

Journal of Integer Sequences, Vol. 17 (2014), Article 14.3.2

Fermat Numbers in Multinomial Coefficients

Shane Chern Department of Mathematics Zhejiang University Hangzhou, 310027 China chenxiaohang920gmail.com

Abstract

In 2001 Luca proved that no Fermat number can be a nontrivial binomial coefficient. We extend this result to multinomial coefficients.

1 Introduction

Let $F_m = 2^{2^m} + 1$ be the m^{th} Fermat number for any nonnegative integer m. Several authors studied the Diophantine equation

$$\binom{n}{k} = 2^{2^m} + 1 = F_m,\tag{1}$$

where $n \ge 2k \ge 2$, and $m \ge 0$. We refer to the articles [2, 3, 5, 6, 8] for further details. In 2001, Luca [6] completely solved Eq. (1) and proved that it has only the trivial solutions k = 1, n - 1 and $n = F_m$. The proof is mainly based on a congruence given by Lucas [7]. For more about Fermat numbers, see [4].

For a positive integer t, let n, k_1, \ldots, k_t be nonnegative integers, and define the t-order multinomial coefficient as follows:

$$\binom{n}{k_1,\ldots,k_t} = \frac{n(n-1)\cdots(n-k_1-\cdots-k_t+1)}{k_1!\cdots k_t!},$$

with $\sum_{i=1}^{t} k_i < n+1$. In particular, $\binom{n}{0,\dots,0} = 1$. Note that for $t \ge 2$, if $\sum_{i=1}^{t} k_i = n$, then the *t*-order multinomial coefficient equals a (t-1)-order multinomial coefficient

$$\binom{n}{k_1,\ldots,k_t} = \binom{n}{k_1,\ldots,k_{t-1}}.$$

There are many papers concerning the Diophantine equations related to multinomial coefficients. For example, Yang and Cai [9] proved that the Diophantine equation

$$\binom{n}{k_1,\ldots,k_t} = x^l$$

has no positive integer solutions for $n, t \ge 3$, $l \ge 2$, and $\sum_{i=1}^{t} k_i = n$.

In this paper, we consider the Diophantine equation

$$\binom{n}{k_1, \dots, k_t} = 2^{2^m} + 1 = F_m, \text{ for } t \ge 2, \text{ and } \sum_{i=1}^t k_i < n,$$
 (2)

and prove the following theorem.

Theorem 1. The Diophantine equation (2) has no integer solutions (m, n, k_1, \ldots, k_t) for nonnegative m and positive n, k_1, \ldots, k_t .

2 Two Lemmas

To prove Theorem 1, we need the following two lemmas.

Lemma 2 (Euler [1]). Any prime factor p of the Fermat number F_m satisfies

$$p \equiv 1 \pmod{2^{m+1}}.$$

Lemma 3 (Luca [6]). If $F_m = s\binom{n}{k}$, with $m \ge 5$, $s \ge 1$, and $1 \le k \le \frac{n}{2}$, we have the following two properties.

(i) Let n = n'd, where

$$A = \left\{ p : \text{prime } p \mid n, \text{ and } p \equiv 1 \pmod{2^{m+1}} \right\},\$$

and

$$n' = \prod_{p \in A} p^{\alpha_p}.$$

Then $k = d < 2^{m}$.

(*ii*)
$$k - i \mid n - i$$
 for any $i = 0, ..., k - 1$.

Remark 4. Lemma 3 is summarized from Luca's proof [6] of Diophantine equation (1). Although Luca only proved the case s = 1, he indicated that the result also holds for all positive integers s.

3 Proof of Theorem 1

The first five Fermat numbers are primes, which cannot be a multinomial coefficient in Eq. (2). Therefore, we only need to consider $m \ge 5$.

Moreover, for any multinomial coefficient $\binom{n}{k_1,\ldots,k_t}$ with $t > 0, k_1,\ldots,k_t \ge 1$, and $\sum_{i=1}^t k_i < n$, there exists a multinomial coefficient

$$\binom{n}{k'_1,\ldots,k'_t} = \binom{n}{k_1,\ldots,k_t},$$

such that $1 \leq k'_1, \ldots, k'_t \leq \frac{n}{2}$.

Hence, Eq. (2) becomes

$$F_m = \binom{n}{k_1, \dots, k_t}$$
, for $m \ge 5, 1 \le k_i \le \frac{n}{2}$, and $\sum_{i=1}^t k_i < n.$ (3)

Let n = n'd, where

$$A = \left\{ p : \text{prime } p \mid n, \text{ and } p \equiv 1 \pmod{2^{m+1}} \right\},\$$

and

$$n' = \prod_{p \in A} p^{\alpha_p}$$

For any $i = 1, \ldots, t$, we have

$$F_m = \binom{n}{k_1, \dots, k_t} = \binom{n}{k_i} \binom{n - k_i}{k_1, \dots, k_{i-1}, k_{i+1}, \dots, k_t},$$
(4)

where $\binom{n-k_i}{k_1,\ldots,k_{i-1},k_{i+1},\ldots,k_t}$ is a positive integer. By Lemma 3 (i), we have $k_i = d < 2^m$ for $i = 1, \ldots, t$. Then Eq. (3) becomes

$$F_m = \begin{pmatrix} n \\ d, \dots, d \\ t \end{pmatrix}, \quad n > td, \text{ and } t \ge 2$$
(5)

$$= \binom{n}{d} \binom{n-d}{d} \binom{n-2d}{\underbrace{d,\ldots,d}_{t-2}}.$$
(6)

Note that $d \ge 1$. We study Eq. (6) in the following three cases.

Case 1: d > 2. Since n > 2d and $d \mid n$, we have $n \ge 3d$. Then,

$$d \le \frac{n-d}{2} < \frac{n}{2}.$$

In Eq. (6), applying Lemma 3 (ii) to $\binom{n}{d}$ and $\binom{n-d}{d}$ respectively, and setting i = 1, we have

$$d - 1 \mid n - 1$$

and

$$d - 1 \mid n - d - 1.$$

Thus, $d - 1 \mid d$, which is impossible.

Case 2: d = 2. Let n = 2n'. Then Eq. (5) becomes

$$F_m = \begin{pmatrix} 2n' \\ 2, \dots, 2 \\ t \end{pmatrix} = n'(2n'-1)(n'-1)(2n'-3)\begin{pmatrix} 2n'-4 \\ 2, \dots, 2 \\ t-2 \end{pmatrix}.$$

Then n' and n'-1 are both F_m 's factors. According to Lemma 2, we obtain $n' \equiv n'-1 \equiv 1 \pmod{2^{m+1}}$, which is impossible.

Case 3: d = 1. Eq. (5) becomes

$$F_m = \binom{n}{\underbrace{1,\ldots,1}_t} = n(n-1)\binom{n-2}{\underbrace{1,\ldots,1}_{t-2}}.$$

Then n and n-1 are both F_m 's factors. According to Lemma 2, we obtain $n \equiv n-1 \equiv 1 \pmod{2^{m+1}}$, which is also impossible.

This completes the proof of Theorem 1.

Remark 5. One can even find that the multinomial coefficient in Eq. (2) could not divide a Fermat number. Otherwise, assume that there exists a positive integer s such that

$$F_m = s \binom{n}{k_1, \dots, k_t}.$$

Note that in Eq. (4) we still have

$$\binom{n}{k_i} \mid F_m,$$

and in Eqs. (5) and (6) similar results hold. Hence, we can get the proof in the same way.

4 Acknowledgments

I am indebted to Mr. Yong Zhang for providing relevant references and examining the whole proof, and to Mr. Jiaxing Cui for giving detailed comments.

I am also indebted to the referee for his careful reading and helpful suggestions.

References

- L. Euler, Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus, Acad. Sci. Petropol. 6 (1738), 103-107. Available at http://eulerarchive.maa.org/pages/E026.html.
- [2] D. Hewgill, A relationship between Pascal's triangle and Fermat's numbers, *Fibonacci Quart.* 15 (1977), 183–184.
- [3] H. V. Krishna, On Mersenne and Fermat numbers, Math. Student **39** (1971), 51–52.
- [4] M. Křížek, F. Luca, and L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer, 2001.
- [5] F. Luca, Pascal's triangle and constructible polygons, Util. Math. 58 (2000), 209–214.
- [6] F. Luca, Fermat numbers in the Pascal triangle, *Divulg. Mat.* 9 (2001), 191–195.
- [7] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184–196, 197–240, 289–321.
- [8] P. Radovici-Mărculescu, Diophantine equations without solutions (Romanian), Gaz. Mat. Mat. Inform. 1 (1980), 115–117.
- [9] P. Yang and T. Cai, On the Diophantine equation $\binom{n}{k_1,\dots,k_s} = x^l$, Acta Arith. 151 (2012), 7–9.

2010 Mathematics Subject Classification: Primary 11D61; Secondary 11D72, 05A10. Keywords: Fermat number, multinomial coefficient.

(Concerned with sequence $\underline{A000215}$.)

Received January 19 2014; revised version received February 11 2014. Published in *Journal* of *Integer Sequences*, February 15 2014.

Return to Journal of Integer Sequences home page.