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Abstract

We study the functions counting the number of certain relatively prime sets. We

calculate partial sums and divisor sums of these functions. We give some open questions

at the end of this article.

1 Introduction

Unless stated otherwise, we let d, k, n,N be positive integers, A a nonempty finite set of
positive integers, gcd (A) the greatest common divisor of the elements of A, ⌊x⌋ the greatest
integer less than or equal to x, and µ the Möbius function.

A set A is said to be relatively prime if gcd (A) = 1 and is said to be relatively prime to
n if gcd (A ∪ {n}) = 1. Let f (n) and Φ (n) denote, respectively, the number of relatively
prime subsets of {1, 2, . . . , n}, and the number of nonempty subsets of {1, 2, . . . , n} relatively
prime to n. In addition, we let D (n) =

∑

d|n f (d) be the divisor sum of f (n). The first 15

values of f (n), Φ (n), and D (n) are given in Table 1.
The purpose of this article is to obtain partial sums associated with f (n), Φ (n), and

D (n) and use them to explain some phenomena appearing in Table 1. We will also obtain a
combinatorial interpretation and a congruence property of D (n). An open problem arising
from an observation on the values of Φ (n) and D (n) is also given. By way of example, the
formulas of the partial sums of f (n), Φ (n), and D (n) lead to the following results: (see
Corollary 5 for the proof),

lim sup
N→∞

∣

∣

∑

n≤N f (n)− 2N+1
∣

∣

2
N

2

= 3 (1)
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n f (n) Φ (n) D (n) 2n

1 1 1 1 2
2 2 2 3 4
3 5 6 6 8
4 11 12 14 16
5 26 30 27 32
6 53 54 61 64
7 116 126 117 128
8 236 240 250 256
9 488 504 494 512
10 983 990 1012 1024
11 2006 2046 2007 2048
12 4016 4020 4088 4096
13 8111 8190 8112 8192
14 16238 16254 16357 16384
15 32603 32730 32635 32768

Table 1: The first 15 values of f (n), Φ (n), and D (n).

lim inf
N→∞

∣

∣

∑

n≤N f (n)− 2N+1
∣

∣

2
N

2

= 2
√
2 (2)

lim sup
N→∞

∣

∣

∑

n≤N Φ (n)− 2N+1
∣

∣

2
N

2

= 2 (3)

lim inf
N→∞

∣

∣

∑

n≤N Φ (n)− 2N+1
∣

∣

2
N

2

=
√
2 (4)

lim sup
N→∞

∣

∣

∑

n≤N D (n)− 2N+1
∣

∣

2
N

2

=
√
2 (5)

lim inf
N→∞

∣

∣

∑

n≤N D (n)− 2N+1
∣

∣

2
N

2

= 1 (6)

2 Preliminaries and Lemmas

Let E (n) =
∑

d|n Φ (d) be the divisor sum of Φ (n). By the definition of f (n), Φ (n), D (n)

and E (n) and the results obtained by Nathanson [9], the following holds:

f (n) ≤ min{Φ (n) , D (n)} ≤ max{Φ (n) , D (n)} ≤ E (n) = 2n − 1 ≤ 2n. (7)

Moreover, f (n) is asymptotic to 2n. So all functions above are asymptotic to 2n. In other
words,

lim
n→∞

f (n)

2n
= lim

n→∞

Φ (n)

2n
= lim

n→∞

D (n)

2n
= lim

n→∞

E (n)

2n
= 1 (8)
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So basically, f (n), Φ (n), D (n), and E (n) are very closed to 2n as n → ∞. Which one
is closer? We see from (7) that Φ (n) and D (n) are closer to 2n than f (n). In addition,
E (n) is closer to 2n than Φ (n) and D (n). But it is not clear (see Table 1) which of
Φ (n) or D (n) is closer to 2n. One way to answer this, at least on average, is to calculate
the partial sums

∑

n≤N Φ (n) and
∑

n≤N D (n) and compare them with the expected value
∑

n≤N 2n = 2N+1 − 2. To accomplish this task, we will use the following results.

Lemma 1. (Nathanson, [9]) The following holds:

(i) f (n) =
∑

d≤n

µ (d)
(

2⌊n

d
⌋ − 1

)

for every n ≥ 1, and

(ii) Φ (n) =
∑

d|n

µ (d)
(

2
n

d − 1
)

for every n ≥ 1.

Lemma 2. (Ayad and Kihel [4]) The following holds:

(i) Φ(n+ 1) = 2(f(n+ 1)− f (n)) for every n ≥ 1, and

(ii) Φ (n) ≡ 0 (mod 3) for every n ≥ 3.

Notes

1) The functions f (n) and Φ (n) were introduced by Nathanson [9] and generalized by
many authors [2, 3, 10, 11, 12, 15]. We refer the reader to Pongsriiam’s article [10]
for a unified approach and the shortest calculation of the formulas for f (n), Φ (n) and
their generalizations. Other related results can be found, for example, in the article of
El Bachraoui [5], El Bachraoui and Salim [7], and Tang [14].

2) The sequences f (n) and Φ (n) are, respectively, Sloane’s sequence A038199 and A085945.
Note also that A027375 and A038199 coincide for all n ≥ 2 (see the comments at the
end of this article).

3 Partial Sums and Limits

In this section, we compute the partial sums of f (n), Φ (n), and D (n). Then we show how
to obtain the limits shown in (1) to (6). Throughout, for a real value function f and a
positive function g, f = O (g) or f ≪ g means that there exists a positive constant c such
that |f (x)| ≤ cg (x) for all large numbers x.

Theorem 3. The following estimates hold uniformly for N ≥ 1:

(i)
∑

n≤N

f (n) =
∑

d≤N

dµ (d) 2⌊N

d
⌋ +

∑

d≤N

µ (d) 2⌊N

d
⌋(N − d

⌊

N
d

⌋

+ 1
)

+O (N2)

= 2N+1 − 2⌊N

2
⌋ (N − 2

⌊

N
2

⌋

+ 3
)

− 2⌊N

3
⌋ (N − 3

⌊

N
3

⌋

+ 4
)

+O
(

2
N

5

)

,
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(ii)
∑

n≤N

Φ (n) = 2f(N)− 1 = 2N+1 − 2 · 2⌊N

2
⌋ − 2 · 2⌊N

3
⌋ +O

(

2
N

5

)

, and

(iii)
∑

n≤N

D (n) = 2N+1 − 2⌊N

2
⌋(N − 2

⌊

N
2

⌋

+ 1
)

+O
(

N2
N

3

)

.

Proof. Let N be a large positive integer. Then

∑

n≤N

f (n) =
∑

n≤N

∑

d≤n

µ (d)
(

2⌊n

d
⌋ − 1

)

=
∑

n≤N

∑

d≤n

µ (d) 2⌊n

d
⌋ +O

(

N2
)

.

Changing the order of summation, we obtain

∑

n≤N

f (n) =
∑

d≤N

µ (d)
∑

d≤n≤N

2⌊n

d
⌋ +O(N2) (9)

Consider the inner sum above. We divide the interval of summation [d,N ] into
⋃⌊N

d
⌋−1

k=1 [kd, (k+
1)d) ∪

[⌊

N
d

⌋

d,N
]

. If n ∈ [kd, (k + 1)d), then
⌊

n
d

⌋

= k. So (9) becomes

∑

d≤N

µ (d)







⌊N

d
⌋−1
∑

k=1

∑

kd≤n<(k+1)d

2⌊n

d
⌋ +

∑

⌊N

d
⌋d≤n≤N

2⌊n

d
⌋






+O(N2)

=
∑

d≤N

µ (d)






d

⌊N

d
⌋−1
∑

k=1

2k + 2⌊N

d
⌋
(

N − d

⌊

N

d

⌋

+ 1

)






+O(N2)

=
∑

d≤N

dµ (d) 2⌊N

d
⌋ +

∑

d≤N

µ (d) 2⌊N

d
⌋
(

N − d

⌊

N

d

⌋

+ 1

)

+O
(

N2
)

(10)

We see from (10) that the main terms can be obtained from the small value of d. Expanding
the sum for d = 1, 2, 3, 4, we obtain

2N+1 − 2⌊N

2
⌋
(

N − 2

⌊

N

2

⌋

+ 3

)

− 2⌊N

3
⌋
(

N − 3

⌊

N

3

⌋

+ 4

)

+O

(

∑

5≤d≤N

d2⌊N

d
⌋
)

(11)

We have
∑

5≤d≤N

d2⌊N

d
⌋ ≪ 2⌊N

5
⌋ +

∑

6≤d≤N

N2⌊N

6
⌋ ≪ 2

N

5 (12)
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We obtain (i) from (10), (11), and (12). Applying Lemmas 2(i), and 1(i), we obtain

∑

n≤N

Φ (n) = 1 +
∑

n≤N−1

Φ (n+ 1)

= 1 + 2
∑

n≤N−1

(f (n+ 1)− f (n))

= 2f(N)− 1

= 2

(

∑

d≤N

µ (d)
(

2⌊N

d
⌋ − 1

)

)

− 1

Similar to the proof of (i), we expand the sum for d = 1, 2, 3, 4 to obtain (ii). Next we write,

∑

n≤N

D (n) =
∑

n≤N

∑

d|n

f (d) =
∑

dk≤N

f (d) =
∑

k≤N

∑

d≤N

k

f (d) .

Recall that
⌊

⌊x⌋
n

⌋

=
⌊

x
n

⌋

for every x ∈ R. Applying (i) to the above sum, we get

∑

n≤N

D (n) =
∑

k≤N

2⌊N

k
⌋+1 − 2⌊ N

2k
⌋
(⌊

N

k

⌋

− 2

⌊

N

2k

⌋

+ 3

)

+O
(

N2
N

3

)

(13)

Now
∑

3≤k≤N

2⌊N

k
⌋+1 − 2⌊ N

2k
⌋(⌊N

k

⌋

− 2
⌊

N
2k

⌋

+ 3
)

≪
∑

k≤N

2
N

3 ≪N2
N

3 . So (13) becomes

∑

n≤N

D (n) = 2N+1 − 2⌊N

2
⌋
(

N − 2

⌊

N

2

⌋

+ 3

)

+ 2⌊N

2
⌋+1 +O

(

N2
N

3

)

= 2N+1 − 2⌊N

2
⌋
(

N − 2

⌊

N

2

⌋

+ 1

)

+O
(

N2
N

3

)

.

This completes the proof.

Corollary 4. We obtain the following limits:

(i) lim
N→∞
N odd

∣

∣

∑

n≤N f (n)− 2N+1
∣

∣

2⌊N

2
⌋ = 4,

(ii) lim
N→∞
N even

∣

∣

∑

n≤N f (n)− 2N+1
∣

∣

2⌊N

2
⌋ = 3,

(iii) lim
N→∞

∣

∣

∑

n≤N Φ (n)− 2N+1
∣

∣

2⌊N

2
⌋ = 2,

(iv) lim
N→∞
N odd

∣

∣

∑

n≤N D (n)− 2N+1
∣

∣

2⌊N

2
⌋ = 2, and
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(v) lim
N→∞
N even

∣

∣

∑

n≤N D (n)− 2N+1
∣

∣

2⌊N

2
⌋ = 1.

Proof. By Theorem 3(i), we see that
∣

∣

∑

n≤N f (n)− 2N+1
∣

∣

2⌊N

2
⌋ = N − 2

⌊

N

2

⌋

+ 3 +O
(

2
N

3
−⌊N

2
⌋) .

Note that

N − 2

⌊

N

2

⌋

+ 3 =

{

3, if N is even;

4, if N is odd,

and 2
N

3
−⌊N

2
⌋ → 0 as N → ∞. So we obtain (i) and (ii). Similarly, we can apply Theorem

3(ii) and 3(iii) to obtain (iii), (iv) and (v).

Corollary 5. The limits given in (1) to (6) hold.

Proof. By Corollary 4(ii), we see that lim
N→∞
N even

∣

∣

∑

n≤N f (n)− 2N+1
∣

∣

2
N

2

= 3, and by Corollary 4(i),

we have

lim
N→∞
N odd

∣

∣

∑

n≤N f (n)− 2N+1
∣

∣

2
N

2

= lim
N→∞
N odd

∣

∣

∑

n≤N f (n)− 2N+1
∣

∣

2
N−1

2

√
2

=
1√
2

lim
N→∞
N odd

∣

∣

∑

n≤N f (n)− 2N+1
∣

∣

2⌊N

2
⌋

=
4√
2
= 2

√
2.

This gives (1) and (2). The proof of (3), (4), (5), and (6) is similar.

We know from (8) that f (n), Φ (n) and D (n) are asymptotic to 2n. So we expect that
∑

n≤N

f(n)
2n

,
∑

n≤N

Φ(n)
2n

, and
∑

n≤N

D(n)
2n

are asymptotic toN . But this does not give much the

information on the error terms
∣

∣

∣

∑

n≤N

f(n)
2n

−N
∣

∣

∣
,
∣

∣

∣

∑

n≤N

Φ(n)
2n

−N
∣

∣

∣
, and

∣

∣

∣

∑

n≤N

D(n)
2n

−N
∣

∣

∣
.

We show in the next corollary that the error terms are small.

Corollary 6. The following estimates hold:

(i)
∑

n≤N

f (n)

2n
= N + 1 + (log 2)

∫ ∞

1

∑

n≤t f (n)− 2⌊t⌋+1

2t
dt+O

(

2−
N

2

)

,

(ii)
∑

n≤N

Φ (n)

2n
= N + 1 + (log 2)

∫ ∞

1

∑

n≤t Φ (n)− 2⌊t⌋+1

2t
dt+O

(

2−
N

2

)

, and

(iii)
∑

n≤N

D (n)

2n
= N + 1 + (log 2)

∫ ∞

1

∑

n≤t D (n)− 2⌊t⌋+1

2t
dt+O

(

2−
N

2

)

.
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Proof. Let F (t) =
∑

n≤t

f (n). Then by partial summation ([1, p. 77] or [8, p. 488]), we see

that
∑

n≤N

f (n)

2n
=

F (N)

2N
+ (log 2)

∫ N

1

F (t)

2t
dt (14)

By Theorem 3(i), for t ≥ 1, we can write F (t) = 2⌊t⌋+1 + g (t) where g (t) = O
(

2
t

2

)

. Then

(14) becomes
∑

n≤N

f (n)

2n
= 2 + (log 2)

∫ N

1

2⌊t⌋+1

2t
+

g(t)

2t
dt+O

(

2−
N

2

)

(15)

Consider

∫ N

1

2⌊t⌋+1

2t
dt =

N−1
∑

k=1

∫ k+1

k

2⌊t⌋+1

2t
dt

=
N−1
∑

k=1

∫ k+1

k

2k+1

2t
dt

=
N−1
∑

k=1

2k+1

[−2−t

log 2

]k+1

k

=
N − 1

log 2
(16)

Since g(t) = O
(

2
t

2

)

,
∫∞

1
g(t)
2t

dt converges and
∫∞

N

g(t)
2t

dt ≪
∫∞

N
2−

t

2dt ≪ 2−
N

2 . So

∫ N

1

g(t)

2t
dt =

∫ ∞

1

g(t)

2t
dt+O

(

2−
N

2

)

(17)

From (15), (16) and (17), we obtain

∑

n≤N

f (n)

2n
= 2 + (log 2)

(

N − 1

log 2
+

∫ ∞

1

g(t)

2t
dt

)

+O
(

2−
N

2

)

= N + 1 + (log 2)

∫ ∞

1

g(t)

2t
dt+O

(

2−
N

2

)

.

The proof of (ii) and (iii) is similar.

We investigate some combinatorial properties of D (n) in the next section.

4 Combinatorial properties

We will give a combinatorial interpretation of D (n). But it may be useful later to do it in
a more general setting. So we introduce the following definition. Throughout, let X, Xd,
and 1

d
X denote, respectively, a nonempty finite set of positive integers, {x ∈ X : d | x} and

{

x
d

: x ∈ X
}

.
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Definition 7. Let D (X,n) denote the number of nonempty subsets A of X such that
gcd (A) | n, and let f (X) denote the number of relatively prime subsets of X.

Theorem 8. Let X be a nonempty finite set of positive integers. Then

D (X,n) =
∑

d|n

f

(

1

d
Xd

)

.

Proof. We begin with

D (X,n) =
∑

∅6=A⊆X
gcd(A)|n

1 =
∑

d|n

∑

∅6=A⊆X
gcd(A)=d

1 (18)

The condition gcd (A) = d means that d divides all elements of A and gcd
(

1
d
A
)

= 1. So
∅ 6= A ⊆ X and gcd (A) = d if and only if ∅ 6= A ⊆ Xd and gcd

(

1
d
A
)

= 1. Therefore the
inner sum in (18) is equal to

∑

∅6=A⊆Xd

gcd( 1

d
A)=1

1 =
∑

∅6= 1

d
A⊆ 1

d
Xd

gcd( 1

d
A)=1

1 =
∑

∅6=B⊆ 1

d
Xd

gcd(B)=1

1 = f

(

1

d
Xd

)

.

Hence

D (X,n) =
∑

d|n

f

(

1

d
Xd

)

.

Corollary 9. We have D (n) is equal to the number of subsets A of {1, 2, . . . , n} such that
gcd (A) | n. In other words, D (n) = D ({1, 2, . . . , n} , n).

Proof. LetX = {1, 2, . . . , n}. ThenXd =
{

d, 2d, . . . ,
⌊

n
d

⌋

d
}

. Therefore 1
d
Xd =

{

1, 2, . . . ,
⌊

n
d

⌋}

.
By the definition, we see that

f

(

1

d
Xd

)

= f
({

1, 2, . . . ,
⌊n

d

⌋})

= f
(⌊n

d

⌋)

.

Then by Theorem 8, we see that

D (X,n) =
∑

d|n

f
(⌊n

d

⌋)

=
∑

d|n

f (d) = D (n) .

Therefore D (n) is equal to the number of subsets A of {1, 2, . . . , n} such that gcd (A) | n.

Theorem 10. Let d (n) be the number of positive divisors of n. Then D (n) + d (n) + 1 ≡ 0
(mod 3) for every n ≥ 1.
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Proof. By Lemma 2(i) and 2(ii), we see that

f(n+ 1) ≡ f (n) (mod 3) for every n ≥ 2.

This implies that f (n) ≡ f(2) ≡ 2 (mod 3) for every n ≥ 2. Then

D (n) =
∑

d|n

f (d) = f(1) +
∑

d|n
d≥2

f (d) ≡ 1 + 2(d (n)− 1) (mod 3).

This implies that D (n) + d (n) + 1 ≡ 0 (mod 3).

Comments and Open Questions

1) There is a small miscalculation in the formulas for Φ (n) and its generalizations in the
literature. The right one is Φ (n) =

∑

d|n µ (d)
(

2
n

d − 1
)

(Lemma 1(ii)) which corre-

sponds to A038199 in Sloane’s On-Line Encyclopedia of Integer Sequences [13]. The
wrong one is Φ (n) =

∑

d|n µ (d) 2
n

d which is usually referred to as A027375. For-
tunately, there is little danger since both sequences coincide for all n ≥ 2. This is
because we have the well known identity

∑

d|n

µ (d) =

{

1, if n = 1;

0, if n > 1.

2) The sequence D (n) is new and appears as A224840 in Sloane’s On-Line Encyclopedia
of Integer Sequences [13].

3) As suggested by the limits given in (3) to (6), on average, the sequence D (n) lies closer
to 2n than Φ (n). But for certain n, Φ (n) may lie closer to 2n than D (n). Considering
Table 1 more carefully, we see that Φ (n) lies closer to 2n for all odd n from 5 to 15.
Therefore

the sign of D (n)− Φ (n) is alternating for 4 ≤ n ≤ 15. (19)

So natural questions arise:

3.1 Does (19) hold for all n ≥ 4? We check that (19) holds for 4 ≤ n ≤ 30. But we
do not have a proof for n ≥ 31. It is possible that (19) does not hold for some
n ≥ 31. In this case, we may ask a weaker question:

3.2 Does D (n)− Φ (n) change sign infinitely often?

Other possible research questions are the following:

3.3 Can we say something about lim supn→∞
2n−D(n)
2n−Φ(n)

, lim infn→∞
2n−D(n)
2n−Φ(n)

,
∑

n≤N

2n−D(n)
2n−Φ(n)

,

or
∑

n≤N

2n−Φ(n)
2n−D(n)

?

3.4 Is D (n) a perfect power for some n ≥ 2? (Ayad and Kihel [4] prove that f (n) is
never a square for n ≥ 2. El Bachraoui and Luca [6] prove that Φ(n) is never a
square for n ≥ 2, and f(n) and Φ(n) are perfect powers for at most finitely many
n ∈ N).

3.5 Are the sequences D (n) and Φ (n) periodic modulo a prime p? (Ayad and Kihel
[4] show that the sequence f (n) is not periodic modulo p for any p 6= 3).
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