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Abstract

The Kepler-Bouwkamp constant is defined as the limit of radii of a sequence of con-
centric circles that are simultaneously inscribed in a regular n-gon and circumscribed
around a regular (n + 1)-gon for n ≥ 3. The outermost circle, circumscribed around
an equilateral triangle, has radius 1. We investigate what happens when the number
of sides of regular polygons from the definition is given by a sequence different from
the sequence of natural numbers.

1 Introduction

Take a unit circle and inscribe in it an equilateral triangle. Then inscribe a circle in that
triangle, and inscribe an equilateral triangle in that circle. Continue the procedure. It is a
high-school exercise to show that the sequence of radii of inscribed circles tends to zero as
1
2n
. The conclusion remains valid if we replace triangle with any other regular polygon, only

the rate of convergence is changed: For a regular m-gon, the radii tend to zero as
(

cos π
m

)n
.

But what happens with the limiting radius if the number of sides of inscribed polygons is
not constant? What if it increases so that the number of sides of n-th polygon is given as the
n-th element of a sequence (an) of non-negative integers that are all greater than two? For
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a given regular n-gon, the ratio of radii of its inscribed and its circumscribed circle is equal
to cos π

n
. Hence the answer to our question will be given as an infinite product

∏∞

an≥3 cos
π
an
.

When an = n, the answer is well known: The limiting radius is equal to the Kepler-
Bouwkamp constant ρ =

∏∞

n=3 cos
π
n

.
= 0.1149420448 ([4, p. 428]; see also [7, A085365]). To

the best of my knowledge, there is only one other sequence, the sequence of odd primes, for
which the answer was sought. Kitson [5] computed the limiting radius as ρP = 0.3128329295.
The quantities in question were also computed for a few other sequences, mostly of the form
n(n+1) for even and odd n, in a paper by Mathar [6], but they appear there as byproducts of
some other computations. The goal of this note is to investigate for which sequences is that
limit positive and to compute the limiting radii for several classes of combinatorial sequences.
The results might be useful in further investigation of problems arising in computational
geometry [6], and they might shed additional light on properties of integrals of the type
∫∞

0

∏n

k=0
sin(akx)

akx
dx [2]. They will also provide benchmarks for testing numerical methods for

efficient evaluation of slowly convergent infinite products and series [3].
In the rest of this paper we consider only (weakly) increasing sequences (an) of non-

negative integers. If a sequence has elements smaller than 3, we ignore them, along with the
corresponding terms in any expressions and formulas. We call such sequences admissible.
Whenever referring to a sequence that is not itself admissible, we mean its largest admissible
subsequence.

Let (an) be an admissible sequence. Its Kepler-Bouwkamp radius is denoted by κ(an)
and defined by

κ(an) =
∞
∏

n

cos
π

an
.

Hence, κ(n) = ρ, κ(pn) = ρP and κ(c) = 0 for any constant sequence an = c.

2 Growth rates and convergence

In this section we investigate under what conditions a combinatorial sequence has a positive
Kepler-Bouwkamp radius. We start by some elementary observations.

Proposition 1. Let (an) be an admissible sequence such that limn→∞ < ∞. Then κ(an) = 0.

Proof. If an admissible sequence is bounded, it must have a convergent subsequence. The
condition of integrality means that this subsequence must be constant. Then the infinite
product over that subsequence diverges toward zero and the claim follows.

Hence a sequence must grow without bounds to have a positive Kepler-Bouwkamp radius.
Any sequence growing faster that the sequence of natural numbers grows fast enough:

Proposition 2. Let an admissible sequence (an) be a subsequence of N. Then κ(an) > ρ > 0.

What about sequences growing slower than N? The following example shows that linear
growth, no matter how slow, still suffices for the positivity of κ(an).
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Proposition 3. Let (an) =
⌊

n
k

⌋

for a fixed k ≥ 2, n ≥ 3k. Then κ(an) = ρk.

Proof. It is enough to look at the case k = 2. Since each term in the product is repeated
twice, we have

κ
(⌊n

2

⌋)

=
∞
∏

n=3

(

cos
π

n

)2

=

(

∞
∏

n=3

cos
π

n

)2

= ρ2.

By the same reasoning we can conclude that the infinite product will converge for all
admissible sequences in which the number of repetitions of an element remains finite.

Proposition 4. Let (an) be an admissible sequence and let there be a k ∈ N such that no
element of N appears in (an) more than k times. Then κ(an) > ρk > 0.

What happens when the number of repetitions of an element grows without bounds? We
first consider a concrete example.

Proposition 5. κ(⌊√n⌋) = 0.

Proof. Let us look at the sequence ⌊√n⌋, i.e., to its admissible subsequence. It start with
seven 3’s, continues with nine 4’s, then eleven 5’s and so on. In general, an integer m appears
in it exactly 2m+ 1 times. Hence,

κ(
⌊√

n
⌋

) =
∞
∏

m=3

(

cos
π

m

)2m+1

= ρ

(

∞
∏

m=3

(

cos
π

m

)m

)2

.

Now, the above infinite product converges if and only if converges the series of its logarithms
∑∞

m=3 m ln cos π
m
. By expanding ln cos π

m
we obtain ln cos π

m
∼ − π2

2m2 , and then m ln cos π
m

∼
− π2

2m
. Hence the series diverges, and the infinite product goes to zero.

From the above example we can conclude that the infinite product will converge even
in cases when the number of repetitions grows without bounds, as long as the growth is
sublinear. The sequence ⌊√n⌋ is a limiting case – if a sequence (an) grows faster than ⌊√n⌋,
its Kepler-Bouwkamp radius will be positive. The following result summarizes our findings.

Theorem 6. κ(an) > 0 if and only if (an) grows faster than ⌊√n⌋.

3 Explicit formulas and (semi)numerical examples

In this section we consider some admissible sequences and compute their Kepler-Bouwkamp
radii. We start with a class of sequences for which it is possible to give explicit formulas. To
the best of my knowledge, the class is very narrow; it contains only integer multiples of the
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sequence of powers of two. Hence, all sequences of this class are of the type an = m · 2n for
some integer m. The result follows from a classical infinite product formula for sinc x.

The sinc function is defined by

sincx =

{

sinx
x
, if x 6= 0;

1, if x = 0;
.

The following infinite product representation of sincx was known already to Viète:

sincx =
∞
∏

n=1

cos
x

2n
.

It immediately yields formulas for the Kepler-Bouwkamp radius of an integer multiple of the
sequence of powers of two.

Theorem 7. κ(m · 2n) = sinc π
m
.

Here are the values for some small m.

Corollary 8.

κ(2 · 2n) = 2

π
; κ(3 · 2n) = 3

√
3

2π
; κ(4 · 2n) = 3

√
2

π
;

κ(5 · 2n) = 5
√

5−
√
5

2
√
2π

; κ(6 · 2n) = 3

π
.

Let us now look at a general admissible sequence (an) with κ(an) > 0. We follow, with
minor modifications, the approach outlined by Kitson [5]. First we take the logarithm of
both sides in the expression for κ(an),

lnκ(an) =
∑

n

ln cos
π

an
.

The summand ln cos π
an

can be expanded into a series

ln cos
π

an
= −

∞
∑

k=1

22k(22k − 1)

2k(2k)!
|B2k|

(

π

an

)2k

[1, Formula 4.3.72]. Here Bk denote the Bernoulli numbers. Their exponential generating
function is given by

∞
∑

k=0

Bkx
k

k!
=

x

ex − 1
.
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We have the following representation of even Bernoulli numbers:

B2k = (−1)k−1 2(2k)!

(2π)2k
ζ(2k)

[1, Formula 23.1.18]. It can be obtained by expanding Bernoulli polynomials Bn(x) into a
cosine Fourier series

B2k(x) = (−1)k−1 2(2k)!

(2π)2k

∞
∑

l=1

cos 2lπx

l2k

and substituting x = 0. When this is plugged into expansion of ln cos π
an

a lot of cancellation
occurs and we end with

ln cos
π

an
= −

∞
∑

k=1

22k − 1

k
ζ(2k)

1

a2kn
.

Now we can exchange the order of summation in the double sum for lnκ(an). We obtain

lnκ(an) = −
∞
∑

k=1

22k − 1

k
ζ(2k)

∑

n

1

a2kn
.

Here the interior sum runs over all n such that an ≥ 3. Hence, we have proved the following
result.

Theorem 9.

κ(an) = exp

(

−
∞
∑

k=1

22k − 1

k
ζ(2k)

∑

an≥3

a−2k
n

)

.

We see that all dependence on the sequence (an) is well isolated and contained in the sum
∑

an≥3 a
−2k
n . For some sequences that sum can be expressed in closed formulas in terms of k.

By plugging them into the formula from the above theorem, we obtain rapidly converging
expressions for κ(an); hence the (semi)numerical in the section title.

For an = n the sum can be expressed in terms of zeta function, taking into account the

corrections for terms smaller than 3:
∑

an≥3 n
−2k = 4k(ζ(2k)−1)−1

4k
. Similarly, Kitson used the

prime zeta function to express the analogous sum in [5]. Let us denote by Z(an) the sum
∑

an≥3 a
−2k
n for the sequence (an). In the following proposition we present the values of Z(an)

for several sequences that yield to this approach.

Proposition 10.

Z(2n) = 2−2k(ζ(2k)− 1);

Z(2n+ 1) = 2−2kζ(2k,
3

2
);

Z(m · n+ p) = m−2kζ(2k,
m+ p

m
) for m ≥ 3;

Z(nm) = ζ(2mk)− 1;

Z(mn) =
1

m2k − 1
for m ≥ 3.
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(Here ζ(2k, q) is the Hurwitz zeta function.)

The Kepler-Bouwkamp radii of several sequences now follow by plugging the above ex-
pressions into formula of Theorem 9 and evaluating the resulting sums.

Corollary 11.

κ(2n) = 0.4297802164;

κ(2n+ 1) = 0.2674437781;

κ(n2) = 0.6402929927;

κ(3n) = 0.4662745790.

Here are the Kepler-Bouwkamp radii of some sequences as reported in Mathar’s paper
[6].

Proposition 12.

κ(n(n+ 1)) = 0.8154881209;

κ((2n+ 1)(2n+ 2)) = 0.8373758680;

κ(pnpn+1) = 0.9729664541 for odd primes.

We conclude the paper by reporting the numerical values of Kepler-Bouwkamp radii for
several interesting combinatorial sequences.

Proposition 13.

κ(n!) = 0.8583138700;

κ((2n− 1)!!) = 0.4888521829;

κ((2n)!!) = 0.9218702724;

κ(nn) = 0.7022723378.

The class of sequences that allow the seminumerical approach is probably much wider
than reported here, but I am not aware of any simple way to decide if a given sequence
belongs to it.
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