G\ Journal of Integer Sequences, Vol. 17 (2014),

OIS Article14.2.7
92 a0

Tilings, Continued Fractions, Derangements,
Scramblings, and e

Barry Balof and Helen Jenne
Department of Mathematics
Whitman College
Walla Walla, WA 99362
USA
balofba@whitman.edu
jennehk@whitman.edu

Abstract
In a recent book, Benjamin and Quinn ask about the combinatorial implications of
Fuler’s continued fraction

e=1[2,(1,1),(1,2),(2,3),(3,4),...].

In this paper, we explore those implications through two special types of permutations,
namely, derangements and scramblings.

1 Introduction

We will present a combinatorial interpretation for the following continued fraction expansion
of e. This strikingly simple continued fraction was first presented by Euler in a paper
published after his death [5].

e=2-+ (1)
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We will use the following notation to abbreviate continued fractions:

by
by

[a(); (b17 a/l), (bQ, CLQ), ce ey (bnan)] = ay +
ay + b

ag + ———

b

Qn
Our interpretation will involve interpreting the convergents of the continued fraction
in terms of permutations. Such interpretations have appeared previously in the literature.
Flajolet [6] relates permutations, continued fractions, and special lattice paths. Shin and
Zeng [9] use a statistical approach and g-analogues of secant and tangent numbers. Our
interpretation is motivated by Benjamin and Quinn’s [2] tiling approach to combinatorial

proofs.

2 Proof of Euler’s formula

To prove Euler’s continued fraction expansion of e, we consider the nth-order convergent of
the continued fraction expansion of e:

12,(1,1),(1,2),(2,3),(3,4),...,(n—1,n)] (2)

We let P, denote the numerator and (),, denote the denominator of this continued fraction.
We note that the sequence of numerators (2,3,8,30,144,840...) appears as A001048 and
the sequence of denominators (1,1,3,11,53,309...) appears as A000255 in the OEIS [8].

We prove that lim,, ., % = e, by establishing closed form formulas for these sequences.
We first need to introduce several well-known results.

The following is a well-known fact about finite continued fractions [7]. We adopt Lorentzen
and Waadeland’s notation for writing a pair of recurrences (p, and ¢,) with the same coef-
ficients.

Lemma 1. Let [ag, (b1, a1), (b2, az), ..., (by.a,)] = 2. Then

qn

(pn) =a, (pn—l) + bn (pn—2>
Qn gn—1 qn—2
. -1 . 1 . a
with (1) = () and () = (7).
Recall that that a derangement of the set {1,2,...,n} is a permutation 7 € S,, such that
m(i) # i for all ¢ € {1,2,...,n}. Let d, be the number of derangements of {1,2,... n}.
The sequence of derangement numbers, (1,0,1,2,9,44,265,...) appears as A000166 in the

OEIS [8]. The following well-known result follows via an inclusion-exclusion argument; see

Brualdi [3].
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Lemma 2. We have d,, = n! ) (;—,)k
k=0

It follows that qu—*; — % as n tends to infinity. Additionally, Lemma 2 leads to the recursion
dn = ndn_l + (-1)” = (TZ — 1)(dn—1 + dn_g).

Using these facts, we obtain closed forms for the numerator and denominator of the
continued fraction in equation (2).

Lemma 3. Ifay=2,b =1,a, =n forn>1andb, =n—1 forn > 2, then

P,=n+D)+n! and Q, = dyy1 + d,.

We prove both recursions in Lemma 3 via a quick induction using our identities.
o Py =2=1+0! Assume that P, = (k+ 1)! + k! for all kK < n. Then
P,=nP, 1+(n—1)P, 2 = nnl+nh—-1))+mn-1)((n—-1!+(n—-2)!
= nn—-1Dn+1)+n—-1)n-2)!(n—-1+1)
= (n+1)+n!

e Qo =1 =1+ 0; Assume that Q) = dj1 + di for all £ < n. Then

Qn = n@nfl + (TL - 1)Qn72 = n<dn + dnfl) + (n - 1)(dn71 + dan)
= dn—l—l + dn

It follows that
P,  (n+1)!+n! 1+1/(n+1)

Qn  dpy1+dy  dy/(n+ 1) +dy/(n+ 1)

which tends to e as n — oo.

3 Combinatorial Interpretations

The purpose of this section is to present combinatorial explanations for the formulas in
Lemma 3. To do this, we will relate Benjamin and Quinn’s combinatorial interpretation
of continued fractions to sets of permutations. First, we introduce Benjamin and Quinn’s
combinatorial interpretation.

A tiling of an n-board refers to a covering of a 1 x n chessboard using 1 x 1 tiles (called
squares) and 1 x 2 tiles (called dominoes).

One way to generalize tilings of an n-board is by stacking squares and dominoes. In
these tilings, called stackable tilings, squares may not be stacked on dominoes and any two
dominoes either overlap completely or not at all.

The number of squares and dominoes allowed on the tiles are referred to as height con-
ditions, which we define more formally below.
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Definition 4 (Benjamin & Quinn [2]). In the context of creating a stackable tiling of an
(n + 1)-board using squares and dominoes (and counting tiles from 0 to n), we denote a set
of height conditions by a list

(CL(), (bl, CL1>, (bg, CLQ), ey (bn, an))

The height condition a; indicates the number of squares we may stack on the ith tile, and
the height condition b; indicates the number of dominoes we may stack on tiles (i — 1,1).

Note that we are using height conditions b; to denote the number of tiles that can cover
tile 7 and the previous tile 7 — 1, and, hence, the absence of a height condition by.

The numerator and denominator of a finite continued fraction have similar combinatorial
interpretations - both count stackable tilings, with similar and natural height conditions.

Theorem 5 (Benjamin & Quinn [2]). Consider the finite continued fraction

[CLO, (bl7 al)a (b27 a2)7 L (bna an)] - %
For n > 0, the numerator, p,, counts the number of tilings of an (n + 1)-board of tiles
numbered 0 through n with height conditions

(ao, (b1, al), (bz, ag), ey (bn, an))

The denominator, q,, counts the number of tilings of an n-board of tiles numbered 1 through
n with height conditions

(al, (bQ, CLQ), (bg, ag), ey (bn, Cl,n))

A complete proof is presented in [2], and depends on an inductive conditioning of whether
the first tile in a tiling is a square or a domino. Rather than repeat the proof here, we hope
to elucidate Theorem 5 with an example.

Example 6. Consider the first few terms of the continued fraction expansion of e:

1 30

24— = = = 2727272

+ — =gy =272727
1+ —

2+2
3

We will directly count the stackable tilings for the numerator and denominator. In the
following, we will use S to correspond to a stack of squares, and D to a stack of dominoes.

There are 30 stackable tilings with height conditions (2, (1, 1), (1,2),(2,3)) which take on
the following forms:

e SSSS There are 2-1-2-3 =12 of these.



DSS There are 1 -2 -3 = 6 of these.
SSD There are 2-1-2 = 4 of these.

e SDS There are 2-1-3 = 6 of these.

e DD There are 1 -2 = 2 of these.

There are 11 stackable tilings with height conditions (1, (1,2),(2,3)) which take on the
following forms:

e 558 There are 1 -2 -3 = 6 of these.
e SD There are 1 -2 = 2 of these.

e DS There are 1 -3 = 3 of these.

We look at the formulas in Lemma 3 in turn.

3.1 Combinatorial Explanation of P,

In order to explain P, = (n+1)!+n! combinatorially, it looks natural to establish a bijection
between stackable tilings and a set of permutations, and this indeed leads to an explanation.

Theorem 7. There is a bijection between

e Stackable tilings of (n + 1)-boards with height conditions

2,(1,1),(1,2),(2,3), ..., (n — 1,n)]

o Permutations on n and n+ 1 symbols.

Proof. We establish our bijection by giving an explicit algorithm mapping a stackable tiling
to a permutation on either n or n + 1 symbols. We first note that of the P, stackable tilings
with the given height conditions, n! of them end with a stack of dominoes, and (n + 1)! of
them end with a stack of squares. (A quick induction verifies this). Thus, we will match a
tiling of an n + 1 board with a permutation on n symbols if the board ends in a stack of
dominoes, and with a permutation on n + 1 symbols if the board ends in a stack of squares.

First we consider tilings of 2-boards. In the following, we use S* and D’ to refer to stacks
of 7 squares and stacks of ;7 dominoes, respectively. We associate:

SS « (1,2)
S%S ¢« (2,1)
D < (1).
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For tilings of longer boards, we look to both the last tile of the board and the previous
tilings to determine which permutation to assign. Assume, inductively, that we have assigned
permutations to all boards of length less than n + 1, and that we are now trying to assign a
tiling of an n + 1 board.

e Case 1: The tiling ends with a stack of i dominoes. Treat the last stack of dominoes as
a stack of squares, so that a tiling of an (n + 1)-board ending in a stack of ¢ dominoes
is assigned the same permutation as the tiling of an n-board that is identical in the
first n — 1 tiles but ends in a stack of ¢ squares.

e Case 2: The tiling ends with a stack of © squares preceded by a stack of squares. Begin
with the permutation on n symbols assigned to the n-board that ends in a stack of
squares. Insert the symbol n 4 1 in the ¢th position from the right to get the new
permutation. Note that since 1 < i < n, the symbol n + 1 may appear in any position
but the leftmost.

e Case 3: The tiling ends with a stack of i squares preceded by a stack of dominoes.
In this case, the tiling of the n board consisting of the first n tiles corresponds to a
permutation on n — 1 symbols, which we must augment with symbols n and n + 1.
We begin by inserting n in the ith position from the right (and, now, this may be any
legal position), and then insert n + 1 in the leftmost position.

The above process generates all permutations on n symbols and n+ 1 symbols in running
through all stackable (n + 1)-boards with height conditions [2, (1,1),(1,2),...,(n —1,n)].
m

We can use our generation rules to determine the permutations corresponding to the
stackable tilings of a 3-board:

e SSS: Since there is one square on the last tile, add 3 to the permutation (1,2) (which
corresponds to SS) in the first rightmost position, giving (1,2,3).

e 5552 Similar to above, except here we add 3 in the second rightmost position, giving
(1,3,2).

e 525S: Starting with (2, 1), we insert 3 in the first rightmost position giving (2,1,3).
e 52552 As above, we get (2,3,1).

e DS: Since this tiling ends in a square with the penultimate tile a domino, we start
with the permutation corresponding to just the domino, (1), add 2 in the rightmost
position, giving (1,2), then add 3 on the leftmost position, giving (3,1,2).

e DS?% Same as above, but here we add the 2 on the second rightmost position, resulting
ultimately in (3,2,1).



e SD: Since this tiling ends in a domino, we only need a permutation on 2 symbols. We
convert the domino to a square (S5) and look to the previous map, giving (1,2).

e 52D: Again, this corresponds to the same permutation as did S2S, namely (2,1).

We now compute a permutation associated with a larger tiling. We first remove each tile
working backwards from the right, and look for the appropriate permutation on the smallest
board. Then, we build our permutation back up by adding the removed tiles. We convert
dominoes to squares where appropriate.

SSD?*S3DSYS3 € S,
SSD*S3DS* e Sq
SSD?*S3D e S
SSD?*S*S € Sg

SSD2S% € S

SSD* € Sy

SSS* e S;

SS e S,
SS — (1,2)
SS55?% — (1,3,2)
SSD?* — (1,3,2)
SSD*S% — (5,1,4,3,2)
SSD*S3S — (5,1,4,3,2,6)
SSD*S*D — (5,1,4,3,2,6)
SSD*S*DS* —  (8,5,1,4,7,3,2,6)
SSD*S*DS*S* —  (8,5,1,4,7,3,9,2,6)

Note that the process is reversible up to the fact that each permutation on k symbols
will correspond to two tilings, namely, one on a (k — 1)-board ending in a stack of squares,
and the same k-board where the final stack has been converted to dominoes. Hence, we have

both that

e (8,51,4,7,3,9,2,6) - SSD?*S3DS*S? (an 9-board)

and

e (8,51,4,7,3,9,2,6) — SSD?*S3DS*D? (a 10-board)



3.2 Combinatorial Explanation of @),

In order to combinatorially explain ), = d,, + d,,_1, we will introduce a construction similar
to a derangement. A scrambling is a permutation 7w € S,, for which 7(i+ 1) # (i) + 1 for all
i€{l1,2,...,n—1}. In the same way that one can think of a derangement as having no ‘fixed
points,” one can think of a scrambling as having no ‘fixed adjacencies.” In the following, we
will use the second line of the standard two-line notation to express our permutation. By way
of example, the permutation (2,5,4, 1,3) is both a derangement and a scrambling (no fixed
points, and no fixed left-right adjacencies). The permutation (1,3,2,5,4) is a scrambling
but not a derangement (as it has the fixed point ‘1’). The permutation (3,4,5,2,1) is a
derangement but not a scrambling, as it fixes the adjacencies 3-4 and 4-5. We will denote
the set of scramblings on n symbols by s,,. For more on the relationship between scramblings
and derangements, see Balof, Farmer, and Kawabata [1].

Theorem 8. There is a bijection between
e Scramblings of {1,2,...,n+ 1}, and

o Stackable tilings of a n-board with height conditions
(1,(1,2),(2,3),...(n—1,n)).

Proof. To establish this bijection, we present an algorithm mapping a stackable tiling of an
n-board with the above height conditions to a scrambling on n + 1 symbols.

Because the only tile of a 1-board with height condition (1) is a single square, and (2,1)
is the only scrambling of {1, 2}, the tiling S corresponds to the permutation (2,1).

Given a tiling of an n-board, we construct the corresponding scrambling on n+ 1 symbols
by adding to the scrambling associated with the tiling of the first n — 1 or the first n — 2 tiles,
depending on whether or not the n-board ends in a stack of squares or a stack of dominoes.
Assume that we have assigned scramblings to all boards of length less than n. Then

e Case 1: The tiling ends with a stack of i squares. Beginning with the scrambling on
n symbols assigned to the first n — 1 tiles of the board, we insert the symbol n + 1
in the ¢th position, counting from the right, excluding the position that results in the
adjacency (n,n + 1). Note that since 1 < i < n, the symbol n + 1 may appear in any
position except to the right of n. Formally, we are defining a set of maps o; : s, — S,,11
for + < mn, each of which takes a scrambling on n letters, and appends the symbol n+ 1
in the 7th legal position from the right.

e Case 2: The tiling ends with a stack of i dominoes. We begin with the scrambling on
n — 1 symbols assigned to the first n — 2 tiles of the board. To obtain a scrambling
on n + 1 symbols, we must add two symbols. First, we create the adjacency (i,7 + 1),
renumbering symbols higher than i so that now we have a permutation on n symbols
with exactly one adjacency. Next, we break the adjacency by placing the symbol n + 1
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between ¢ and i + 1. Note that since 1 < ¢ < n — 1, this process results in any of
the n — 1 substrings (1,n 4+ 1,2),(2,n 4+ 1,3),...(n — 1,n + 1,n). Formally, we are
defining maps 9; : s,_1 — Sp11, where J;(m) replaces symbol ¢ in 7 with the adjacent
pair (¢,7 4+ 1) (and renumbers symbols higher than 7), then introduces symbol n + 1
between the symbols 7 and 7 + 1.

Note that when we remove the symbol n + 1 from a scrambling on n + 1 symbols the
resulting scrambling will either be adjacency-free or will have exactly one adjacency. Hence,
the above process generates all adjacency-free permutations on n 4 1 symbols.

]

We use the above maps to determine the scramblings on 3 symbols corresponding to the
stackable tilings of a 2-board:

SS: Since there is one square on the last tile, add 3 to the permutation (2, 1) in the first
legal position (counting from the right), resulting in (2, 1,3). Therefore, o1(01(1)) =
o1(2,1) = (2,1,3).

SS?%: Now we add 3 to (2,1) in the second legal position. Since placing 3 to the right
of 2 would result in an adjacency, we get the permutation (3,2,1). Thus we have that

oo(o1(1)) = 09(2,1) = (3,2, 1).

D: We create the adjacency (1,2) and break it with 3, resulting in the permutation
(1,3,2). Therefore, 6;(1) = (1,3,2).

Next we compute permutations associated with longer tilings.

Example 9. The scrambling corresponding to the tiling $.52552S% can be constructed using
our maps as follows:

SS25535°% — g5o3010901(1) = 05030109(2,1)
= 05030(3,2,1)
= 0503(3,2,1,4)
= 05(3,5,2,1,4)

—(6,3,5,2,1,4).

Example 10. Consider the tiling SSDS*D?. We see that the corresponding scrambling in

S8 is

SSDS*D? — 6,040,0101(1) = 02040101(2,1)
= 020401(2,1,3)
= 0204(3,1,5,2,4)
—  55(3,6,1,5,2,4)
= (4,7,1,6,2,8,3,5)



Finally, we give an example of how to reverse this algorithm.

Example 11. Given the permutation (6,2,5,3,1,4), we start by observing that 6 is in the
the fifth legal position from the right. Thus, our tiling ends in a stack of five squares.

Now we remove 6 from the permutation to get (2,5,3,1,4). We see that 5 is breaking up
the adjacency 2 — 3 which indicates that there is a stack of two dominoes on the third and
fourth tiles.

We remove 5 from the permutation, collapse the adjacency 2-3, and renumber to get the
permutation (2,1,3). The element 3 is in the rightmost position, so there is a single square
on the second tile. Removing 3 gives the permutation (2,1), which also corresponds to a
single square. In summary,

(6,2,5,3,1,3)
55

(253,14) — (2,1,3) —  (2.1)

_>
— D?S° — SD2?S5 —» SSD2%S°

O

We have combinatorially shown that there are @,, = |s,11| stackable tilings with height
conditions (1, (1,2),(2,3),...,(n—1,n)). It remains to count the number of scramblings in
terms of the number of derangements. The following result is well-known, see Chapter 6 in

Brualdi [3]; a bijective proof using permutation statistics is given by Clarke, Han, and Zeng
[4].

Lemma 12.
|Sn+1| - dn+1 + dn

This concludes our combinatorial explanation of the formula @, = d,+1 + d,.

4 Conclusion

We have presented a combinatorial interpretation of the continued fraction representation of
e given in equation (1).
There are several other continued fraction representations for e, namely the representation

e=1[2,(1,1),(1,1),(1,2),(1,1),(1,1),(1,4),(1,1),(1,1),(1,6),...]

and the representation

e=1,(2,1),(1,6),(1,10), (1,14), (1,18),...]

There may be interpretations similar to ours that give rise to other combinatorial expla-
nations for e.
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