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Abstract

Let (Ln)n≥0 be the Lucas sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1+Ln

for n ≥ 0. In this paper, we are interested in finding all powers of two which are
sums of two Lucas numbers, i.e., we study the Diophantine equation Ln + Lm = 2a in
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nonnegative integers n, m, and a. The proof of our main theorem uses lower bounds for
linear forms in logarithms, properties of continued fractions, and a version of the Baker-
Davenport reduction method in diophantine approximation. This paper continues our
previous work where we obtained a similar result for the Fibonacci numbers.

1 Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn

for all n ≥ 0. The Fibonacci numbers are famous for possessing wonderful and amazing
properties. They are accompanied by the sequence of Lucas numbers, which is as important
as the Fibonacci sequence. The Lucas sequence (Ln)n≥0 follows the same recursive pattern
as the Fibonacci numbers, but with initial conditions L0 = 2 and L1 = 1.

The study of properties of the terms of such sequences, or more generally, linear recurrence
sequences, has a very long history and has generated a huge literature. For the beauty and
rich applications of these numbers and their relatives, one can see Koshy’s book [9].

For example, a remarkable property of the Fibonacci sequence is that 1, 2 and 8 are
the only Fibonacci numbers which are powers of 2. One proof of this fact follows from
Carmichael’s primitive divisor theorem [6], which states that for n greater than 12, the
nth Fibonacci number Fn has at least one prime factor that is not a factor of any previous
Fibonacci number (see the paper of Bilu, Hanrot, and Voutier [2] for the most general version
of the above statement). Similarly, it is well known that 1, 2 and 4 are the only powers of 2
that appear in the Lucas sequence.

The problem of finding all perfect powers in the Fibonacci sequence and the Lucas se-
quence was a famous open problem finally solved in 2006 in a paper in Annals of Mathematics

by Bugeaud, Mignotte, and Siksek [3]. In their work, they applied a combination of Baker’s
method, the modular approach and some classical techniques to show that the only per-
fect powers in the Fibonacci sequence are 0, 1, 8 and 144, and the only perfect powers in
the Lucas sequence are 1 and 4. A detailed account of this problem can be found in [3,
Section 10].

In our recent paper [5], we found all powers of 2 which are the sums of at most two
Fibonacci numbers. Specifically, we proved the following.

Theorem 1. The only solutions of the Diophantine equation Fn + Fm = 2a in positive

integers n,m and a with n ≥ m are given by

2F1 = 2, 2F2 = 2, 2F3 = 4, 2F6 = 16,

and

F2 + F1 = 2, F4 + F1 = 4, F4 + F2 = 4, F5 + F4 = 8, F7 + F4 = 16.

In this paper, we prove an analogue of Theorem 1 when the sequence of Fibonacci numbers
is replaced by the sequence of the Lucas numbers, i.e., we extend our previous work [5] and
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determine all the solutions of the Diophantine equation

Ln + Lm = 2a (1)

in nonnegative integers n ≥ m and a.
Similar problems have recently been investigated. For example, repdigits which are sums

of at most three Fibonacci numbers were found by Luca [12]; Fibonacci numbers which are
sums of two repdigits were obtained by Dı́az and Luca [7], while factorials which are sums
of at most three Fibonacci numbers were found by Luca and Siksek [11].

We prove the following result.

Theorem 2. All solutions of the Diophantine equation (1) in nonnegative integers n ≥ m
and a, are

2L0 = 4, 2L1 = 2, 2L3 = 8, L2 + L1 = 4, L4 + L1 = 8 and L7 + L2 = 32.

Let us give a brief overview of our strategy for proving Theorem 2. First, we rewrite
equation (1) in suitable ways in order to obtain two different linear forms in logarithms
which are both nonzero and small. Next, we use a lower bound on such nonzero linear forms
in two logarithms due to Laurent, Mignotte, and Nesterenko as well as a general lower bound
due to Matveev to find an absolute upper bound for n; hence, an absolute upper bound for
m and a, which we then reduce using standard facts concerning continued fractions.

In this paper, we follow the approach and the presentation described in [5].

2 Auxiliary results

Before proceeding further, we recall that the Binet formula

Ln = αn + βn holds for all n ≥ 0,

where

α :=
1 +

√
5

2
and β :=

1−
√
5

2

are the roots of the characteristic equation x2 − x − 1 = 0 of (Ln)n≥0. This will be an
important ingredient in what follows. In particular, the inequality

αn−1 ≤ Ln ≤ 2αn (2)

holds for all n ≥ 0.
In order to prove Theorem 2, we need a result of Laurent, Mignotte, and Nesterenko [10]

about linear forms in two logarithms. But first, some notation.
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Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(X − η(i)),

where the ai’s are relatively prime integers with a0 > 0 and the η(i)’s are conjugates of η.
Then

h(η) =
1

d

(

log a0 +
d
∑

i=1

log
(

max{|η(i)|, 1}
)

)

is called the logarithmic height of η. In particular, if η = p/q is a rational number with
gcd(p, q) = 1 and q > 0, then h(η) = logmax{|p|, q}.

The following properties of the logarithmic height, which will be used in the next section
without special reference, are also known:

• h(η ± γ) ≤ h(η) + h(γ) + log 2.

• h(ηγ±1) ≤ h(η) + h(γ).

• h(ηs) = |s|h(η).

With the above notation, Laurent, Mignotte, and Nesterenko [10, Corollary 1] proved
the following theorem.

Theorem 3. Let γ1, γ2 be two non-zero algebraic numbers, and let log γ1 and log γ2 be any

determinations of their logarithms. Put D = [Q(γ1, γ2) : Q]/[R(γ1, γ2) : R], and

Γ := b2 log γ2 − b1 log γ1,

where b1 and b2 are positive integers. Further, let A1, A2 be real numbers > 1 such that

logAi ≥ max

{

h(γi),
| log γi|

D
,
1

D

}

, i = 1, 2.

Then, assuming that γ1 and γ2 are multiplicatively independent, we have

log |Γ| > −30.9 ·D4

(

max

{

log b′,
21

D
,
1

2

})2

logA1 · logA2,

where

b′ =
b1

D logA2

+
b2

D logA1

.

We shall also need the following general lower bound for linear forms in logarithms due
to Matveev [13] (see also the paper of Bugeaud, Mignotte, and Siksek [3, Theorem 9.4]).
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Theorem 4 (Matveev’s theorem). Assume that γ1, . . . , γt are positive real algebraic numbers

in a real algebraic number field K of degree D, b1, . . . , bt are rational integers, and

Λ := γb1

1 · · · γbt
t
− 1,

is not zero. Then

|Λ| > exp
(

−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At

)

,

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

In 1998, Dujella and Pethő in [8, Lemma 5 (a)] gave a version of the reduction method
based on the Baker-Davenport lemma [1]. To conclude this section of auxiliary results, we
present the following lemma from [4], which is an immediate variation of the result due to
Dujella and Pethő from [8], and will be one of the key tools used in this paper to reduce the
upper bounds on the variables of the equation (1).

Lemma 5. Let M be a positive integer, let p/q be a convergent of the continued fraction of

the irrational γ such that q > 6M , and let A,B, µ be some real numbers with A > 0 and

B > 1. Let ǫ := ||µq|| −M ||γq||, where || · || denotes the distance from the nearest integer.

If ǫ > 0, then there is no solution to the inequality

0 < uγ − v + µ < AB−w,

in positive integers u, v and w with

u ≤ M and w ≥ log(Aq/ǫ)

logB
.

3 The Proof of Theorem 2

Assume throughout that equation (1) holds. First of all, observe that if n = m, then the
original equation (1) becomes Ln = 2a−1. But the only solutions of this latter equation are
(n, a) ∈ {(0, 2), (1, 1), (3, 3)} and this fact has already been mentioned in the Introduction.
So, from now on, we assume that n > m.

If n ≤ 200, then a brute force search with Mathematica in the range 0 ≤ m < n ≤ 200
gives the solutions (n,m, a) ∈ {(2, 1, 2), (4, 1, 3), (7, 2, 5)}. This took a few seconds. Thus,
for the rest of the paper we assume that n > 200.

Let us now get a relation between n and a. Combining (1) with the right inequality of
(2), one gets that

2a ≤ 2αn + 2αm < 2n+1 + 2m+1 = 2n+1(1 + 2m−n) ≤ 2n+1(1 + 2−1) < 2n+2,

5



which leads to a ≤ n+ 1. This estimate is essential for our purpose.
On the other hand, we rewrite equation (1) as

αn − 2a = −βn − Lm.

We now take absolute values in the above relation obtaining

|αn − 2a| ≤ |β|n + Lm <
1

2
+ 2αm.

Dividing both sides of the above expression by αn and taking into account that n > m, we
get

∣

∣1− 2a · α−n
∣

∣ <
3

αn−m
. (3)

In order to apply Theorem 3, we take γ1 := α, γ2 := 2, b1 := n and b2 := a. So,

Γ := b2 log γ2 − b1 log γ1,

and therefore estimation (3) can be rewritten as

∣

∣1− eΓ
∣

∣ <
3

αn−m
. (4)

The algebraic number field containing γ1, γ2 is Q(
√
5), so we can take D := 2. By using (1)

and the Binet formula for the Lucas sequence, we have

αn = Ln − βn < Ln + 1 ≤ Ln + Lm = 2a.

Consequently, 1 < 2a α−n and so Γ > 0. This, together with (4), gives

0 < Γ <
3

αn−m
, (5)

where we have also used the fact that x ≤ ex − 1 for all x ∈ R. Hence,

log Γ < log 3− (n−m) logα. (6)

Note further that h(γ1) = (logα)/2 = 0.2406 · · · and h(γ2) = log 2 = 0.6931 · · · ; thus, we
can choose logA1 := 0.5 and logA2 := 0.7. Finally, by recalling that a ≤ n+ 1, we get

b′ =
n

1.4
+ a < 1.71429n+ 1 < 2n.

Since α and 2 are multiplicatively independent, we have, by Theorem 3, that

log Γ ≥ − 30.9 · 24 · (max {log(2n), 21/2, 1/2})2 · 0.5 · 0.7
>− 174 · (max {log(2n), 21/2, 1/2})2 . (7)
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We now combine (6) and (7) to obtain

(n−m) logα < 180 · (max {log(2n), 21/2})2 . (8)

Let us now get a second linear form in logarithms. To this end, we now rewrite (1) as follows:

αn(1 + αm−n)− 2a = −βn − βm.

Taking absolute values in the above relation and using the fact that β = (1−
√
5)/2, we get

|αn(1 + αm−n)− 2a| = |β|n + |β|m < 2

for all n > 200 and m ≥ 0. Dividing both sides of the above inequality by the first term of
the left-hand side, we obtain

∣

∣1− 2a · α−n · (1 + αm−n)−1
∣

∣ <
2

αn
. (9)

We are now ready to apply Matveev’s result Theorem 4. To do this, we take the parameters
t := 3 and

γ1 := 2, γ2 := α, γ3 := 1 + αm−n.

We take b1 := a, b2 := −n and b3 := −1. As before, K := Q(
√
5) contains γ1, γ2, γ3 and has

D := [K : Q] = 2. To see why the left-hand side of (9) is not zero, note that otherwise, we
would get the relation

2a = αn + αm. (10)

Conjugating the above relation in Q(
√
5), we get

2a = βn + βm. (11)

Combining (10) and (11), we obtain

αn < αn + αm = |βn + βm| ≤ |β|n + |β|m < 2,

which is impossible for n > 200. Hence, indeed the left-hand side of inequality (9) is nonzero.
In this application of Matveev’s theorem we take A1 := 1.4 and A2 := 0.5. Since a ≤ n+1

it follows that we can take B := n + 1. Let us now estimate h(γ3). We begin by observing
that

γ3 = 1 + αm−n < 2 and γ−1
3 =

1

1 + αm−n
< 1,

so that | log γ3| < 1. Next, notice that

h(γ3) ≤ |m− n|
(

logα

2

)

+ log 2 = log 2 + (n−m)

(

logα

2

)

.
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Hence, we can take

A3 := 2 + (n−m) logα > max{2h(γ3), | log γ3|, 0.16}.

Now Matveev’s theorem implies that a lower bound on the left-hand side of (9) is

exp (−C · (1 + log(n+ 1)) · 1.4 · 0.5 · (2 + (n−m) logα)

where C := 1.4 · 306 · 34.5 · 22(1 + log 2) < 9.7× 1011. So, inequality (9) yields

n logα− log 2 < 1.36× 1012 log n · (2 + (n−m) logα), (12)

where we used the inequality 1 + log(n+ 1) < 2 log n, which holds because n > 200.
Using now (8) in the right-most term of the above inequality (12) and performing the

respective calculations, we arrive at

n < 6× 1014 log n · (max {log(2n), 21/2})2 . (13)

If max {log(2n), 21/2} = 21/2, it then follows from (13) that n < 8 × 1016 log n giving
n < 3.5× 1018. If on the other hand we have that max {log(2n), 21/2} = log(2n), then, from
(13), we get n < 6 × 1014 log n log2(2n) and so n < 5.9 × 1019. In any case, we have that
n < 5.9 × 1019 always holds. We summarize what we have proved so far in the following
lemma.

Lemma 6. If (n,m, a) is a solution in positive integers of equation (1) with n > m and

n > 200, then inequalities

a ≤ n+ 1 < 6× 1019

hold.

4 Reducing the bound on n

After finding an upper bound on n the next step is to reduce it. To do this, we first use some
properties of continued fractions to obtain a suitable upper bound on n −m, and secondly
we use Lemma 5 to conclude that n must be relatively small. Let us see.

Turning back to inequality (5), we obtain

0 < a log 2− n logα <
3

αn−m
.

Dividing across by logα, we get

0 < aγ − n <
7

αn−m
, where γ :=

log 2

logα
. (14)
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Let [a0, a1, a2, a3, a4, . . .] = [1, 2, 3, 1, 2, . . .] be the continued fraction expansion of γ, and let
denote pk/qk its kth convergent. Recall also that a < 6× 1019 by Lemma 6.

A quick inspection using Mathematica reveals that

54475119544877440894 = q44 < 6× 1019 < q45 = 67219577652603468483.

Furthermore, aM := max{ai | i = 0, 1, . . . , 45} = a17 = 134. So, from the known properties
of continued fractions, we obtain that

|aγ − n| > 1

(aM + 2)a
. (15)

Comparing estimates (14) and (15), we get right away that

αn−m < 7 · 136 · a < 6× 1022,

leading to n − m ≤ 110. Let us now work a little bit on (9) in order to find an improved
upper bound on n. Put

z := a log 2− n logα− logϕ(n−m), (16)

where ϕ is the function given by the formula ϕ(t) := 1 + α−t. Therefore, (9) implies that

|1− ez| < 2

αn
. (17)

Note that z 6= 0; thus, we distinguish the following cases. If z > 0, then, from (17), we
obtain

0 < z ≤ ez − 1 <
2

αn
.

Replacing z in the above inequality by its formula (16) and dividing both sides of the resulting
inequality by logα, we get

0 < a

(

log 2

logα

)

− n− logϕ(n−m)

logα
< 5 · α−n. (18)

We now put

γ :=
log 2

logα
, µ := − logϕ(n−m)

logα
, A := 5 and B := α.

Clearly γ is an irrational number. We also putM := 6×1019, which is an upper bound on a by
Lemma 6. We therefore apply Lemma 5 to inequality (18) for all choices n−m ∈ {1, . . . , 110}
except when n−m = 1, 3 and get that

n <
log(Aq/ǫ)

logB
,
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where q > 6M is a denominator of a convergent of the continued fraction of γ such that
ǫ = ||µq|| −M ||γq|| > 0. Indeed, with the help of Mathematica we find that if (n,m, a) is
a possible solution of the equation (1) with z > 0 and n −m 6= 1, 3, then n ≤ 130. This is
false because our assumption that n > 200.

Suppose now that z < 0. First, note that 2/αn < 1/2 since n > 200. Then, from (17),
we have that |1− ez| < 1/2 and therefore e|z| < 2. Since z < 0, we have

0 < |z| ≤ e|z| − 1 = e|z||ez − 1| < 4

αn
.

Then, by the same arguments used for proving (18), we obtain

0 < n

(

logα

log 2

)

− a+
logϕ(n−m)

log 2
< 6 · α−n. (19)

Here, we also take M := 6× 1019, which is an upper bound on n by Lemma 6, and we apply
Lemma 5 to inequality (19) for each n −m ∈ {1, . . . , 110} except for n −m = 1, 3. In this
case, with the help of Mathematica, we find that if (n,m, a) is a possible solution of the
equation (1) with z < 0 and n−m 6= 1, 3, then n ≤ 120, which is false.

Finally, we deal with the cases when n −m = 1 and 3. We cannot study these cases as
before because when applying Lemma 5 to the expressions (18) or (19) (according to whether
z is positive or negative, respectively), the corresponding parameter µ appearing in Lemma
5 is either

− logϕ(t)

logα
=

{

−1, if t = 1;

1− log 2
logα

, if t = 3.
or

logϕ(t)

log 2
=

{

logα
log 2

, if t = 1;

1− logα
log 2

, if t = 3.

But, in any case, one can see that the corresponding value of ǫ from Lemma 5 is always
negative and therefore the reduction method is not useful for reducing the bound on n in
these instances. For this reason we need to treat these cases differently.

All we want to do here is solve the equations

Lm+1 + Lm = 2a and Lm+3 + Lm = 2a (20)

in positive integers m and a with m + 1 > 200 and m + 3 > 200, respectively. But, by
definition Lm+1 + Lm = Lm+2. Moreover, Lm+3 + Lm = 2Lm+2, which is easily checked. We
see from the above discussion that equations (20) are transformed into the simpler equations

Lm+2 = 2a and Lm+2 = 2a−1 (21)

to be resolved in positive integers m and a with m > 199 and m > 197, respectively. But,
we quickly see that the above equations (21) have no solutions for m > 1 as mentioned
earlier. This completes the analysis of the cases when n−m = 1, 3 and therefore the proof
of Theorem 2.
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