\begin{equation*}
k_{i}=2^{i} n-k_{i-1} . \tag{6}
\end{equation*}
$$

Induction based on (5) and (6) gives

$$
\begin{equation*}
2 \leq k_{i} \leq 2^{i} n-1 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{i}=\frac{2^{i+1}+(-1)^{i}}{3} n+(-1)^{i-1} \tag{8}
\end{equation*}
$$

for all $i \geq 0$. We have

$$
L\left(k_{0}\right)=L(n-1)=L(n)+a_{n}=-3+b
$$

from the remark. Further, Lemma 3 gives, by induction,

$$
L\left(k_{i}\right)=-3-2 i+b .
$$

Indeed, if $L\left(k_{i-1}\right)=-3-2(i-1)+b, L\left(k_{i}\right)=L\left(2^{i} n-k_{i-1}\right)=L\left(2^{i-1} n+\left(2^{i-1} n-k_{i-1}\right)\right)=$ $-2+L\left(k_{i-1}\right)=-3-2 i+b$. Altogether, we know the numbers k_{i} and the integer part of $S\left(s_{k_{i}} / t_{k_{i}}\right)$ explicitly, namely

Lemma 6. Let $n=2^{j}, n \geq 8$. For $i \geq 0$ let k_{i} be defined by (8). Then

$$
L\left(k_{i}\right)=b-3-2 i .
$$

Lemma 6 says that the integer part $L\left(k_{i}\right)$ of $S\left(s_{k_{i}} / t_{k_{i}}\right)$ is independent of n if $n \geq 8$ is a power of 2 . Suppose, therefore, that $n_{l}=2^{2+l}, l=1, \ldots, r$. Fix $i \geq 0$ for the time being and define

$$
\begin{equation*}
k_{i, l}=\frac{2^{i+1}+(-1)^{i}}{3} n_{l}+(-1)^{i-1} . \tag{9}
\end{equation*}
$$

By (7),

$$
k_{i, l} \leq 2^{i} n_{l}-1 \leq 2^{i} n_{r}-1=2^{i+r+2}-1 .
$$

Suppose that \widehat{n} is a power of $2, \widehat{n} \geq 2^{i+r+3}$. Then we have

$$
2 \leq k_{i, l} \leq \frac{\widehat{n}}{2}-1
$$

for all $l=1, \ldots, r$. Therefore, Lemma 5 and Lemma 6 give
Proposition 7. Let $i \geq 0$ and $r \geq 1$ be given and $n_{l}=2^{2+l}, l=1, \ldots r$. Suppose that the numbers $k_{i, l}$ are defined as in (9). If \widehat{n} is a power of $2, \widehat{n} \geq 2^{i+r+3}$, then

$$
L\left(\widehat{n}+k_{i, l}\right)=-4+L\left(k_{i, l}\right)=b-7-2 i .
$$

3 The fractional part

Note that the numbers $k_{i, l}$ of the foregoing section are all odd. Hence Lemma 9 and the Barkan-Hickerson-Knuth formula give

$$
\begin{equation*}
S\left(s_{\widehat{n}+k_{i, l}} / t_{\widehat{n}+k_{i, l}}\right)=b-7-2 i+\frac{s_{\widehat{n}+k_{i, l}}}{t_{\widehat{n}+k_{i, l}}}+\frac{t_{\widehat{n}+k_{i, l-1}}}{t_{\widehat{n}+k_{i, l}}}-3 . \tag{10}
\end{equation*}
$$

If \widehat{n} tends to infinity $s_{\widehat{n}+k_{i, l}} / t_{\widehat{n}+k_{i, l}}$ tends to $x=x(b)$. Accordingly, we have to investigate the limiting behavior of $t_{\widehat{n}+k_{i, l-1}} / t_{\widehat{n}+k_{i, l}}$ in order to understand the fractional part of formula (10).

To this end we suppose that n is a power of $2, n \geq 8$, and k is an integer, $2 \leq k \leq n / 2-1$. From (3) we have $t_{n+k}=a_{n+k} t_{n+k-1}+t_{n+k-2}$, hence

$$
\frac{t_{n+k}}{t_{n+k-1}}=a_{n+k}+\frac{t_{n+k-2}}{t_{n+k-1}}=\left[a_{n+k}, \frac{t_{n+k-1}}{t_{n+k-2}}\right] .
$$

When we repeat this procedure, we obtain the well-known fact

$$
\frac{t_{n+k}}{t_{n+k-1}}=\left[a_{n+k}, a_{n+k-1}, \frac{t_{n+k-2}}{t_{n+k-3}}\right]=\left[a_{n+k}, a_{n+k-1}, \ldots, a_{1}\right] .
$$

From Lemma 2, (c), we infer

$$
a_{n+k}=a_{k}, a_{n+k-1}=a_{k-1}, \ldots, a_{n+2}=a_{2}
$$

Moreover, $a_{n+1}=a_{n}-2=b-2$ and $a_{n}=b$. Finally, Lemma 2, (b) says

$$
a_{n-1}=a_{2}, a_{n-2}=a_{3}, \ldots, a_{n / 2+2}=a_{n / 2-1}
$$

Altogether,

$$
\frac{t_{n+k}}{t_{n+k-1}}=\left[a_{k}, a_{k-1}, \ldots, a_{2}, b-2, b, a_{2}, a_{3}, \ldots a_{n / 2-1}, a_{n / 2+1}, \ldots, a_{1}\right]
$$

The final terms $a_{n / 2+1}, a_{n / 2}, \ldots, a_{1}$ are not of interest. It suffices to write

$$
\begin{equation*}
\frac{t_{n+k}}{t_{n+k-1}}=\left[a_{k}, a_{k-1}, \ldots, a_{2}, b-2, b, a_{2}, a_{3}, \ldots, a_{n / 2-1}, c(n)\right] \tag{11}
\end{equation*}
$$

for some $c(n) \in \mathbb{Q}$. From [9, Theorem 8] we know that all numbers a_{1}, a_{2}, \ldots are ≥ 1 and $\leq b+2$, hence we have

$$
1 \leq c(n) \leq b+3
$$

Proposition 8. Suppose that k remains fixed, $2 \leq k \leq n / 2-1$, but $n=2^{j}$ tends to infinity. Then t_{n+k} / t_{n+k-1} converges to

$$
t(k)=t(k, b)=\left[a_{k}, a_{k-1}, \ldots, a_{2}, b-2,(x+1) / x\right]
$$

where $x=x(b)$ is defined by (1).
Proof. We have $x=\lim _{i \rightarrow \infty} C(i)=[0, b-1, y]$ with $y=\left[a_{2}, a_{3}, \ldots\right]$. A short calculation shows

$$
[b, y]=\left[b, a_{2}, a_{3}, \ldots\right]=(x+1) / x .
$$

Let $p_{i} / q_{i}, i=0,1,2, \ldots$ be the convergents of t_{n+k} / t_{n+k-1} (where the numbers p_{i}, q_{i} are defined in the same way as the numbers s_{i}, t_{i} in (3)). We have, by (11),

$$
\frac{t_{n+k}}{t_{n+k-1}}=\frac{p c(n)+p^{\prime}}{q c(n)+q^{\prime}}
$$

with $p=p_{k+n / 2-1}, p^{\prime}=p_{k+n / 2-2}, q=q_{k+n / 2-1}, q^{\prime}=q_{k+n / 2-2}$. We write

$$
t(k)=\left[a_{k}, \ldots, a_{2}, b-2, b, a_{2}, \ldots, a_{n / 2-1}, z(n)\right],
$$

where $z(n)$ satisfies $1 \leq z(n) \leq b+3$ by the argument above. Accordingly,

$$
t(k)=\frac{p z(n)+p^{\prime}}{q z(n)+q^{\prime}} .
$$

This gives

$$
\begin{equation*}
t(k)-\frac{t_{n+k}}{t_{n+k-1}}=\frac{p z(n)+p^{\prime}}{q z(n)+q^{\prime}}-\frac{p c(n)+p^{\prime}}{q c(n)+q^{\prime}} . \tag{12}
\end{equation*}
$$

The expression on the right hand side of (12) simplifies to

$$
\frac{\left(p q^{\prime}-p^{\prime} q\right) z(n)+\left(p^{\prime} q-p q^{\prime}\right) c(n)}{\left(q z(n)+q^{\prime}\right)\left(q c(n)+q^{\prime}\right)}
$$

However, it is well-known that $p q^{\prime}-p^{\prime} q= \pm 1$. Observing $1 \leq z(n), c(n) \leq b+3$, we obtain

$$
\left|t(k)-\frac{t_{n+k}}{t_{n+k-1}}\right| \leq \frac{2 b+6}{\left(q+q^{\prime}\right)^{2}}
$$

Since q and q^{\prime} tend to infinity for $n \rightarrow \infty$, our proof is complete.
We conclude this section with two observations.
Lemma 9. In the above setting, let $2 \leq k<k^{\prime}$ be integers. Then $t(k) \neq t\left(k^{\prime}\right)$.
Proof. Suppose $t(k)=t\left(k^{\prime}\right)$, so

$$
\left[a_{k^{\prime}}, \ldots, a_{k+1}, t(k)\right]=t(k) .
$$

An identity of this kind can only hold if $t(k)$ is a quadratic irrationality. However, $t(k)$ is a transcendental number since x is transcendental (see [8, p. 35, Satz 8]).
Lemma 10. Let $k \geq 2$ be an integer. Then $x+1 / t(k)$ is a transcendental number.
Proof. Suppose $\alpha=x+t(k)$ is algebraic. Since we may write

$$
1 / t(k)=[0, t(k)]=\frac{p(x+1) / x+p^{\prime}}{q(x+1) / x+q^{\prime}}=\frac{p(x+1)+p^{\prime} x}{q(x+1)+q^{\prime} x}
$$

with integers $p, p^{\prime}, q, q^{\prime}, q>0, q^{\prime} \geq 0$, we obtain

$$
x+\frac{p(x+1)+p^{\prime} x}{q(x+1)+q^{\prime} x}=\alpha .
$$

This, however, means that x satisfies a quadratic equation over the field $\mathbb{Q}(\alpha)$. Accordingly, x is algebraic, a contradiction.

4 Proof of Theorem 1

As in the setting of Proposition 7 , let $i \geq 0$ and $r \geq 1$ be given and $n_{l}=2^{2+l}, l=1, \ldots, r$. Suppose that the numbers $k_{i, l}$ are defined as in (9). Let \widehat{n} be a power of $2, \widehat{n} \geq 2^{i+r+3}$. By Proposition 7,

$$
L\left(\widehat{n}+k_{i, l}\right)=b-7-2 i .
$$

If \widehat{n} tends to infinity, Proposition 8 says that $t_{\widehat{n}+k_{i, l}} / t_{\widehat{n}+k_{i, l}-1}$ tends to

$$
t\left(k_{i, l}\right)=\left[a_{k_{i, l}}, a_{k_{i, l}-1}, \ldots, a_{2}, b-2,(x+1) / x\right] .
$$

Therefore $t_{\widehat{n}+k_{i, l}-1} / t_{\widehat{n}+k_{i, l}}$ tends to $1 / t\left(k_{i, l}\right)$. Altogether, we have

$$
S\left(s_{\widehat{n}+k_{i, l}} / t_{\widehat{n}+k_{i, l}}\right) \rightarrow b-10-2 i+x+\frac{1}{t\left(k_{i, l}\right)} .
$$

For $l<l^{\prime} \leq r$ we obtain $k_{i, l}<k_{i, l^{\prime}}$ from (9). By Lemma $9, t\left(k_{i, l}\right) \neq t\left(k_{i, l^{\prime}}\right)$. Accordingly, the numbers $1 / t\left(k_{i, l}\right)$ are pairwise different for $1 \leq l \leq r$. Further, $x+1 / t\left(k_{i, l}\right)$ is transcendental, by Lemma 10. The inequalities

$$
1 / b<x<1 /(b-1) \text { and } 0<1 / t\left(k_{i, l}\right)<1
$$

are obvious by (1) and $x=[0, b-1, \ldots], 1 / t\left(k_{i, l}\right)=\left[0, a_{k_{i, l}}, \ldots\right]$. Therefore, the sequence $S\left(s_{j} / t_{j}\right), j \geq 1$, has r distinct transcendental cluster points in the interval

$$
\left(b-10-2 i+\frac{1}{b}, b-9-2 i+\frac{1}{b-1}\right) .
$$

Since r can be chosen arbitrarily large, this proves Theorem 1.

References

[1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, 1976.
[2] Ph. Barkan, Sur les sommes de Dedekind et les fractions continues finies, C. R. Acad. Sci. Paris Sér. A-B 284 (1977) A923-A926.
[3] K. Girstmair, Dedekind sums with arguments near Euler's number e, J. Integer Seq. 15 (2012), Article 12.5.8.
[4] D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113-116.
[5] D. E. Knuth, Notes on generalized Dedekind sums, Acta Arith. 33 (1977), 297-325.
[6] C. Meyer, Die Berechnung der Klassenzahl Abelscher Körper über Quadratischen Zahlkörpern, Akademie-Verlag, 1957.
[7] H. Rademacher and E. Grosswald, Dedekind Sums, Mathematical Association of America, 1972.
[8] Th. Schneider, Einführung in die Transzendenten Zahlen, Springer, 1957.
[9] J. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209-217.
[10] G. Urzúa, Arrangements of curves and algebraic surfaces, J. Algebraic Geom. 19 (2010), 335-365.

2010 Mathematics Subject Classification: Primary 11F20; Secondary 11A55.
Keywords: asymptotic behavior of Dedekind sums, continued fraction expansion of transcendental numbers.

Received April 9 2013; revised version received June 20 2013. Published in Journal of Integer Sequences, July 292013.

Return to Journal of Integer Sequences home page.

