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Abstract

This paper describes a class of sequences that are in many ways similar to Fibonacci

sequences: given n, sum the previous two terms and divide them by the largest possible

power of n. The behavior of such sequences depends on n. We analyze these sequences

for small n: 2, 3, 4, and 5. Surprisingly, these behaviors are very different. We

also present theorems regarding any n. Many statements about these sequences may

be difficult or even impossible to prove, but they can be supported by probabilistic

arguments. We have plenty of those in this paper.

We also introduce ten new sequences. Most of the new sequences are also related

to Fibonacci numbers proper, not just free Fibonacci numbers.

1 Introduction

John Horton Conway likes playing with the Fibonacci sequence. Instead of summing the
two previous terms, he sums them up and then adds a twist: some additional operation.
Conway discussed these sequences with the second author, and this is how we got interested
in them. The second author already wrote about one class of such sequences, called subprime
Fibonacci sequences, jointly with Guy and Salazar [3]. Here we discuss another variation
called n-free Fibonacci sequences.

An n-free Fibonacci sequence starts with any two integers, but is defined by a special
recurrence relation where after adding the two previous terms, the maximum possible power
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of n is immediately removed from the newest term in the sequence (see Section 2 for a more
rigorous definition).

It appears that many other people like twisting Fibonacci sequences. After we started
working on this paper and made our calculations, we checked, as everyone should, the On-
Line Encyclopedia of Integer Sequences (OEIS) [1] and discovered that some n-free Fibonacci
sequences were already submitted by three other people. Surprisingly, the first sequence
submitted was the sequence of 7-free Fibonacci numbers (A078414) entered by Kohmoto
in December 2002. After that, the sequence of 5-free Fibonacci numbers (A214684) was
submitted by Layman in July 2012. It was followed by the sequence of 4-free Fibonacci
numbers (A224382) submitted by Shevelev in April 2013. As the reader will see very soon,
2-free and 3-free Fibonacci numbers do not constitute new sequences. We filled the gap and
submitted 6-free Fibonacci numbers (A232666) in November 2013.

In Section 2, we introduce useful facts about Fibonacci numbers. In Section 3, we show
that all 2-free sequences end in a cycle of length 1. The 3-free Fibonacci sequences are much
more complicated, and we study them in Section 4. All of our computational experiments
ended in a cycle of length 3. On the other hand, we show that 3-free sequences may contain
arbitrarily long increasing subsequences. We prove this in Section 5. Nevertheless, we give
a probabilistic argument that a 3-free sequence should end in a cycle in Section 4.

The 4-free Fibonacci sequences are vastly different from 2-free and 3-free sequences (Sec-
tion 6). We did not find a sequence that ends in a cycle: all of them grow in our experiments.
The proof that all of them grow seems intractable, but we supply a probabilistic argument
that this is the case. Yet, 5-free sequences bring something new (see Section 7). They contain
sequences that are never divisible by 5 and provably grow indefinitely. At the same time,
5-free sequences contain cycles, too.

We continue with Section 8, where we find other numbers n for which there exist n-free
sequences that never need to be divided by n. We ponder the disappearance of cycles, and
discuss their potential properties in Section 9.

We finish with a discussion of our computational results. Section 10 explains why the
average growth for some n-free sequences is close to the golden ratio and Section 11 explains
the growth behavior for other values of n.

2 Fibonacci Numbers and n-free Fibonacci Sequences

Let us denote Fibonacci numbers by Fk. We define our indices such that F0 = 0 and F1 = 1.
The sequence is defined by the Fibonacci recurrence: Fn+1 = Fn + Fn−1 (see A000045).
We call an integer sequence an Fibonacci-like if it satisfies the Fibonacci recurrence: ak =
ak−1 + ak−2. A Fibonacci-like sequence is similar to the Fibonacci sequence, except that
it starts with any two integers. The second most famous Fibonacci-like sequence is the
sequence of Lucas numbers Li that starts with L0 = 2 and L1 = 1: 2, 1, 3, 4, 7, 11, . . . (see
A000032).

An n-free Fibonacci sequence starts with any two integers, a1 and a2, and is defined by
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the recurrence ak = (ak−1 + ak−2)/n
νn(ak−1+ak−2), where νn(x) is the exponent of the largest

power of n that is a divisor of x. To continue the tradition, we call numbers in the n-free
Fibonacci sequence that starts with a0 = 0 and a1 = 1 n-free Fibonacci numbers.

In what follows, we will consider only sequences starting with two non-negative integers.
It is not that we do not care about other starting pairs, but positive sequences cover all
essential cases. Indeed, if we start with two negative numbers, we can multiply the sequence
by −1 and get an all-positive sequence. If we start with numbers of different signs, the
sequence eventually will become an all-positive or all-negative sequence.

If we start with two zeros, we get an all-zero sequence. So we will consider only sequences
that do not have two zeros at the beginning. Note that a non-negative sequence can have a
zero only in one of the two starting positions, never later.

The n-free Fibonacci sequence coincides with the Fibonacci-like sequence with the same
beginning until the first occurrence of a multiple of n in the Fibonacci-like sequence.

Given a positive integer m > 1, the smallest positive index k for which n divides the k-th
Fibonacci number Fk is called the entry point of m and is denoted by Z(m) (see sequence
A001177 of Fibonacci entry points). For example, Z(10) = 15 and the 10-free Fibonacci
numbers coincide with the Fibonacci numbers for indices lower than 15.

Now that all the preparation is done, let us take a closer look at the simplest n-free
Fibonacci sequences: 2-free Fibonacci sequences.

3 2-free Fibonacci Sequences

Consider some examples. The sequence that starts with 0, 1 continues with 1, 1, 1, . . .. The
only two 2-free Fibonacci numbers are 0 and 1. The sequence eventually stabilizes, or in
other words, turns into a cycle of length 1. Let us look at other starting points. The sequence
that starts as 1, 2 continues as 3, 5, 1, 3, 1, 1, and stabilizes at 1. This sequence turns into
the same cycle. The sequence that starts with 100, 220, continues with 5, 225, 115, 85, 25,
55, 5, 15, 5, 5, 5, and stabilizes at 5. It turns into a different cycle, but the length of the
cycle is again equal to 1.

Lemma 1. Every 2-free Fibonacci sequence eventually turns into a cycle of length 1: x, x,
x, . . ., for an odd x.

Proof. It is clear that after the second term, all elements of the sequence are odd. Consider
the maximum of two consecutive terms of the sequence: mk = max(ak−1, ak). If two consec-
utive terms ak−1, ak of the sequence are odd and not equal to each other, then the maximum
decreases: mk+1 < mk. Thus, the sequence must stabilize.

It follows from this proof that for a sequence starting with a1, a2, the number of steps
until the cycle is reached is not more than max(a1, a2). On the other hand, the subsequence
before the cycle can be arbitrarily long. It follows from the following lemma.
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Lemma 2. For any two odd numbers a1, a2, a preceding odd number a0 can be found so that
a0, a1, and a2 form a 2-free Fibonacci sequence.

Proof. Pick a positive integer k so that 2ka2 > a1 and set a0 to be equal to 2ka2 − a1.

There are many ways to build predecessors to a given 2-free Fibonacci sequence. The
minimal such sequence is built when we choose the smallest power of 2 that still allows us to
have positive members in the sequence. We explicitly build such an example starting with
a1 = 3, and a2 = 1. Reversing the indexing direction yields the following: 1, 3, 1, 5, 3, 7, 5,
9, 1, . . ., which is now sequence A233526.

Next, we want to continue with 3-free Fibonacci sequences. Are they as simple as 2-free
sequences?

4 3-free Fibonacci Sequences

Let us look at 3-free Fibonacci sequences. Consider the example of 3-free Fibonacci numbers:
0, 1, 1, 2, 1, 1, 2, and so on. The sequence turns into a cycle of length 3. There are only 3
different 3-free Fibonacci numbers.

We can multiply a 3-free sequence by a number not divisible by 3 to get another 3-free
sequence. Thus, in general, we can get cycles of the form k, k, 2k, where k is not divisible
by 3.

Lemma 3. Any cycle of length 3 in a 3-free Fibonacci sequence is of the form k, k, 2k.

Proof. Consider the length 3 cycle a, b, c. From the definition of 3-free Fibonacci sequences,
we know the following relations:

a+ b = 3xc (1)

b+ c = 3ya (2)

c+ a = 3zb. (3)

Furthermore, no term in the sequence is divisible by 3. Then, by the pigeonhole principle,
at least two of the terms a, b, c must be congruent modulo 3. Without loss of generality, take
a ≡ b (mod 3). Then a+b 6≡ 0 (mod 3), so we have that x = 0 and a+b = c. Now substitute
for c and add equations (2) and (3) to get that a+ b = 3y−1a+ 3z−1b. Since 3 ∤ a+ b, either
y = 1 or z = 1. If y = 1, then b = 3z−1b, hence z = 1. Similarly, z = 1 implies y = 1. In
either case, y = z = 1. Then we may solve for our initial variables to show that a = b and
c = a+ b. Restated, a = k, b = k, and c = 2k.

Corollary 4. The number k in this cycle is the greatest common divisor of the sequence.
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Proof. Because of the Fibonacci additive property, if any number divides two or more ele-
ments of the sequence (excluding the first two, which may be divisible by 3), it must divide
all numbers in the sequence. Thus, k must divide every element. The least of these elements,
then, can only be k itself, making it the greatest common divisor.

Will it be the case that all 3-free Fibonacci sequences end in cycles of length 3? We will
build suspense by delaying this discussion. Meanwhile, we have a lemma about the length
of any potential cycle:

Lemma 5. Any cycle in a 3-free Fibonacci sequence is of length 3n for some integer n.

Proof. Begin with any 3-free Fibonacci sequence, and divide out the highest power of 2 in
the GCD of all its elements. The resulting sequence is a 3-free Fibonacci sequence with at
least one odd element. It is clear that dividing or multiplying any number by 3 does not
change its parity. Thus, any sequence, regardless of how many factors of 3 are divided out
from each term, will have the same underlying structure in its parity. Since we have reduced
the sequence to the point where there exists at least one odd number, we know that the
sequence reduced modulo 2 must be congruent to 1, 1, 0, 1, 1, 0. Only cycles of length 3n
are permitted in this structure, and therefore permitted in 3-free sequences.

We checked all the starting pairs of numbers from 1 to 1000, and all these sequences end
in a 3-cycle.

The 3-free Fibonacci sequences are in many ways similar to the notorious Collatz se-
quences [5], for which it is still not known if every sequence eventually cycles. We do not
expect that it is easy to prove or disprove that every 3-free Fibonacci sequence ends in a
cycle. On the other hand, it is possible to construct probabilistic arguments to support
different claims about free Fibonacci sequences.

Here is the base of the argument. Suppose we encounter a number in a sequence that is
divisible by 3, so that we must divide it. Then, after removing all powers of 3, let us assume
that the resulting number has the remainder 1 or 2 modulo 3, each with probability 1/2.
If the sum of two consecutive terms in a sequence is large and divisible by 3, then we also
assume that this number is divisible by 3k with probability 1/3k−1.

How often do we divide by 3 in a 3-free Fibonacci sequence? The following lemma is
obvious.

Lemma 6. In a 3-free Fibonacci sequence, the division happens for every term or for every
other term.

In other words, we cannot have a subsequence of length 3 such that each term is the sum
of the previous two terms. We want to study two polar cases first: stretches where we divide
every term, and stretches were we divide every other term.

We will call a subsequence of a 3-free Fibonacci sequence where we divide at each step
a division-rich subsequence. Conversely, we will call a subsequence of a 3-free Fibonacci
sequence where we divide at every other step a division-poor subsequence.
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Lemma 7. There exist arbitrarily long division-rich subsequences.

Proof. The proof is done by explicit construction. Consider the definition of a division-rich
subsequence. In this case, we divide by a power of 3 after every addition step, so that
3in · an = an−1 + an−2 for in > 0. Equivalently, an−2 = 3in · an − an−1. Thus, by choosing
an and an−1, and selecting a sequence {im} that satisfies this relationship, the sequence can
easily be constructed backwards. Our only requirements are that every term of the sequence
is positive, and every step contains a division, so it will suffice to construct a sequence (im)
such that 3in · an − an−1 > 0 and in > 0 for all n.

As an example, let us begin with an = 1, an−1 = 1. At each step let us choose the smallest
possible power for im. Then in = 1 satisfies our inequality for the first step, and an−2 = 2.
Continuing, in−1 = 1 satisfies the inequality for the next step, yielding an−3 = 1. Next,
in−2 = 1 and an−3 = 1, followed by in−3 = 2 and an−4 = 5. Reading the sequence backwards
we get 1, 1, 2, 1, 5, 4, 11, 1, 32, 49, . . .. This is now sequence A233525 in the OEIS [1].
when read forward, this sequence is a 3-free sequence containing eight divisions in a row.
The process can be continued to arbitrarily many terms for arbitrarily many consecutive
divisions.

The growth bound for division-rich subsequences is estimated by the following lemma.

Lemma 8. For a division-rich subsequence: max(a2k+1, a2k+2) ≤ 2max(a2k−1, a2k)/3.

Proof. We can estimate that a2k+1 ≤ (a2k−1 + a2k)/3 ≤ 2max(a2k−1, a2k)/3 and a2k+2 ≤
(a2k + a2k+1)/3 ≤ 5max(a2k−1, a2k)/9 < 2max(a2k−1, a2k)/3.

So we can expect that with probability 1/2n there will be a subsequence of length 2n,
where the maximum of the next two terms does not exceed the maximum of the previous two
terms by 2/3. Clearly it cannot go down forever. We need to start with very large numbers
to get a long division-rich subsequence.

Lemma 9. There exist arbitrarily long division-poor subsequences.

This proof is more complicated than the previous one, so we will do it together with a
proof of a more powerful theorem in next Section 5.

Lemma 10. If we index a division-poor subsequence in such a way that division happens on
the odd term, then all the even terms form an increasing subsequence: a2k > a2k−2.

Proof. As every even term is the sum of the previous two terms, we get a2k = a2k−1+a2k−2 >
a2k−2.

That means that both division-rich and division-poor subsequences cannot form a cycle.
In particular, it means we can have sequences of arbitrary length without entering a cycle.

We showed that there exist 3-free Fibonacci sequences that have long increasing sub-
sequences. Still, we want to present a probabilistic argument that any 3-free Fibonacci
sequence ends in a cycle.
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According to our probabilistic assumptions, we divide either every term or every other
term with equal probability 1/2. So, on average, we divide every 1.5 steps. But by how
much do we divide on average?

Remark 11. On average, we divide by 33/2.

Probabilistic Argument. Now we want to use the fact that when we divide by a power of 3,
we, on average, divide by more than 3. If the number is large, we divide by 3 with probability
2/3, by 9 with probability 2/9, and so on. So the average division is by

32/3 · 92/9 · 272/27 · · · .

We can state this differently by noting that we divide by 3 with probability 1. Additionally
we divide by 3 more with probability 1/3, and by 3 more with probability 1/9. So the result
is 3 to the power

1 + 1/3 + 1/9 + 1/27 + 1/81 + · · · = 3/2.

Since the above sum is equal to 3/2, every time we divide, we on average divide by 33/2.

Notice that the average number we divide by is approximately 5.2, which is more than 5.
Let us build a probabilistic sequence that captures some of the behavior of 3-free Fi-

bonacci sequences. We start with two numbers a1 and a2 and flip a coin. If the coin shows
heads, we add the next number a3 = (a1 + a2)/5 to the sequence. If the coin shows tails, we
add two more terms, a3 = a1 + a2 and a4 = (a2 + a3)/5, to the sequence. Then repeat. We
expect that this sequence grows faster on average than 3-free Fibonacci sequences, because
we divide by a smaller number.

Now we want to bound the maximum of the last two terms of this probabilistic sequence
after two coin flips. Let M = max(a1, a2). We have the following cases:

• After two heads, the sequence becomes a1, a2, (a1+ a2)/5, (a1+6a2)/25. The last two
terms do not exceed 2M/5.

• After heads, then tails, the sequence becomes a1, a2, (a1 + a2)/5, (a1 + 6a2)/5, (2a1 +
7a2)/25. The last two terms do not exceed 7M/5.

• After tails, then heads, the sequence becomes a1, a2, a1+a2, (a1+2a2)/5, (6a1+7a2)/25.
The last two terms do not exceed 3M/5.

• After two tails the sequence becomes a1, a2, a1 + a2, (a1 + 2a2)/5, (6a1 + 7a2)/5,
(7a1 + 9a2)/25. The last two terms do not exceed 13M/5.

As each event happens with the same probability 1/4, the average growth after 2 coin
flips is (2 · 3 · 7 · 13)1/4/5, which is below 0.97. So the overall trend for this sequence is
decreasing.

Based on our computational experiments and probabilistic discussions above, we conjec-
ture the following:
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Conjecture 12. Any 3-free Fibonacci sequence ends in a cycle.

So 2-free Fibonacci sequences provably end in cycles, and 3-free sequences conjecturally
end in cycles. Will 4-free Fibonacci sequences end in cycles too? Before discussing 4-
free Fibonacci sequences, we want to make a detour and prove the promised result that
an arbitrarily long division-poor sequence exists (see Lemma 9) as a corollary to a much
stronger and a more general theorem.

5 Customized-division subsequences

We promised to give a proof that there exist arbitrary long division-poor sequences that are
3-free Fibonacci sequences. Now we want to prove a stronger statement. We want to allow
any n and show that we can build a customized n-free Fibonacci sequence that will have a
division by a prescribed power of n with the prescribed remainder.

Let us correspond to any n-free Fibonacci sequence the list of numbers by which we
divide at every step. We call this list a signature. For example, a 3-free sequence 5, 4, 1, 5,
2, 7, 1, has signature *, *, 9, 1, 3, 1, 9. We placed stars at the first two places, because we
do not know the preceding members of the sequence, and thus do not know the powers.

Given an n-free Fibonacci sequence with a given signature and a given set of remainders,
we can build many other sequences with the same signature and the set of remainders.

Lemma 13. Suppose an n-free Fibonacci sequence s1 starts with a1 and a2 that are not
divisible by n, and the product of the numbers that we divide by while calculating the first
k terms is strictly less than nm. Consider an n-free Fibonacci sequence s2 that starts with
b1 = a1 + d1n

m and b2 = a2 + d2n
m for any integers d1 and d2. The first k terms of both

sequences have the same signature and the same set of remainders modulo n.

Proof. The initial terms of both sequences have the same remainders modulo nm. Hence
their sums have the same remainders. The first time we need to divide, we divide by the
same power of n, say m1, and the result will have the same remainders modulo nm−m1 . The
next time we divide, the result will have the same remainders modulo nm−m1−m2 , and so on.
When we complete the subsequence, all the remainders will be the same modulo n.

This lemma allows us to find a positive sequence with a given signature if we have already
found a sequence that is not be all-positive.

Corollary 14. If there exists some finite n-free Fibonacci sequence with a given signature
and a set of remainders, then there exists a sequence with the same signature and remainders
such that every term is positive.

Proof. Adjust the initial terms according to Lemma 13.
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We say that a finite sequence of remainders ri modulo n and a finite signature of the
same length match each other, if the signature has a positive power of n in place k if and
only if rk−2 + rk−1|n. We call a sequence of remainders modulo n legal if rk−2 + rk−1 = rk
unless rk−2 + rk−1|n. Non-legal sequences cannot be sequences of remainders of an n-free
Fibonacci sequence.

Theorem 15. Given a legal finite sequence of remainders and a matching signature, there
exists an n-free Fibonacci sequence with the given sequence of remainders and signature.

Proof. By Lemma 13, it is enough to find a sequence that not necessarily all-positive. We can
produce such a sequence by building it backwards, similar to what we did in Lemma 7.

Corollary 16. There exist arbitrarily long division-poor 3-free Fibonacci subsequences.

Let us build an example of a division-poor 3-free sequence, where each division is by
exactly 3. Begin with an = 1, an−1 = 1, and build a sequence that is not necessarily all-
positive. That means we will have an−2k = 3an−2k+2 − an−2k+1 and an−2k−1 = 3an−2k+1 −
an−2k. Here are several terms: −8, 7, −1, 2, 1, 1. For a positive version we need to add
33 to −8, as outlined in Lemma 13 as we had two divisions by 3. The adjusted all-positive
division-poor sequence is 19, 7, 26, 11, 37, 16.

6 4-free Fibonacci sequences

Consider the 4-free Fibonacci sequence starting with 0, 1. This sequence is A224382: 0, 1,
1, 2, 3, 5, 2, 7, 9, 1, 10, 11, 21, 2, 23, 25, . . .. It seems that this sequence grows and does not
cycle.

In checking many other 4-free Fibonacci sequences, we still did not find any cycles. The
behavior of 4-free sequences is completely different from the behavior of 3-free sequences.

For 3-free sequences, we expected that all of them cycle. Here, it might be possible that
none of them cycles.

Before making any claims, let us see how these sequences behave modulo 4.

Lemma 17. A 4-free Fibonacci sequence contains an odd number.

Proof. Suppose there exists a 4-free Fibonacci sequence containing only even numbers. Then
ignoring the initial terms, all the elements of the sequence are congruent to 2 modulo 4.
Therefore, we divide by a power of 4 every time. This cannot last forever.

Lemma 18. After the first occurrence of an odd number, a 4-free Fibonacci sequence cannot
have two even numbers in a row.

Proof. Start with the first odd number. The steps that do not include division generate a
parity pattern: odd, odd, even, odd, odd, even and so on. So there are no two even numbers
in a row. That means we can get a multiple of 4 only after summing two odd numbers. We
might get an even number after the division, but the next number must be odd again.
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Let us analyze the 4-free Fibonacci sequences probabilistically, similar to what we did
for n = 3.

Remark 19. An average division is by a factor of 44/3
.
= 6.35.

Proof. When we divide, we divide by 4 with probability 1. Additionally, with probability
1/4 we divide by 4 more, and so on. So the result is 4 to the power

1 + 1/4 + 1/16 + · · · = 4/3.

How often on average do we divide? Let us assume that we passed stretches of all even
numbers. Each time we divide after that, the previous two numbers are odd. After the
division, the remainder is 1, 2, or 3. So the following six cases describe what happens after
the division:

Lemma 20. If a ≡ 1 (mod 4) and b ≡ 3 (mod 4), then one of the following sequences of
remainders might occur before the next division:

• 1;

• 2, 1, 3;

• 3, 2, 1, 3.

If a ≡ 3 (mod 4) and b ≡ 1 (mod 4), then one of the following sequences of remainders might
occur before the next division:

• 3;

• 2, 3, 1;

• 1, 2, 3, 1.

Lemma 21. The average number of steps between divisions is 8/3.

Probabilistic argument. We assume that during the division each remainder is generated
with probability 1/3, so the stretches of length 1, 3, and 4 between divisions are equally
probable.

We want to build a probabilistic model that reflects the behavior of 4-free Fibonacci
sequences. Let us denote the average factor by which we divide by x. For the remainder
of this section, we discuss only 4-free Fibonacci sequences, so we may state explicitly that
x = 44/3. In this model, we simply divide by x each time we need to divide. The sequence
stops being an integer sequence, but we artificially assign a remainder modulo 4 to every
element of the sequence to see when we need to divide. We want to show that our model
sequence grows with probability 1.

First, we want to estimate the ratio of two consecutive numbers in the model sequence.
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Lemma 22. If a and b are two consecutive numbers in the model sequence, starting from
index 3, then b > a 2+x

(1+x)x
and a > b 1

1+x
.

Proof. Let v be the element before a. Then b ≥ (a+v)/x > a/x. Analogously, b ≤ a+v, and
by the previous sentence, xa > v. Therefore, b < a(1 + x), which means that a/(1 + x) < v.
Plugging this back into b ≥ (a+ v)/x, we get b > a(2 + x)/(1 + x)x.

Now we are ready to prove the theorem:

Theorem 23. In our probabilistic model, a sequence grows with probability 1.

Proof. Suppose we have two consecutive numbers a and b in the sequence whose sum is
divisible by 4. By Lemma 21, we have 1, 3, or 4 terms until the following division with the
same probability. That is, the following continuations until the next division are equally
probable:

• a, b, (a+ b)/x.

• a, b, (a+ b)/x, (a+ (x+ 1)b)/x, (2a+ (x+ 2)b)/x.

• a, b, (a+ b)/x, (a+ (x+ 1)b)/x, (2a+ (x+ 2)b)/x, (3a+ (2x+ 3)b)/x.

If b > a, then the maximum of the last two terms is b, (2a+(x+2)b)/x, or (3a+(2x+3)b)/x
respectively. Adjusting for the fact that a > b 1

1+x
(see Lemma 22), the maximum of the last

two terms is at least b, b((x+2)+2/(x+1))/x, or b((2x+3)+3/(x+1))/x respectively: we have
simply replaced any instance of a with a lower bound b 1

1+x
. We want to estimate the ratio

of the maximum of the last two terms to max(a, b). In this case, max(a, b) = b, so we may
simply divide each term by b to get the appropriate ratios. Noting that each continuation of
the sequence is equally likely, and counting probabilities, we get the following lower bound
for the ratio when we substitute the value of 44/3, derived in Remark 19, for x:

11/3(((x+ 2) + 2/(x+ 1))/x)1/3(((2x+ 3) + 3/(x+ 1))/x)1/3
.
= 1.51023.

If b ≤ a, then the maximum of the last two terms is at least (a + b)/x, (2a + (x + 2)b)/x,
or (3a + (2x + 3)b)/x, respectively. Using b > a 2+x

(1+x)x
from Lemma 22, we get that the

maximum of the last two terms is at least a2+2x+x2

(1+x)x2 , a
2x2+6x+4
(1+x)x2 , or a5x2+10x+6

(1+x)x2 , respectively.
We wish to find the ratios as we did for the case where b > a, but this time, we divide by a,
as max(a, b) = a. Using the same reasoning as before, and again counting probabilities, we
get that the maximum is multiplied by at least

(

2 + 2x+ x2

(1 + x)x2

)1/3 (
3x2 + 6x+ 4

(1 + x)x2

)1/3 (
5x2 + 10x+ 6

(1 + x)x2

)1/3
.
= 0.453822.

Notice that if we have 3 or 4 terms until the next division, then the last two terms before
the division are in increasing order. That means the case when b ≤ a is at least twice less
probable, so the average growth is at least the cube root of 1.510232 · 0.453822, equal to
1.03507, which is greater than 1.
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The result is greater than 1, which means that our model sequence does not cycle all the
time. Therefore, extending the argument to 4-free sequences, we can safely say that 4-free
sequences do not cycle all the time. Taking our computational experiments and our intuition
into account, we are comfortable with the following conjecture:

Conjecture 24. With probability 1 a 4-free Fibonacci sequence does not cycle.

So 4-free Fibonacci sequences do not cycle. If n grows, will it mean that n-free Fibonacci
sequences for n > 4 will not cycle either?

7 5-free Fibonacci sequences

Let us look at the Lucas sequence modulo 5: 2, 1, 3, 4, 2, 1, . . . and see that no term is
divisible by 5. Clearly, no term in the Lucas sequence will require that we factor out a
power of 5, and the terms will grow indefinitely. Thus, the Lucas sequence is itself a 5-free
Fibonacci sequence. This is something new. We do not need a probabilistic argument to
show that there are 5-free Fibonacci sequences that do not cycle.

On the other hand, it becomes quickly evident that the sequence of 5-free Fibonacci
numbers: 0, 1, 1, 2, 3, 1, 4, 1, 1, 2, . . . (see A214684) cycles. Some sequences cycle, and
some clearly do not!

But how often will we come upon a sequence that grows indefinitely? To answer this
question, let us look at a couple of terms from a few sequences of Fibonacci numbers modulo
5. Begin with 1, 1, . . ., to obtain the sequence

1, 1, 2, 3, 0,
3, 3, 1, 4, 0,
4, 4, 3, 2, 0,
2, 2, 4, 1, 0,

and so on. We write it like this for clarity: at the end of each line, the last term is divisible by
5. In particular, the table above shows that Z(5)—the entry point of 5—is 5. Furthermore,
since 5 is prime, we could know beforehand that each of these lines would be the same length.
We simply had to start with the line beginning 1, 1, . . ., and multiply each term by 2, then
3, then 4. Clearly no term in the line could become 0 after the multiplication (except, of
course, 0 itself), since there are no two non-zero numbers that multiply to zero in a field.
The sequence of Fibonacci entry points for primes is A001602.

There were exactly 5− 1 = 4 lines, and 5 elements (and therefore, 5 consecutive-element
pairs) in each line, for a total of 20 pairs. But, excluding (0, 0), there are 52 − 1 = 24
possible pairs! Thus, our 4 extra pairs must have gone into another cycle. This cycle could
not contain any multiple of 5, and therefore serves as a witness that non-cyclic sequences
exist in some 5-free Fibonacci sequence. This argument shows what we already know: a
Fibonacci-like sequence that does not contain multiple of 5 exists.

We see that there is a strong connection between free Fibonacci sequences and proper
Fibonacci sequences. There are many books and papers about Fibonacci numbers and Lucas
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numbers, but here and in the following section, we mostly use Hardy & Wright [4, §10.14]
and Vajda [6] for reference. Maybe we can study entry points of Fibonacci sequences to see
if the story with 5 repeats for some other numbers.

8 Division-Free n-Free Fibonacci Sequences

Let us call an integer n a Fibonacci omni-factor if any Fibonacci-like sequence contains a
multiple of n. We just saw that 5 is the smallest integer that is not a Fibonacci omni-factor.

If a number n is not a Fibonacci omni-factor, then there exists a Fibonacci-like sequence
that is at the same time an n-free Fibonacci sequence.

Prime omni-factors can be found with the help of the following well known lemma.

Lemma 25. A prime p is a Fibonacci omni-factor if and only if Z(p) = p+ 1.

Proof. Consider a section of the Fibonacci sequence modulo p before the entry point. Mul-
tiply this subsequence by any other remainder modulo p. A prime p is not an omni-factor if
there are fewer than p2 − 1 total elements in all the lines of the Fibonacci sequences begin-
ning with k, k, . . . modulo p. Then, as all lines are the same length as that beginning with
1, 1, . . . (that is, the start of the Fibonacci sequence proper), it will suffice to show that
(p− 1) · Z(p) < p2 − 1, or Z(p) < p+ 1.

It is clear that Z(p)(p − 1) + 1 cannot be more than p2. Hence, we have just proven a
well known fact:

Corollary 26. For every prime p, Z(p) ≤ p+ 1.

Examples of primes that are not omni-factors include 5, which divides F5, 11, which di-
vides F10, and 13, which divides F7. The corresponding sequence is now sequence A230359.
Omni-factor primes are the primes p such that any Fibonacci-like sequences contains multi-
ples of p. This sequence is A000057. It is not known whether the latter sequence is infinite
[2].

The definition of entry points is not restricted to primes; see sequence A001177 for
Fibonacci entry points of all numbers. For a composite number n, the relationship between
the entry point Z(n) and the existence of Fibonacci-like sequences not divisible by n is slightly
more complicated. But it is possible to check computationally if the sequences that start with
zero and another number contain all possible pairs of remainders. The sequence of Fibonacci
omni-factors, that is of numbers n such that any Fibonacci-like sequences contains multiples
of n, is A064414. Correspondingly the numbers n such that there exist a Fibonacci-like
sequence without multiples if n is the complement of A064414. It is now sequence A230457.
It starts as 5, 8, 10, 11, 12, 13, 15. The first composite number in the sequence is 8.

Lucas numbers again form a sequence that does not contain a multiple of 8. Lucas
numbers provide examples for many numbers, namely for the numbers that they do not
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divide. These numbers are represented by the sequence A064362. Thus, Lucas numbers
provide examples for 10, 12, 13, 15 and so on in addition to 5 and 8.

The smallest number for which the Lucas numbers does not provide an example is 11.
For 11, we can start with 1 and 4, to get the sequence A000285: 1, 4, 5, 9, 14, 23, 37 and so
on. This is a Fibonacci-like sequence that is never divisible by 11.

All non-omni-factors that are factors of the Lucas numbers are 11, 18, 19, 22, 29, 31, 38,
41, 44, 46, 47, 54, 58, 59, 62, 71, 76, 79, 82, 94, and so on. This sequence is the sequence of
non-omni-factors, A230457, intersecting with factors of Lucas numbers, sequence A065156.
It is now sequence A232658. Given that A064362 (numbers n such that no Lucas number
is a multiple of n) is the complement of A065156, the new sequence can be defined as the
sequence A230457 from which the numbers from A064362 are removed.

Here, we found many sequences that are Fibonacci-like and are not divisible by some
number n. They provide an example of infinitely growing n-free sequences. Moreover, they
form n-free sequences in which division never happens.

Will we ever see more cycles?

9 Other Cycles

For n = 2, every sequence ends in a cycle of length 1. For n = 3, every sequence we checked
ended with a cycle of length 3. For n = 4, we did not find any cycles at all.

So far, we found an example of a 5-free Fibonacci sequence where no term is ever be
divided by 5. We also found a cycle: 1, 1, 2, 3, 1, 4. Are there other cycles? We know that
we can multiply a 5-free Fibonacci sequence by any number that is not divisible by 5 to get
another 5-free Fibonacci sequence. Thus, we have many other cycles among 5-free Fibonacci
sequences: 2, 2, 4, 6, 2, 8, and 3, 3, 6, 9, 3, 12, and so on.

In general, we can multiply an n-free sequence by a number coprime with n to get
another sequence. Also, a more subtle statement is true: if we multiply an n-free sequence
by a number not necessarily coprime with n while the result does not contain multiples of
n, then the result of the multiplication is an n-free sequence.

If all the elements of an n-free sequence are divisible by a number m, we can divide the
sequence by m to get another n-free sequence. We would like to point out that m does not
need to be coprime with n. This warrants a definition. Call a cycle primitive if its terms are
coprime. As we just explained, the following lemma is true.

Lemma 27. Any cycle can be divided by an integer to become a primitive cycle.

All the primitive cycles we have shown so far contained only numbers below n. There is
no reason why this property should hold for any cycle. For example, here is another primitive
cycle of 5-free Fibonacci sequences: 4, 3, 7, 2, 9, 11, 4, 3.

Though we did not find any more cycles, in case they exist, we can prove some of their
properties.
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Take, for example, Lemma 5 where we used parity to prove that any 3-free Fibonacci
cycle has length that is a multiple of 3. We can replace 3 by any odd number in Lemma 5
to get the following lemma.

Lemma 28. The length of a cycle in an n-free Fibonacci sequence is divisible by 3 if n is
odd.

It is not surprising that every 5-free Fibonacci cycle that we found so far has length 6.
There is no reason that we should restrict ourselves with parity: remainders of Fibonacci

numbers modulo 2. A Fibonacci sequence modulo n is periodic. For the Fibonacci numbers
proper, the period is called Pisano period and is denoted as π(n). The sequence of Pisano
periods is A001175. Pisano periods for prime numbers are found in A060305.

For example, Fibonacci numbers modulo 3 form a cycle of length 8: 0, 1, 1, 2, 0, 2, 2, 1.
We can generalize Lemma 5 to any prime number.

Lemma 29. The length of an n-free Fibonacci cycle is divisible by π(p), where p is a prime
factor of n− 1.

Proof. Any cycle has the same length as a primitive cycle. Dividing by n or its power does
not change a remainder modulo p as n ≡ 1 (mod p). All non-trivial Fibonacci cycles modulo
p are of the same length π(p). So the primitive n-free Fibonacci cycle modulo p has to be a
multiple of π(p).

For example, any 4-free Fibonacci cycle, if it exists, is of length 8k for some k. This is
due to the fact that 4 ≡ 1 (mod 3) and π(3) = 8.

The following theorem immediately follows.

Theorem 30. Let pi be prime factors of n−1. Then the cycles in n-free Fibonacci sequences
are of a length divisible by lcm(π(pi)).

We studied cycles, but we actually do not expect many of them, as we expect the n-free
Fibonacci sequences to grow faster for larger n.

As n grows, the multiples of n are more spread apart in the Fibonacci sequence, which
means that division happens more rarely. We think that the increase in the number by which
we divide is less pronounced than the fact that the divisions are more spread apart.

In the next Section, we look at computational results and construct probabilistic argu-
ments to show that for n > 3, cycles should appear very rarely.

10 Growth in Division-Free Sequences

We ran several experiments. In our first experiment, we did the following:
For each n, we built 10000 random n-free Fibonacci sequences of length 500. Namely, we

picked initial terms of each sequence as two random numbers between 1 and 1000. Then we
averaged each term and found the best approximation for the exponential growth. We did
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this 5 times to confirm consistency of the exponents. That is, we approximated the m-th
term of the n-free Fibonacci sequence as g(n)m, where g(n) is described by the following
sequence starting from n = 4: 1.32, 1.61, 1.42, 1.34, 1.61, 1.4, 1.61, 1.61, and so on. We did
this for n up to 50.

Our experimental results showed that for values of n for which division-free n-free Fi-
bonacci sequences exist, the growth is the same, and it is about 1.61. Can we explain this?
Let us take a closer look at the smallest such n: 5.

Consider an arbitrary 5-free Fibonacci sequence. When we divide by a power of 5, at
some point we may cross over to a division-free sequence. If we ever get two consecutive
remainders as they appear in the Lucas numbers: 2, 1, 3, 4, 2, 1, and so on, we will never
divide by a power of 5 again. Notice that the Lucas numbers modulo 5 cycle. The cycle has
length 4 and contains every remainder exactly once.

This means if the number in the sequence before division has remainder r, then we cross
over into a division free sequence when the next number is congruent to exactly one out of
the four possible remainders modulo 5: 1, 2, 3, or 4. Consider, for example, the sequence
starting with 1, 6. It continues with 7, 13, 4, and from here, we never divide by 5 again.

Assume that the remainder after the division is chosen randomly with a uniform distri-
bution. In this case, there is a 25% chance of entering the cycle with no multiples of 5, and
a 75% chance of entering a sequence in which some term will be divided by 5 again.

Unless we enter into a cycle, as the number of these randomizations increases, it becomes
more likely that the sequence will cross over into a division-free sequence.

We did not find many cycles. Moreover, all primitive cycles that we found had small
numbers in them. Suppose that there are no primitive cycles with large numbers. Then, if
we start with two large coprime numbers, there would be many potential divisions on the
way to a cycle. Therefore, the probability of entering a division-free sequence will be very
large. This probabilistic argument leads us to a conjecture.

Conjecture 31. If we pick the starting integers in the range from 1 to N , the probability
that we end up in a division-free 5-free Fibonacci sequence tends to 1 when N tends to ∞.

Let us remind you that division-free sequences are Fibonacci-like sequences. They grow
like φn, where φ is the golden ratio. It is not surprising that we get 1.61 as the growth ratio:
the number is close to the golden ratio, but slightly below it.

We explained why 1.61 is the exponent for n = 5. What about other numbers?
Let us start by looking at the proportion of pairs that generate sequences not containing

zeros. We submitted two new sequences to the OEIS:

• A232656 The number of pairs of numbers below n that, when generating a Fibonacci-
like sequence modulo n, contain zeros: 1, 4, 9, 16, 21, 36, 49, 40, 81, . . ..

• A232357 The number of pairs of numbers below n that, when generating a Fibonacci-
like sequence modulo n, do not contain zero: 0, 0, 0, 0, 4, 0, 0, 24, 0, . . ..
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The sum of the two sequences is the sequence of squares: a(n) = n2: the total number
of possible pairs of remainders modulo n. For our argument we are interested in the ratio
A232357(n)/(n − 1)2: the proportion of pairs not containing zero that lead to division-free
sequences. This is what we get starting from n = 2:

0, 0, 0.25, 0, 0, 0.49, 0, 0.20, 0.20, 0.40, 0.58, 0, 0.18, 0.53, 0.56, 0.50, 0.11, 0.18,
0.72, 0.18, 0, 0.68, 0.18, 0.54, 0, 0.40, 0.57, 0.17, 0.067, 0.52, 0.57, 0.79, 0.17,
0.74, 0.53, 0.58, 0.52, 0.50, 0.55, 0.69, 0, 0.50, 0.17, 0.52, 0.70, 0.81, 0, 0.17, 0.52,
0.52, 0.52, 0.51, 0.86, 0.67, 0.52, 0.55, 0.034, 0.46, 0.78, 0.55, 0.75

There is no clear pattern. For example, it drops significantly for n = 59. Let us not get
upset yet. The exact number A232357(59) = 116 = 2 · 58 is still a reasonable result, given
the implication by Lemma 32 that A232357(59) must be divisible by 58. Is it true that every
time we divide, the probability of getting into a division-free sequence is the same?

Suppose the term of the n-free Fibonacci sequence before division has remainder r. The
probability that we crossover to a division-free sequence is f(r)/(n − 1), where f(r) is the
number of possible remainders that follow r in division-free sequences.

Lemma 32. If n is prime, then f(r) is constant, for r 6= 0.

Proof. Consider the Fibonacci sequence modulo n between 0 and the first entry point. Mul-
tiply this sequence by all numbers below n. Pick the set of all possible pairs we get. Every
non-zero number will be in this set of pairs the same number of times. But these are the
pairs that lead to divisions. That means that in the set of pairs that lead to division-free
sequences each remainder over zero is contained there the same number of times. As each
remainder cannot be followed by the same number of times, f(r) must be constant.

The previous lemma shows that the argument we provided for 5 works for every prime
number that is not a Fibonacci omni-factor. Each time we divide, we crossover into a
division-free sequence with the same probability.

But what about composite numbers that are not omni-factors? We know that the cycles
of Fibonacci-like sequences modulo a composite number might be of different length. The
number of different cycles modulo n is A015134. Correspondingly, A015135 is the number
of different period lengths.

Let us look at the smallest possible case of a composite non omni-factor: n = 8.
Let us check all possible Fibonacci-like sequences modulo 8. There is a cycle 0, 1, 1, 2,

3, 5, 0, 5, 5, 2, 7, 1. This cycle is of length 12. Myltiplying by 3, 5, or 7 either yields the
same cycle, or another cycle of length 12. Multiplying by 2 or 6 yields the either cycle 0, 2,
2, 4, 6, 2, or 0, 6, 6, 4, 2, 6, both of which have length 6. Additionally, there is a cycle 0, 4,
4 of length 3, and the trivial cycle 0, 0 of length 1.

We also have a cycle corresponding to Lucas numbers: 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1,
3, . . ., which has length 12. There is also another cycle, that is a multiple of this cycle: 1, 4,
5, 1, 6, 7, 5, 4, 1, 5, 6, 3, 1, 4, . . .. These are two cycles of length 12. There is no way each
of the 7 possible non-zero remainders participates in these cycles the same number of times.
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Table 1 shows, given a remainder, what the next remainder may be if we are inside a
division-free sequence.

1 3, 4, 5, 6
2 1, 5
3 1, 2, 4, 7
4 1, 3, 5, 7
5 1, 4, 6, 7
6 3, 7
7 2, 3, 4, 5

Table 1: Remainders in division-free pairs.

We see that numbers 1, 3, 4, 5, 7 correspond to 4 possibilities, and numbers 2 and 6 to
two possibilities.

That means the probability that we crossover to a division-free sequence depends on the
previous remainder. But the important part is that it is never zero, because each remainder
has at least two numbers that follow it.

We can assume that with each division we crossover to a division-free sequence with some
probability that is bounded from below. From this assumption we get a conjecture.

Conjecture 33. For any n such that a division-free sequence exists, if we pick the starting
integers in the range from 1 to N the probability that we eventually end up in a division-free
n-free Fibonacci sequence tends to 1 when N tends to ∞.

This conjecture explains why we get 1.61 as a growth estimate for non-omni-factors in
our data. Now we want to explain growth rates for other numbers.

11 Growth rates for omni-factors

Table 2 shows some exponents that are not equal to 1.61. We call them the deviated
exponents, and they appear when n is an omni-factor.

n 4 6 7 9 14 23 27 43 49
growth 1.32 1.42 1.34 1.4 1.49 1.48 1.53 1.54 1.56

Table 2: Deviated exponents.

It is not surprising that these numbers are smaller than the golden ratio. Indeed, in every
sequence we divide by a power of n an infinite number of times.

Moreover, we can extend the reasoning from Remark 11 and Remark 19 to see that each
time we divide, we divide on average by nn/(n−1). The number by which we divide grows
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with n, but the numbers in the second row of Table 2 do not decrease. To explain this, we
need to see how often we divide. If we start with a pair of remainders, what is the average
number of steps we need to make to get to zero? If we take all the pairs from the same cycle,
then the average is about half the length of the cycle.

The overall average is the sum of the squares of the cycle lengths divided by twice the
total number of pairs. This is not an integer sequence, but we submitted the sequence
of rounded numbers and it is now sequence A233248. To keep the memory of the precise
number we submitted the sum of the squares of cycle lengths as sequence A233246.

We can approximate the average number of steps to the next division as Z(n)/2, but this
is not precise. For example, we saw before that for 4-free numbers, the number of steps until
the next division is 1, 3, or 4. So the average is 8/3. It is easy to calculate this number when
n is prime. After the division, we get a number that is not divisible by n, and, of course,
the previous number is not divisible by n. We can assume that all such pairs are equally
probable and the average number of steps is then (Z(n) − 1)/2. For composite numbers,
we can calculate this explicitly, keeping in mind that before the division, both numbers are
coprime with n. (We can probabilistically argue that eventually elements of a sequence
become coprime.)

If a is the average number of steps until the next division, then the estimated average
division is by n2n/(n−1)a.

We combined these numbers in Table 3. The third row is the entry points, the fourth
row is the average number of steps until the next division. The fifth row is the calculated
average division per step.

The last row in the table needs a separate explanation. Suppose d is the average division
per step. We took a recurrence defined as xn = (xn−1 + xn−2)/d and calculated its growth,
which is the last row.

n 4 6 7 9 14 23 27 43 49
experimental growth 1.32 1.42 1.34 1.4 1.49 1.48 1.53 1.54 1.56
Z(n) 6 12 8 12 24 24 36 44 56
a 8/3 6 7/2 45/8 154/13 23/2 459/26 43/2 441/16
average division 2.00 1.43 1.91 1.55 1.27 1.33 1.21 1.20 1.16
recurrence growth 1 1.26 1.03 1.19 1.36 1.32 1.41 1.42 1.46

Table 3: Estimated growth.

The last line—the recurrence growth—and the fourth line—the average number of steps
until division—are strongly correlated with the experimental growth.
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