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Abstract

Using the Euler-MacLaurin summation formula, we give alternative proofs for the
reciprocity formulas of Apostol’s Dedekind sums and generalized Hardy-Berndt sums
s3,p(b, c) and s4,p(b, c). We also obtain an integral representation for each sum.

1 Introduction

Let

((x)) =

{

x− [x]− 1/2, if x ∈ R\Z;

0, if x ∈ Z,

with [x] being the largest integer ≤ x. For positive integers c and integers b the classical
Dedekind sum s(b, c), arising in the theory of Dedekind η-function, was introduced by R.
Dedekind in 1892 as

s(b, c) =
∑

m(mod c)

((m

c

))

((

bm

c

))

.

The most important property of Dedekind sums is the reciprocity theorem

s(b, c) + s(c, b) = −
1

4
+

1

12

(

b

c
+

c

b
+

1

bc

)
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when gcd (b, c) = 1. The standard reference for Dedekind sums is Rademacher and Grosswald
[7]. Several generalizations of Dedekind sums have been defined and the corresponding
reciprocity formulas have been obtained. One of these generalizations, due to Apostol [1], is

sp(b, c) =
c−1
∑

m=1

m

c
Bp

(

bm

c

)

,

where Bp(x) is the pth Bernoulli function defined by

B1 (x) = ((x)) , and Bp(x+m) = Bp(x) for 0 ≤ x < 1, m ∈ Z and p > 1.

Here Bp(x) is the pth Bernoulli polynomial. Apostol’s reciprocity formula is as follows.

Theorem 1. Let b and c be coprime positive integers. For odd p ≥ 1, we have

(p+ 1) (bcpsp(b, c) + cbpsp(c, b)) =

p+1
∑

j=0

(

p+ 1

j

)

(−1)jbp+1−jcjBp+1−jBj + pBp+1.

Here Bp = Bp(0) is the pth Bernoulli number.
Similar arithmetic sums arise in the theory of logarithms of the classical theta functions.

They were studied by Hardy and Berndt, and for this reason they are called Hardy or
Hardy-Berndt sums. There are six such sums, two of which are [2, 6]

s3(b, c) =
c−1
∑

m=1

(−1)m B1

(

bm

c

)

, s4(b, c) = −4
c−1
∑

m=1

B1

(

bm

2c

)

.

Goldberg [6] showed that these sums also arise in the theory of rm(n), the number of rep-
resentations of n as a sum of m integral squares and in the study of the Fourier coefficients
of the reciprocals of the classical theta functions. Like Dedekind sums, Hardy-Berndt sums
also satisfy a reciprocity (or reciprocity-like) formula [2, 6]

2s3(b, c)− s4(c, b) = 1−
b

c

when c is odd and gcd (b, c) = 1. The generalizations of these sums in the sense of Apostol
have been given in [3] by

s3,p(b, c) =
c−1
∑

m=1

(−1)m Bp

(

bm

c

)

, s4,p(b, c) = −4
c−1
∑

m=1

Bp

(

bm

2c

)

which satisfy the following reciprocity formula.
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Theorem 2. Let b and c be coprime positive integers with c odd. For odd p ≥ 1, we have

(p+ 1)
(

2bcps3,p (b, c)− 2−1c (2b)p s4,p (c, b)
)

= 4

p+1
∑

j=1

(

p+ 1

j

)

(−1)j bjcp+1−j
(

1− 2j
)

BjBp+1−j.

The reciprocity formulas in this concept are proved by employing various techniques
and theories such as transformation formulas, residue theory, Franel integral and arithmetic
methods.

In this study we give rather elementary but new proofs for Theorems 1 and 2 when p > 1
by applying the Euler-MacLaurin summation formula to Bernoulli function.

The method presented in the sequel is motivated by [4].

2 Proofs of the reciprocity theorems

Let us state the Euler-MacLaurin summation formula, which can be found in various books,
for example, [5, p. 22].

Theorem 3. (Euler-MacLaurin) Let α and β be real numbers such that α ≤ β and

assume that f ∈ C(l) [α, β] for some l ≥ 1. Then

∑

α<m≤β

f(m) =

β
∫

α

f(u)du+
l

∑

j=1

(−1)j

j!

(

Bj (β) f
(j−1)(β)−Bj (α) f

(j−1)(α)
)

+
(−1)l−1

l!

β
∫

α

f (l)(u)Bl (u) du.

We will also need the facts B2r+1(0) = B2r+1(1/2) = 0 for all r ≥ 0 and Raabe’s formula

n−1
∑

m=0

Br

(

x+
m

n

)

= n1−rBr (nx) . (1)

Firstly, we consider the function f (x) = Bp (xy), y ∈ R. The property

d

dx
Bp (x) = pBp−1 (x) , p > 2

entails that
dj

dxj
f (x) =

dj

dxj
Bp (xy) = yj

p!

(p− j)!
Bp−j (xy) (2)

3



for 1 ≤ j ≤ p − 2 and f ∈ C(p−2) [α, β] . For α = 0 and 1 ≤ l ≤ p − 2, Theorem 3 can be
written as

∑

1≤m≤β

Bp (my)

=
1

p+ 1

l
∑

j=1

(−1)j
(

p+ 1

j

)

yj−1
(

Bj (β)Bp−j+1 (βy)−Bp−j+1(0)Bj (0)
)

+
1

y

Bp+1 (βy)−Bp+1 (0)

p+ 1
− (−y)l

(

p

l

)

β
∫

0

Bl (u)Bp−l (yu) du. (3)

Let y = b/c and β = c ∈ N. Then (3) becomes

c
∑

m=1

Bp

(

bm

c

)

= −

(

p

l

)(

−
b

c

)l
c

∫

0

Bl (u)Bp−l

(

b

c
u

)

du. (4)

• For b = c in (4) we have the well-known relation [5, p. 120]

1
∫

0

Bl (u)Br (u) du = (−1)l−1 l!r!

(r + l)!
Bl+r, for l ≥ 1 and p− l = r ≥ 2.

• Let gcd (b, c) = 1. Then, it follows from (1) and (4) that

1
∫

0

Bl (cu)Bp−l (bu) du =
(−1)l−1

(

p
l

)

cl−p

bl
Bp. (5)

• Now assume that gcd (b, c) = q and put c = qc1, b = qb1. From (5), we have

1
∫

0

Bl (cu)Bp−l (bu) du = c

1
∫

0

Bl (c1u)Bp−l (b1u) du = cqp
(−1)l−1

(

p
l

)

cl−p

bl
Bp.

2.1 Proof of Theorem 1

Let f(x) = xBp (xy) , y ∈ R. Then f ∈ C(p−2) [α, β]. From (2) and the Leibniz rule for the
derivative we have, for 1 ≤ j ≤ p− 2,

dj

dxj

[

xBp (xy)
]

= yj
p!

(p− j)!
xBp−j (xy) + yj−1 p!

(p+ 1− j)!
jBp+1−j (xy) .
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For f(x) = xBp (xy) , α = 0, β = c and y = b/c with gcd (b, c) = 1 in Theorem 3, we
have

c
∑

m=1

mBp

(

m
b

c

)

= c2
1

∫

0

xBp (bx) dx+
c

p+ 1

l
∑

j=1

(−1)j
(

p+ 1

j

)(

b

c

)j−1

Bj (0)Bp+1−j (0)

+

(

p

l

)(

−
b

c

)l−1

c

1
∫

0

Bl (cx)

(

bxBp−l (bx) +
l

p+ 1− l
Bp+1−l(bx)

)

dx, (6)

where 1 ≤ l ≤ p− 2. It follows from integration by parts that

1
∫

0

xBp (bx) dx =
1

b(p+ 1)
Bp+1 (0) (7)

and from (5)

(−1)l−1

(

p+ 1

l

)(

b

c

)l

c

1
∫

0

Bl (cx)Bp+1−l (bx) dx = c−pBp+1 (0) . (8)

Combining (6), (7) and (8), we have

c
∑

m=1

mBp

(

bm

c

)

=
c

p+ 1

l
∑

j=0

(−1)j
(

p+ 1

j

)(

b

c

)j−1

Bp+1−j (0)Bj (0) +
l

p+ 1

c1−p

b
Bp+1

+ (−1)l−1

(

p

l

)(

b

c

)l−1

bc

1
∫

0

xBl (cx)Bp−l (bx) dx. (9)

It can be easily seen from (1) and the fact Bp (−x) = (−1)p Bp (x) that 2sp(b, c) =
(c1−p − 1)Bp when p is even. We then have

c
∑

m=1

mBp

(

bm

c

)

=
c−1
∑

m=1

mBp

(

bm

c

)

+ cBp (0) =

{

csp(b, c), if p is odd;

(c1−p + 1)
c

2
Bp, if p is even.

(10)
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• Let p > 1 be odd. Putting l = 2 in (9) and using (10), we get

csp(b, c) =
c

p+ 1

(

c

b
Bp+1 (0) +

(

p+ 1

2

)

b

c
Bp−1 (0)B2 (0)

)

+
2

p+ 1

c1−p

b
Bp+1 −

(

p

2

)

b2
1

∫

0

xBp−2 (bx)B2 (cx) dx (11)

Putting l = p− 2 and interchanging b and c in (9)

bsp(c, b) =
b

p+ 1

p−2
∑

j=0

(−1)j
(

p+ 1

j

)

(c

b

)j−1

Bp+1−j (0)Bj (0) +
p− 2

p+ 1

b1−p

c
Bp+1

+ (−1)p−1

(

p

2

)

(c

b

)p−3

bc

1
∫

0

xBp−2 (bx)B2 (cx) dx. (12)

Then, from (11) and (12), we arrive at the reciprocity formula

(p+ 1) (bcpsp(b, c) + cbpsp(c, b)) =

p+1
∑

j=0

(

p+ 1

j

)

(−1)jbp+1−jcjBp+1−jBj + pBp+1.

Note that for l = 1 in (9) we have the following integral representation

sp(b, c) =
(

c+ c−p
) 1

b

Bp+1

p+ 1
+ pb

1
∫

0

xB1 (cx)Bp−1 (bx) dx, for odd p > 1.

• Let p > 2 be even. From (9) and (10) we have

b

1
∫

0

xBl (cx)Bp−l (bx) dx =
1

2

(

1 + c1−p
)

(

−
c

b

)l−1
(

p

l

)−1

Bp, for 1 ≤ l ≤ p− 2.

2.2 Proof of Theorem 2

We will use (3) for the following cases;
I) y = b/ (2c) and β = c,
II) y = 2b/c and β = c/2.

I) Let b be odd and consider y = b/2c, β = c with gcd (b, c) = 1 in (3). From (1), we
have

Bp−j+1

(

b

2

)

= Bp−j+1

(

1

2

)

=
(

2j−p − 1
)

Bp−j+1 (0) . (13)
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Therefore, (3) becomes

c
∑

n=1

Bp

(

b

2c
n

)

= −
1

4
s4,p (b, c) + Bp

(

1

2

)

=
21−p

p+ 1

p+1
∑

m=p−l+1

(−1)p+1−m

(

p+ 1

m

)(

b

c

)p−m

(1− 2m)Bm(0)Bp+1−m(0)

− c

(

p

l

)(

−
b

2c

)l
1

∫

0

Bl (cu)Bp−l

(

b

2
u

)

du (14)

by setting j = p+ 1−m.

• Let p > 1 be odd and put l = 2 in (14). Then,

−
2p

4
s4,p (b, c) =

2

p+ 1

p+1
∑

m=p−1

(

p+ 1

m

)

(−1)m
(

b

c

)p−m

(1− 2m)Bm(0)Bp+1−m(0)

− 2p−3p(p− 1)
b2

c

1
∫

0

B2 (cu)Bp−2

(

b

2
u

)

du. (15)

For l = 1 in (14) we have the following integral representation

−
1

4
s4,p (b, c) =

21−p

p+ 1

c

b

(

1− 2p+1
)

Bp+1

+ p
b

2

1
∫

0

B1 (cu)Bp−1

(

b

2
u

)

du, for odd p > 1.

• If p > 2 is even, it is seen from (14), (13) and

s4,p(b, c) = 22−p
(

1− c1−p
)

Bp, for even p and odd b

[3, Proposition 2.5] that

c

1
∫

0

Bl (cu)Bp−l

(

b

2
u

)

du = 2l−p(2p − c1−p − 1)
(

−
c

b

)l
(

p

l

)−1

Bp.

II) Let c be odd and consider y = 2b/c, β = c/2 with gcd (b, c) = 1. Then, from (3) and
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(13) we have

∑

0<n≤c/2

Bp

(

2b

c
n

)

=

(c−1)/2
∑

n=1

Bp

(

2b

c
n

)

=
1

p+ 1

l
∑

j=1

(−1)j
(

p+ 1

j

)(

2b

c

)j−1
(

21−j − 2
)

Bj(0)Bp+1−j(0)

−

(

−
2b

c

)l (
p

l

)

c

2

1
∫

0

Bl

( c

2
u
)

Bp−l (bu) du. (16)

By the definition of the sum s3,p (b, c) we have

s3,p (b, c) =
c−1
∑

n=1

(−1)n Bp

(

bn

c

)

= 2

(c−1)/2
∑

n=1

Bp

(

2bn

c

)

−

c−1
∑

n=1

Bp

(

bn

c

)

. (17)

• Let p > 1 be odd. Put l = p− 2 in (16). Then, (1), (16) and (17) yield

(p+ 1) bcps3,p (b, c) =2

p−2
∑

j=1

(

p+ 1

j

)

(−1)j bjcp+1−j
(

1− 2j
)

Bp+1−j(0)Bj(0)

+ 2p−3bp−1c3p (p− 1) (p+ 1)

1
∫

0

Bp−2

( c

2
u
)

B2 (bu) du. (18)

Combining (15) and (18) we obtain the reciprocity formula

(p+ 1)
(

bcps3,p (b, c)− 2−2c (2b)p s4,p (c, b)
)

= 2

p+1
∑

j=1

(

p+ 1

j

)

(−1)j bjcp+1−j
(

1− 2j
)

BjBp+1−j,

when c and p > 1 are odd.

• If p > 2 is even, then from (1), (16) and s3,p (b, c) = 0 for odd (p+ c) we get

c

(

p

l

)

1
∫

0

Bl

( c

2
u
)

Bp−l (bu) du =
(

−
c

2b

)l
(

1− c1−p
)

Bp.

Putting l = 1 in (16) gives an integral representation for s3,p (b, c) as

s3,p (b, c) = 2bp

1
∫

0

B1

( c

2
u
)

Bp−1 (bu) du, for odd p > 1.
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