Journal of Integer Sequences, Vol. 17 (2014),
Article 14.3.2

Fermat Numbers in Multinomial Coefficients

Shane Chern
Department of Mathematics
Zhejiang University
Hangzhou, 310027
China
chenxiaohang92@gmail.com

Abstract

In 2001 Luca proved that no Fermat number can be a nontrivial binomial coefficient. We extend this result to multinomial coefficients.

1 Introduction

Let $F_{m}=2^{2^{m}}+1$ be the $m^{\text {th }}$ Fermat number for any nonnegative integer m. Several authors studied the Diophantine equation

$$
\begin{equation*}
\binom{n}{k}=2^{2^{m}}+1=F_{m} \tag{1}
\end{equation*}
$$

where $n \geq 2 k \geq 2$, and $m \geq 0$. We refer to the articles [$2,3,5,6,8]$ for further details. In 2001, Luca [6] completely solved Eq. (1) and proved that it has only the trivial solutions $k=1, n-1$ and $n=F_{m}$. The proof is mainly based on a congruence given by Lucas [7]. For more about Fermat numbers, see [4].

For a positive integer t, let n, k_{1}, \ldots, k_{t} be nonnegative integers, and define the t-order multinomial coefficient as follows:

$$
\binom{n}{k_{1}, \ldots, k_{t}}=\frac{n(n-1) \cdots\left(n-k_{1}-\cdots-k_{t}+1\right)}{k_{1}!\cdots k_{t}!}
$$

with $\sum_{i=1}^{t} k_{i}<n+1$. In particular, $\binom{n}{0, \ldots, 0}=1$. Note that for $t \geq 2$, if $\sum_{i=1}^{t} k_{i}=n$, then the t-order multinomial coefficient equals a $(t-1)$-order multinomial coefficient

$$
\binom{n}{k_{1}, \ldots, k_{t}}=\binom{n}{k_{1}, \ldots, k_{t-1}} .
$$

There are many papers concerning the Diophantine equations related to multinomial coefficients. For example, Yang and Cai [9] proved that the Diophantine equation

$$
\binom{n}{k_{1}, \ldots, k_{t}}=x^{l}
$$

has no positive integer solutions for $n, t \geq 3, l \geq 2$, and $\sum_{i=1}^{t} k_{i}=n$.
In this paper, we consider the Diophantine equation

$$
\begin{equation*}
\binom{n}{k_{1}, \ldots, k_{t}}=2^{2^{m}}+1=F_{m}, \quad \text { for } t \geq 2, \text { and } \sum_{i=1}^{t} k_{i}<n \tag{2}
\end{equation*}
$$

and prove the following theorem.
Theorem 1. The Diophantine equation (2) has no integer solutions ($m, n, k_{1}, \ldots, k_{t}$) for nonnegative m and positive n, k_{1}, \ldots, k_{t}.

2 Two Lemmas

To prove Theorem 1, we need the following two lemmas.
Lemma 2 (Euler [1]). Any prime factor p of the Fermat number F_{m} satisfies

$$
p \equiv 1 \quad\left(\bmod 2^{m+1}\right)
$$

Lemma 3 (Luca [6]). If $F_{m}=s\binom{n}{k}$, with $m \geq 5, s \geq 1$, and $1 \leq k \leq \frac{n}{2}$, we have the following two properties.
(i) Let $n=n^{\prime} d$, where

$$
A=\left\{p: \text { prime } p \mid n, \text { and } p \equiv 1\left(\bmod 2^{m+1}\right)\right\},
$$

and

$$
n^{\prime}=\prod_{p \in A} p^{\alpha_{p}} .
$$

Then $k=d<2^{m}$.
(ii) $k-i \mid n-i$ for any $i=0, \ldots, k-1$.

Remark 4. Lemma 3 is summarized from Luca's proof [6] of Diophantine equation (1). Although Luca only proved the case $s=1$, he indicated that the result also holds for all positive integers s.

3 Proof of Theorem 1

The first five Fermat numbers are primes, which cannot be a multinomial coefficient in Eq. (2). Therefore, we only need to consider $m \geq 5$.

Moreover, for any multinomial coefficient $\binom{n}{k_{1}, \ldots, k_{t}}$ with $t>0, k_{1}, \ldots, k_{t} \geq 1$, and $\sum_{i=1}^{t} k_{i}<n$, there exists a multinomial coefficient

$$
\binom{n}{k_{1}^{\prime}, \ldots, k_{t}^{\prime}}=\binom{n}{k_{1}, \ldots, k_{t}}
$$

such that $1 \leq k_{1}^{\prime}, \ldots, k_{t}^{\prime} \leq \frac{n}{2}$.
Hence, Eq. (2) becomes

$$
\begin{equation*}
F_{m}=\binom{n}{k_{1}, \ldots, k_{t}}, \quad \text { for } m \geq 5,1 \leq k_{i} \leq \frac{n}{2}, \text { and } \sum_{i=1}^{t} k_{i}<n . \tag{3}
\end{equation*}
$$

Let $n=n^{\prime} d$, where

$$
A=\left\{p: \text { prime } p \mid n, \text { and } p \equiv 1\left(\bmod 2^{m+1}\right)\right\}
$$

and

$$
n^{\prime}=\prod_{p \in A} p^{\alpha_{p}} .
$$

For any $i=1, \ldots, t$, we have

$$
\begin{equation*}
F_{m}=\binom{n}{k_{1}, \ldots, k_{t}}=\binom{n}{k_{i}}\binom{n-k_{i}}{k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots, k_{t}}, \tag{4}
\end{equation*}
$$

where $\binom{n-k_{i}}{k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots, k_{t}}$ is a positive integer. By Lemma 3 (i), we have $k_{i}=d<2^{m}$ for $i=1, \ldots, t$. Then Eq. (3) becomes

$$
\begin{align*}
F_{m} & =\binom{n}{\underbrace{d, \ldots, d}_{t}}, \quad n>t d, \text { and } t \geq 2 \tag{5}\\
& =\binom{n}{d}\binom{n-d}{d}\binom{n-2 d}{\underbrace{n, \ldots, d}_{t-2}} . \tag{6}
\end{align*}
$$

Note that $d \geq 1$. We study Eq. (6) in the following three cases.
Case 1: $d>2$. Since $n>2 d$ and $d \mid n$, we have $n \geq 3 d$. Then,

$$
d \leq \frac{n-d}{2}<\frac{n}{2} .
$$

In Eq. (6), applying Lemma 3 (ii) to $\binom{n}{d}$ and $\binom{n-d}{d}$ respectively, and setting $i=1$, we have

$$
d-1 \mid n-1
$$

and

$$
d-1 \mid n-d-1
$$

Thus, $d-1 \mid d$, which is impossible.
Case 2: $d=2$. Let $n=2 n^{\prime}$. Then Eq. (5) becomes

$$
F_{m}=\binom{2 n^{\prime}}{\underbrace{2, \ldots, 2}_{t}}=n^{\prime}\left(2 n^{\prime}-1\right)\left(n^{\prime}-1\right)\left(2 n^{\prime}-3\right)(\underbrace{2 n^{\prime}-4}_{t-2} \begin{array}{c}
2, \ldots, 2
\end{array}) .
$$

Then n^{\prime} and $n^{\prime}-1$ are both F_{m} 's factors. According to Lemma 2, we obtain $n^{\prime} \equiv n^{\prime}-1 \equiv 1$ $\left(\bmod 2^{m+1}\right)$, which is impossible.

Case 3: $d=1$. Eq. (5) becomes

$$
F_{m}=\binom{n}{1, \ldots, 1}=n(n-1)(\underbrace{\left.\begin{array}{c}
n-2 \\
1, \ldots, 1
\end{array}\right) . ~}_{t} \underbrace{1, \ldots,}_{t-2}
$$

Then n and $n-1$ are both F_{m} 's factors. According to Lemma 2, we obtain $n \equiv n-1 \equiv 1$ $\left(\bmod 2^{m+1}\right)$, which is also impossible.

This completes the proof of Theorem 1.
Remark 5. One can even find that the multinomial coefficient in Eq. (2) could not divide a Fermat number. Otherwise, assume that there exists a positive integer s such that

$$
F_{m}=s\binom{n}{k_{1}, \ldots, k_{t}} .
$$

Note that in Eq. (4) we still have

$$
\left.\binom{n}{k_{i}} \right\rvert\, F_{m},
$$

and in Eqs. (5) and (6) similar results hold. Hence, we can get the proof in the same way.

4 Acknowledgments

I am indebted to Mr. Yong Zhang for providing relevant references and examining the whole proof, and to Mr. Jiaxing Cui for giving detailed comments.

I am also indebted to the referee for his careful reading and helpful suggestions.

References

[1] L. Euler, Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus, Acad. Sci. Petropol. 6 (1738), 103-107. Available at http://eulerarchive.maa.org/pages/E026.html.
[2] D. Hewgill, A relationship between Pascal's triangle and Fermat's numbers, Fibonacci Quart. 15 (1977), 183-184.
[3] H. V. Krishna, On Mersenne and Fermat numbers, Math. Student 39 (1971), 51-52.
[4] M. Křížek, F. Luca, and L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer, 2001.
[5] F. Luca, Pascal's triangle and constructible polygons, Util. Math. 58 (2000), 209-214.
[6] F. Luca, Fermat numbers in the Pascal triangle, Divulg. Mat. 9 (2001), 191-195.
[7] É. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-196, 197-240, 289-321.
[8] P. Radovici-Mărculescu, Diophantine equations without solutions (Romanian), Gaz. Mat. Mat. Inform. 1 (1980), 115-117.
[9] P. Yang and T. Cai, On the Diophantine equation $\binom{n}{k_{1}, \ldots, k_{s}}=x^{l}$, Acta Arith. 151 (2012), 7-9.

2010 Mathematics Subject Classification: Primary 11D61; Secondary 11D72, 05A10.
Keywords: Fermat number, multinomial coefficient.
(Concerned with sequence A000215.)

Received January 19 2014; revised version received February 11 2014. Published in Journal of Integer Sequences, February 152014.

Return to Journal of Integer Sequences home page.

