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Abstract

The super Catalan numbers T (m,n) = (2m)!(2n)!/2m!n!(m+ n)! are integers that
generalize the Catalan numbers. With the exception of a few values of m, no com-
binatorial interpretation is known for T (m,n). We give a weighted interpretation for
T (m,n) and develop a technique that converts this weighted interpretation into a con-
ventional combinatorial interpretation in the case m = 2.

1 Introduction

As early as 1874 Eugène Catalan observed that the numbers

S(m,n) =

(

2m

m

)(

2n

n

)

(

m+n

n

) =
(2m)!(2n)!

m!n!(m+ n)!

are integers. This can be proved algebraically by showing that, for every prime number p,
the power of p which divides m!n!(m+n)! is at most the power of p which divides (2m)!(2n)!.
No combinatorial interpretation of S(m,n) is yet known.

Interest in the subject in the modern era was reignited by Gessel [5]. He noted that,
except for S(0, 0), the numbers S(m,n) are even. Gessel refers to

T (m,n) =
(2m)!(2n)!

2(m!n!(m+ n)!)

1

file:eaallen@andrew.cmu.edu
file:gheorghi@andrew.cmu.edu


as the super Catalan numbers. The super Catalan numbers defined by Gessel should not be
confused with the little Schröder numbers, which are sometimes also called super Catalan
numbers.

m\n 0 1 2 3 4 5 6 7
0 na 1 3 10 35 126 462 1716
1 1 1 2 5 14 42 132 429
2 3 2 3 6 14 36 99 286
3 10 5 6 10 20 45 110 286
4 35 14 14 20 35 70 154 364
5 126 42 36 45 70 126 252 546
6 462 132 99 110 154 252 462 924
7 1716 429 286 286 364 546 924 1716

Table 1: A table for T (m,n).

Clearly T (0, n) =
(

2n−1

n

)

, whilst T (1, n) = Cn giving the Catalan numbers, a well-known
sequence with over 66 combinatorial interpretations [10].

An interpretation of T (2, n) in terms of blossom trees has been found by Schaeffer [9],
and another in terms of cubic trees by Pippenger and Schleich [8]. An interpretation of
T (2, n) in terms of pairs of Dyck paths with restricted heights has been found by Gessel and
Xin [6]. They have also provided a description of T (3, n). An interpretation of T (m,m+ s)
for 0 ≤ s ≤ 3 in terms of restricted lattice paths has been given by Chen and Wang [3].

A weighted interpretation of S(m,n) based on von Szily’s identity has been given by
Georgiadis, Munemasa and Tanaka [4]. Their interpretation is in terms of lattice paths of
length 2m+ 2n with a condition on the y-coordinate of the end-point of the 2mth step.

In Section 2 we provide a weighted interpretation of T (m,n) for m,n ≥ 1 in terms of
2-Motzkin paths of length m+n− 2, or Dyck paths of length 2m+2n− 2. Since the lattice
paths in [4] are not Dyck paths, our interpretation is different from the one by Georgiadis,
Munemasa and Tanaka. In Section 3 we are able to use our weighted interpretation to re-
derive a result by Gessel and Xin [6], which we were then able to generalize for super Catalan
polynomials [2].

2 2-Motzkin paths

A 2-Motzkin path of length n starts at the origin, ends at the point (n, 0), never goes below
the x-axis, and consists of unit steps that are diagonally up, diagonally down, straight level
and wavy level. A Dyck path of length 2n is a 2-Motzkin path of length 2n with no level

steps.
Given a 2-Motzkin path, the level of a point is defined to be its y-coordinate. The height

of a path is the maximum y-coordinate which the path attains. The height of a path π will
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be denoted h(π).
For a fixed m ≥ 0, we call a 2-Motzkin path π m-positive if the mth step begins on an

even level, otherwise π is m-negative. Let P (m,n) be the number of m-positive 2-Motzkin
paths of length m + n − 2, and N(m,n) be the number of m-negative 2-Motzkin paths of
length m+ n− 2.

There is a well-known bijection between 2-Motzkin paths of length n−1 and Dyck paths
of length 2n [7]. Given a 2-Motzkin path, read the steps from left to right and do the
following replacements: replace an up step with two up steps, a down step with two down

steps, a straight step with an up step followed by a down step, and a wavy step with a down

step followed by an up step. The resulting path may touch level −1, thus, in addition, add
an up step to the beginning of the resulting path and a down step to the end to obtain a
Dyck path.

Theorem 1. For m,n ≥ 1, the super Catalan number T (m,n) counts the number of m-

positive 2-Motzkin paths of length m + n − 2 minus the number of m-negative 2-Motzkin

paths of length m+ n− 2. That is,

T (m,n) = P (m,n)−N(m,n).

Proof. The super Catalan numbers satisfy the following identity, attributed to Dan Ruben-
stein [5],

4T (m,n) = T (m+ 1, n) + T (m,n+ 1). (1)

Note that (1) can be viewed as a recurrence for T (m,n) on m if written as

T (m+ 1, n) = 4T (m,n)− T (m,n+ 1).

Given a 2-Motzkin path π of length m + n − 2, define the weight of π to be 1 if π is
m-positive and −1 if π is m-negative.

Let F (m,n) be the sum of the weights of all 2-Motzkin paths of length m+ n− 2, that
is, F (m,n) = P (m,n) − N(m,n). To prove F (m,n) = T (m,n), we will check the initial
condition

F (1, n) = Cn

and the recurrence given by (1),

4F (m,n) = F (m+ 1, n) + F (m,n+ 1).

For m = 1, the weight of any 2-Motzkin path of length n is 1 because the first step always
starts at the (even) level y = 0. Hence F (1, n) = Cn, giving the number of 2-Motzkin paths
of length n− 1.

Next we consider the sum of the weights counted by F (m,n + 1) + F (m + 1, n). If a
2-Motzkin path of length m + n − 1 has an up or down step at step m, it will be counted
once as a m-positive path and once as a m-negative path, and will not contribute to this
sum.
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Paths of length m + n − 1 with a level step at step m will be counted twice. Let π be
such a 2-Motzkin path. By contracting the mth step in π, we obtain a 2-Motzkin path of
length m + n − 2; furthermore, every 2-Motzkin path of length m + n − 2 can be obtained
by contracting exactly two 2-Motzkin paths of length m + n − 1, one with a wavy step at
step m and one with a straight step at step m.

Thus the sum of the weights counted by F (m,n + 1) + F (m + 1, n) is twice the sum of
the weights of 2-Motzkin paths of length m+ n− 1 with level steps at step m; which is four
times the sum of the weights of 2-Motzkin paths of length m+ n− 2, that is, 4F (m,n).

Figure 1: When m = 2, there are ten m-positive 2-Motzkin paths and four m-negative
2-Motzkin paths of length 3. T (2, 3) = P (2, 3)−N(2, 3) = 6.

This weighted interpretation can be used to prove combinatorially that T (m,n) = T (n,m).
Let π be a path of length m+ n− 2 counted by T (m,n). Consider the reverse of a path to
be that path read from right to left. Since the mth step of π and the nth step of the reverse
of π start at the same point, mapping a path to its reverse is a weight preserving involu-
tion between the 2-Motzkin paths counted by T (m,n) and the 2-Motzkin paths counted by
T (n,m).

We can reformulate the result of Theorem 1 in terms of Dyck paths. In this case P (m,n)
is the number of Dyck paths of length 2m + 2n − 2 whose 2m − 1st step ends on level 1
(mod 4), and N(m,n) is the number of Dyck paths of length 2m + 2n − 2 whose 2m − 1st

step ends on level 3 (mod 4).
Similar to a Dyck path, a ballot path starts at the origin, uses a finite number of diagonally

up and diagonally down steps, and does not go below the x-axis. A ballot path ends on
or above the x-axis. Let B(n, r) be the number of ballot paths that end at the point
(2n− 1, 2r − 1). It is well known that B(n, r) = r

n

(

2n

n+r

)

. Then

T (m,n) =

min{m,n}
∑

r=1

(−1)r−1B(m, r)B(n, r) (2)

and

T (m,n) =

min{m,n}
∑

r=1

(−1)r−1
r2

nm

(

2m

m+ r

)(

2n

n+ r

)

. (3)
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Equation (3) is a new identity for the super Catalan number T (m,n). A q-analog of this
identity is given in [2], and its algebraic proof appears in [1].

3 Combinatorial techniques

We define the total length of an ordered pair of Dyck paths (π, ρ) to be the sum of the
lengths of the paths π and ρ. The height of the empty Dyck path is zero. In [6] Gessel and
Xin use an inclusion-exclusion argument to prove the following result.

Theorem 2 (Gessel, Xin). For n ≥ 1, the number T (2, n) counts the ordered pairs of Dyck

paths (π, ρ) of total length 2n with |h(π) − h(ρ)| ≤ 1. Here π and ρ are allowed to be the

empty path.

Our goal in this section is to derive a similar result using Theorem 1 and some direct
Dyck paths subtraction techniques that will be easier to generalize for larger values of m.
We already were able to generalize this result to super Catalan Polynomials in [2].

Let Dn denote the set of Dyck paths of length 2n. For a path π ∈ Dn, let R be the
rightmost highest point on π. We define the X-point of π to be the last, from left to right,
level one point on the portion of π before and including R. In other words, if h(π) > 1, then
the X-point is the last, from left to right, level one point before R. If h(π) = 1, then the
X-point and R coincide. See Figure 2.

X=R

R

X

Figure 2: The X-point of two Dyck paths.

Let h−(π) denote the maximum level that the path π reaches from its beginning until
and including the X-point, and h+(π) denote the maximum level that the path π reaches
after and including the X-point. Obviously h−(π) ≤ h+(π) = h(π).

Theorem 3. Let n ≥ 1. The super Catalan number T (2, n) counts Dyck paths π of length

2n such that h+(π) ≤ h−(π) + 2, the path of height one counting twice.

Proof. Let An denote the set of Dyck paths of length 2n that start with up, down, up, Bn

denote the set of Dyck paths of length 2n that start with up, up, down, and Nn denote the
set of Dyck paths of length 2n that start with up, up, up.

By Theorem 1, T (2, n) = P (2, n) − N(2, n), where P (2, n) is the number of 2-Motzkin
paths of length n that start with a level step, and N(2, n) is the number 2-Motzkin paths of

5



length n that start with an up step. The canonical bijection between 2-Motzkin paths and
Dyck paths leads to the following interpretation:

T (2, n) = |An+1|+ |Bn+1| − |Nn+1|.

Note that An+1, Bn+1 and Nn+1 are subsets of Dn+1. By contracting the second and
third steps in the paths in An+1 and Bn+1 we get twice Dn, so |An+1| = |Bn+1| = Cn.

We consider all paths π in Nn+1 that do not attain level one between the third step of π
and the rightmost highest point R on π. The set of all such paths will be denoted by N ∗

n+1.
Let N ∗∗

n+1 = Nn+1 −N ∗
n+1. Then

T (2, n) = 2|Dn| − |N ∗
n+1| − |N ∗∗

n+1|. (4)

First we establish an injection f from N ∗
n+1 ⊂ Dn+1 to Dn. For π ∈ N ∗

n+1, let RQ be
the down step that follows the rightmost highest point R of π. We define f(π) to be the
path obtained by removing the second and third steps in π, both of which are up steps, and
then substituting the down step RQ by an up step. See Figure 3. Since π does not attain
level one between its third step and R, f(π) is a Dyck path of length 2n. Note that Q is
the leftmost highest point on f(π). Also, since at least two up steps precede Q on f(π), the
height of f(π) is at least two. Thus the Dyck path of height one and length 2n is not in the
image of f .

R

Q

R

Q

f

Figure 3: f removes the 2nd and 3rd steps, substitutes the down step RQ by an up step.

We will show that f is an injection and that the only path in Dn that is not in the image
of f is the Dyck path of height one. Let ρ be in Dn of height h(ρ) > 1. Let Q be the leftmost
highest point on ρ and RQ be the up step that precedes Q. Insert two up steps after the
first step of ρ, then substitute the up step RQ by a down step, which makes R the rightmost
highest point of the resulting path π. The path π is in N ∗

n+1 and f(π) = ρ.
It follows that |Dn|− |N ∗

n+1| counts only one path, the Dyck path of length 2n and height
one.

Next we establish an injection g from N ∗∗
n+1 ⊂ Dn+1 to Dn. A path π in N ∗∗

n+1 attains
level one between its third step and the rightmost highest point R on π. Let Y be the first
point between the third step of π and R at which π attains level one. The segment XY
that consists of two down steps precedes Y . We remove the second and third steps of π and
substitute the two down steps XY by two up steps. See Figure 4. The resulting path is a
ballot path of length 2n that ends at level two. From left to right, X is the last level one
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R

R

X

Y

Y

X

Figure 4: First part of g action is removing the 2nd and 3rd steps, substituting the two down

steps XY by two up steps.

point on this ballot path. The maximum level that this path reaches up to and including
point X is less than the maximum level it reaches after and including point X by at least 4.

Let L be the leftmost highest point of this ballot path and ML be the up step that
precedes L. Substitute the up step ML by a down step. See Figure 5. The resulting path
g(π) is in Dn and M is its rightmost highest point. Note that X is the last level one point
on g(π) before its rightmost highest point M and h+(g(π)) ≥ h−(g(π)) + 3.

X

Y

L R

M

X

Y

M
L R

Figure 5: Second part of g action is substituting the up step ML with a down steps.

We will show that g is an injection and that the only paths in Dn that are not in the
image of g are the Dyck paths σ that satisfy h+(σ) ≤ h−(σ) + 2. Let ρ be in Dn and
h+(ρ) ≥ h−(ρ) + 3. Let M be the rightmost highest point on ρ and ML be the down step
that follows M . Let X be the X-point of ρ, that is the last level one point, from left to right,
before and including M . Substitute the down step ML by an up step. The result is a ballot
path of length 2n that ends at level two. Note that L is the leftmost highest point on this
ballot path. Let R denote the rightmost highest point on this ballot path. From left to right,
X is the last level one point on this ballot path. The maximum level that this path reaches
up to and including point X is less than the maximum level it reaches after and including
point X by at least 4. Since X is the last level one point, it is followed by the segment XY
that consists of two up steps. Next we insert two up steps after the first step of this ballot
path and then substitute the two up steps XY by two down steps. The resulting path is a
Dyck path of length 2n+ 2, we denote it by π. Point Y is the first level one point after the
third step of π. Note that the maximum level that this Dyck path reaches after Y is at least
the maximum level that this Dyck path reaches up to and including Y , which means that
the rightmost highest point R is to the right of Y . If follows that p ∈ N ∗∗

n+1 and g(π) = ρ.
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Thus |Dn| − |N ∗∗
n+1| counts Dyck paths π of length 2n that satisfy h+(π) ≤ h−(π) + 2.

Note that the Dyck path of length 2n and height one is among these paths.
Equation (4) can be re-written as

T (2, n) = (|Dn| − |N ∗
n+1|) + (|Dn| − |N ∗∗

n+1|).

Hence T (2, n) counts Dyck paths π of length 2n such that h+(π) ≤ h−(π) + 2, the path
of height one counting twice.

We will now show a simple bijection from the objects described in Theorem 3 to those
in Theorem 2.

X X
Y

Y

R

R

L L

Figure 6: From Dyck paths described in Theorem 3 to pairs of Dyck path described in
Theorem 2.

Let π be a Dyck path of length 2n and height h(π) > 1, such that h+(π) ≤ h−(π) + 2.
Let R be the rightmost highest point of π. Note that X is followed by an up step XY and
R is followed by a down step RL. Substitute the up step XY with a down step, substitute
the down step RL with an up step. See Figure 6. As a result, the portion of π between Y
and R will be lowered by two levels. Since π does not attain level one between Y and R, the
resulting path is a Dyck path with point Y on level zero.

Note that Y separates this Dyck path into a pair of Dyck paths (ρ, σ). The height of
ρ is h−(π), the height of σ is h+(π) − 1. Thus |h(ρ) − h(σ)| ≤ 1. Since L is the leftmost
highest point on σ, this mapping is reversible. Theorem 3 counts the Dyck path τ of height
one twice. This corresponds to the pairs (τ, ǫ) and (ǫ, τ) in Theorem 2, where ǫ is the empty
path.
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