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Abstract

Several types of infinite series are considered, which are defined by a fixed real

number α and the denominators and numerators of the convergents of α. In this

paper we restrict α to the irrational square roots of positive integers. We express the

corresponding error sums in terms of a finite number of convergents. It is shown that

an error sum formed by convergents with even indices takes only rational values. Two

applications for error sums with α =
√
5 and α =

√
2 are given, where the convergents

are composed of Lucas and Pell numbers, respectively.

1 Introduction and statement of the results

Let x = 〈a0, a1, a2, . . . , an, . . . 〉 be the regular continued fraction expansion of a real number
x. We denote the convergents of x by pm/qm = 〈a0, a1, a2, . . . , am〉 for m = 0, 1, . . . . During
the last few years, the author and his collaborators have investigated the error sum functions
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E(x) and E∗(x), defined by

E(x) =
∞
∑

m=0

∣

∣qmx− pm
∣

∣ =
∞
∑

m=0

(−1)m
(

qmx− pm
)

,

E∗(x) =
∞
∑

m=0

(

qmx− pm
)

in its various aspects. In the following we list the most striking results of previous papers.

1. [3, Theorem 1, Theorem 2]:

E
(

[0, 1]
)

=
[

0,
1 +

√
5

2

]

, E∗
(

[0, 1]
)

=
[

0, 1
]

.

2. [4, Theorem 5] and [6, Proposition 5.1]:

∫ 1

0

E(x) dx =
3ζ(2) log 2

2ζ(3)
− 5

8
,

∫ 1

0

E∗(x) dx =
3

8
,

where ζ(2) = π2/6 and ζ(3) are values of the Riemann zeta-function ζ(z).

3. [4, Theorem 2]: Both functions, E(x) and E∗(x), are continuous at every real irrational
point x, and discontinuous at rational points x.

4. [3, Theorem 3, Theorem 4]: For every modulo one uniformly distributed sequence
(xn)n≥0 of real numbers, the sequences

(

E(xn)
)

n≥0
and

(

E∗(xn)
)

n≥0
are not uniformly

distributed.

5. [2, p. 2]:

E(e) = 2e

∫ 1

0

exp(−t2) dt− e , E∗(e) = 2

∫ 1

0

exp(t2) dt− 2e+ 3 ,

where e = exp(1).

Even better a real number x can be approximated by convergents pm/qm with small subscripts
m, even smaller are the values of E(x) and E∗(x). To illustrate this fact by an example, we
compute E(

√
D) + E∗(

√
D) for D = a2 + 1 (a = 1, 2, . . . ) by using

√
a2 + 1 = 〈a, 2a 〉 and

Theorem 2 below:

E(
√
a2 + 1) + E∗(

√
a2 + 1) =

1

a
.
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We define four variants of the error sum functions E(x) and E∗(x) as follows:

E(x) =
1

2

(

E(x) + E∗(x)
)

=
∞
∑

m=0

(

q2mx− p2m
)

, (1)

E2(x) =
∞
∑

m=0

(

qmx− pm
)2

, (2)

EMC(x) = (x− a0) +
∞
∑

ν=1

∑

1≤b≤aν

∣

∣(bqν−1 + qν−2)x− (bpν−1 + pν−2)
∣

∣ , (3)

E∗
MC(x) = (x− a0) +

∞
∑

ν=1

∑

1≤b≤aν

(

(bqν−1 + qν−2)x− (bpν−1 + pν−2)
)

. (4)

The error sums EMC(x) and E∗
MC(x) are formed by taking all the minor convergents of x into

account. The series in (3) and (4) do not exist for every real number x, but they converge
at least for all quadratic irrationals x. In this paper we exclusively restrict x on square roots
of positive integers, which allows to express the error sums by finite expressions in terms of
pm and qm using the convergents p1/q1, . . . , p4k/q4k. Here, k is the length of the primitive
period of the continued fraction expansion

√
D = 〈a0, a1, . . . , ak 〉 . (5)

It is already known [2, Theorem 4] that E(x) and E∗(x) belong to the number fieldQ(x), when
x is a real algebraic number of degree two. Here, we give explicite formulas for E(

√
D) and

E∗(
√
D), which reveals some surprising connections between these numbers. For instance,

E(
√
D) is a rational number (see Theorem 2).

Theorem 1. Let D be a positive integer, but not a perfect square. Then we have the identities

E(
√
D) =

(

1 +
p2k−1

2Dq22k−1

(

(2p2k−1 + 1)
2k
∑

j=1

(−1)jqj −
2k
∑

j=1

(−1)jqj+2k

)

− 1

2Dq22k−1

4k
∑

j=1

(−1)jqj
)
√
D +

1

2q2k−1

(

(2p2k−1 + 1)
2k
∑

j=1

(−1)jqj

−
2k
∑

j=1

(−1)jqj+2k

)

− p0 ,

E∗(
√
D) =

(

1 +
p2k−1

2Dq22k−1

(

(2p2k−1 + 1)
2k
∑

j=1

qj −
2k
∑

j=1

qj+2k

)

− 1

2Dq22k−1

4k
∑

j=1

qj
)
√
D

+
1

2q2k−1

(

(2p2k−1 + 1)
2k
∑

j=1

qj −
2k
∑

j=1

qj+2k

)

− p0 .
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By ⌊x⌋ we denote the integer part of the positive real number x.

Theorem 2. Let D be a positive integer, but not a perfect square. Then we have the identity

E(
√
D) =

q2 + q4 + q6 + · · ·+ q4k
2p2k−1q2k−1

− Dq2k−1

p2k−1

− ⌊
√
D⌋ .

As already mentioned above, we have for real algebraic numbers x of degree two the
formulas E(x) = ω1 + ω3x and E∗(x) = ω2 + ω4x with suitable rationals ω1, ω2, ω3, and ω4.
For x =

√
D Theorem 2 immediately implies that ω3 = −ω4. It turns out that additionally

ω2 = 1 + ω1 holds. We summarize these facts as follows.

Theorem 3. Let D be a positive integer, but not a perfect square. Then there are rationals
ω0 and ω1 satisfying

E(
√
D) = ω1 + ω0

√
D ,

E∗(
√
D) = 1 + ω1 − ω0

√
D .

The convergents of
√
5 with even subscripts are formed by Lucas numbers Ln = Fn+1 +

Fn−1 (n = 0, 1, . . .), namely p2m = L6m+3/2, q2m = (L6m+2 + L6m+4)/10. The convergents of√
2 are constructed by Pell numbers, which are defined recursively by

P0 = 0 , P1 = 1 , Pn = 2Pn−1 + Pn−2 (n ≥ 2) .

For
√
2, we have pm = Pm + Pm+1, qm = Pm+1. Therefore, Theorem 2 gives the following

corollary.

Corollary 4. We have the identities

5

2
=

∞
∑

m=0

(

(L6m+2 + L6m+4)
√
5− 5L6m+3

)

,

1

2
=

∞
∑

m=0

(

P2m+1

√
2− P2m − P2m+1

)

.

The background of our results and their proofs is obviously formed by the theory of
regular continued fractions. We need various facts from the theory of linear recurrences,
and we apply results on solutions of Pell’s equation, for which we refer in Section 2 to
Perron’s classical monograph [5] on continued fractions. In Section 3 of this paper we prove
Theorem 1, and continue in Section 4 with the proof of Theorem 2 and the rational part
1 + ω1 in Theorem 3.
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By applying similar arguments, one can easily deduce the following identities for the
error sums EMC(

√
D), E∗

MC(
√
D), and E2(

√
D), which we state without proof. To simplify

the identities for EMC(
√
D) and E∗

MC(
√
D) we need two sequences of integers defined by

ω(1)
ν =

1

2
(1 + aν+1)aν+1 − aν+2 (ν ≥ 0) ,

ω(2)
ν =

1

2
(1 + aν+1)aν+1 + aν+2 (ν ≥ 0)

in terms of the partial quotients a1, a2, . . . from the continued fraction expansion (5) of
√
D.

Theorem 5. Let D be a positive integer, but not a perfect square. Moreover, let α :=
p2k−1 + q2k−1

√
D. Then we have the identities

EMC(
√
D) =

√
D − ⌊

√
D⌋+ a1 −

2α2
√
D

(α2 − 1)(α− 1)

2k−1
∑

j=0

(−1)j(αqj − qj+2k)ω
(1)
j ,

E∗
MC(

√
D) =

√
D − ⌊

√
D⌋ − a1 +

2α2
√
D

(α2 − 1)(α− 1)

2k−1
∑

j=0

(αqj − qj+2k)ω
(2)
j .

Theorem 6. Let D be a positive integer, but not a perfect square. Moreover, let α :=
p2k−1 + q2k−1

√
D. Then we have the identity

E2(
√
D) =

(
√
D − ⌊

√
D⌋

)2
+

α4

(α2 − 1)3

2k
∑

j=1

(

(αpj − pj+2k)− (αqj − qj+2k)
√
D
)2

.

The Appendix consists of tables for values of all above mentioned error sums at the points√
D.

2 Auxiliary results

Our results rely on certain identities involving only a finite number of convergents of
√
D.

These relations are established in Lemma 8.

Lemma 7. Let D be a positive integer, but not a perfect square. Moreover, let k be the
primitive period of the continued fraction expansion (5) of

√
D, and let 1 ≤ j ≤ k. Then,

both sequences (pj+2kn)n≥0 and (qj+2kn)n≥0, satisfy the linear recurrence formula

uj+2kn = 2p2k−1uj+2k(n−1) − uj+2k(n−2) (n ≥ 2) .

5



Proof. We prove a slightly stronger result. Let pm/qm with m ≥ 0 denote the convergents
of a quadratic irrational number x = 〈a0, a1, . . . , ar 〉, where r is a multiple of the length of
the primitive period. By zn we denote either zn = pj+rn or zn = qj+rn with 0 ≤ j < k and
n ≥ 0. Elsner and Komatsu [1, Corollary 1] showed that there is a positive integer d, such
that the numbers from the sequence (zn)n≥0 satisfy the linear recurrence formula

zn = dzn−1 + (−1)r−1zn−2 (n ≥ 2) . (6)

The first step in the proof is to show that the coefficient d on the right-hand side of (6)
does not depend on j and not on the particular numbers pj+rn or qj+rn under consideration.
Let d = d(j) be the coefficient in (6) according to the numbers zn := pj+rn with n ≥ 0,
0 ≤ j < r − 1, and r > 1 (There is nothing to prove for r = 1). Then there are real
parameters C1 > 0, C2, and α, β, satisfying

zn = C1α
n + C2β

n (n ≥ 0) ,

where α and β are the roots of the characteristic polynomialX2−dX+(−1)r of the recurrence
formula (6). α and β are given by

α =
d

2
+

√

d2

4
+ (−1)r−1 and β =

d

2
−

√

d2

4
+ (−1)r−1 .

This implies
α > 1 , −1 < β < 1 , αβ = (−1)r . (7)

Next we consider the numbers

zn := pj+1+rn (n ≥ 0) ,

where j + 1 < r holds by our condition on j and r. For r > 1 we have the inequalities

zn < zn < zn+1 (n ≥ 0) . (8)

Repeating the above arguments for the numbers zn, we find real parameters C3 > 0, C4,
α0 > 1 and −1 < β0 < 1, satisfying

zn = C3α0
n + C4β0

n (n ≥ 0) .

Case 1: Let α0 > α. From βn → 0 and βn
0 → 0 we conclude that for all sufficiently large

integers n the inequality

zn = C3α0
n + C4β0

n > C1α
n+1 + C2β

n+1 = zn+1

contradicts the right-hand inequality in (8).
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Case 2: Let α0 < α. But this assumption is incompatible with the left-hand inequality
of (8), since all sufficiently large integers n give

zn = C3α0
n + C4β0

n < C1α
n + C2β

n = zn .

Hence α0 = α. Since β0 and β are the algebraic conjugates of α0 and α, respectively, they
are uniquely determined by α0 and α. It follows that β0 = β. This proves that the numbers
from both sequences pj+rn = C1α

n+C2β
n and pj+1+rn = C3α

n+C4β
n satisfy the same linear

recurrence formula (6). The arguments can be repeated for the numbers qj+rn and qj+1+rn.
Therefore the coefficient d in (6) depends at most on D. Let us return to the continued
fraction expansion

√
D = 〈a0, a1, . . . , ak 〉 from (5). The above number r can be restricted to

an arbitrary multiple of k. Let r = 2k, which rely on
√
D = 〈a0, a1, . . . , ak, ak+1, . . . , a2k 〉.

Lemma 7 is either applied to the numbers zn = pj+2kn (n ≥ 0) or to the numbers zn = qj+2kn

(n ≥ 0), where 1 ≤ j ≤ k. With uj+2kn replaced by zn, we use (6) with r = 2k to fix some
positive integer d independently from j such that

zn = dzn−1 − zn−2 (n ≥ 2) . (9)

To compute d, we deduce the recurrence formula for the numbers Pn := p(2k−1)+2k(n−1) =
p2kn−1 (n ≥ 1) and for Qn := q(2k−1)+2k(n−1) = q2kn−1 (n ≥ 1). For our arguments see the
book of Perron [5, § 27]. It is well-known that X = Pn and Y = Qn satisfy Pell’s equation
X2 −DY 2 = 1. Then, setting

α = p2k−1 + q2k−1

√
D ,

β = p2k−1 − q2k−1

√
D ,

we have the formula

Pn +Qn

√
D =

(

P1 +Q1

√
D
)n

= αn (n ≥ 1) ,

which is satisfied by

Pn =
1

2

(

αn + βn
)

and Qn =
1

2
√
D

(

αn − βn
)

(n ≥ 1) . (10)

Therefore we find

p22k−1 − 1 = Dq22k−1

⇐⇒ 2p22k−1 ± 2p2k−1q2k−1

√
D − 1 = p22k−1 ± 2p2k−1q2k−1

√
D +Dq22k−1

⇐⇒ 2p2k−1

(

p2k−1 ± q2k−1

√
D
)

− 1 =
(

p2k−1 ± q2k−1

√
D
)2

⇐⇒ 2p2k−1α− 1 = α2 and 2p2k−1β − 1 = β2 .

Hence,

2p2k−1α
n−1 − αn−2 = αn (n ≥ 2) , (11)

2p2k−1β
n−1 − βn−2 = βn (n ≥ 2) . (12)
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Summing up (11) and (12), we obtain

2p2k−1

(

αn−1 ± βn−1
)

− (αn−2 ± βn−2) = αn ± βn (n ≥ 2) .

Consequently we find by (10) (with the upper signs) Pn = 2p2k−1Pn−1 − Pn−2 and (with the
lower signs) Qn = 2p2k−1Qn−1 − Qn−2 for n ≥ 2. This shows that d equals 2p2k−1 in (9),
which completes the proof of Lemma 7.

Lemma 8. Let D be a positive integer, but not a perfect square. Moreover, let k be the
primitive period of the continued fraction expansion (5) of

√
D. Then we have the identities

p2k−1 + q2k−1

√
D =

∑2k
j=1

(

qj+2k

√
D + pj+2k

)

∑2k
j=1

(

qj
√
D + pj

) , (13)

p2k−1 − 1

q2k−1

=

∑k

j=1 p2j

2 +
∑k

j=1 q2j
, (14)

p2k−1 + 1

q2k−1

=
1 +

∑k

j=1 p2j−1
∑k

j=1 q2j−1

. (15)

Proof. Replacing k by 2k and ν by j + 1, the formulas

Aν+k−1 = Bν−1DBk−1 + Aν−1Ak−1 , (16)

Bν+k−1 = Bν−1Ak−1 + Aν−1Bk−1 (17)

from page 94 in [5, §28] turn into

pj+2k = p2k−1pj +Dq2k−1qj (j ≥ 0) , (18)

qj+2k = p2k−1qj + q2k−1pj (j ≥ 0) . (19)

Adding up from j = 1 to j = 2k, we obtain

p2k−1

2k
∑

j=1

pj +Dq2k−1

2k
∑

j=1

qj =
2k
∑

j=1

pj+2k ,

p2k−1

2k
∑

j=1

qj + q2k−1

2k
∑

j=1

pj =
2k
∑

j=1

qj+2k .

Next, we multiply the second equation by
√
D and then add the first equation.

p2k−1

2k
∑

j=1

qj
√
D + q2k−1

√
D

2k
∑

j=1

pj + p2k−1

2k
∑

j=1

pj + q2k−1

√
D

2k
∑

j=1

qj
√
D

=
2k
∑

j=1

qj+2k

√
D +

2k
∑

j=1

pj+2k .
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This identity can be transformed into

(p2k−1 + q2k−1

√
D)

2k
∑

j=1

(qj
√
D + pj) =

2k
∑

j=1

(qj+2k

√
D + pj+2k) ,

which is equivalent with (13).
To prove (14) and (15), we adapt the notation introduced by Perron [5] concerning

regular continued fractions. Let α = α0 = 〈a0, a1, a2, . . .〉 be a regular continued fraction.
By pm = pm,0 = pm(α0) and qm = qm,0 = qm(α0) we denote the numerator and denominator,
respectively, of the mth convergent. Next, let

αr := 〈ar, ar+1, ar+2, . . .〉 (r ≥ 0) .

Numerators and denominators of the mth convergent of αr are denoted by pm,r = pm(αr)
and qm,r = qm(αr), respectively. For every r ≥ 0 we have the identity

α = 〈a0, a1, a2, . . . , ar−1, αr〉 .

Later we shall take advantage of the very important formula

pνqµ − pµqν = (−1)µqν−µ−1,µ+1 (ν ≥ µ ≥ 0) , (20)

see [5, § 6, (3)]. For the proof of (14) we need two additional identities (see Lemmas 9 and
10 below).

Lemma 9. Let D be a positive integer, but not a perfect square. Moreover, let k be the
primitive period of the continued fraction expansion (5) of

√
D. Then, for k ≥ 2, we have

the identity
k−2
∑

j=0

q2j =
k−2
∑

j=0

q2k−2j−4,2j+3 .

Proof. By
pn
qn

= 〈a0, a1, . . . , an〉

we denote the regular continued fraction expansion of the rational number pn/qn. Since pn
and qn are coprime, we have, on the one hand, the formula

qn(〈a0, a1, . . . , an〉) = qn .

It is well-known that for n ≥ 1 the identity

qn
qn−1

= 〈an, an−1, . . . , a2, a1〉

9



holds [5, § 11, (3)], such that for every integer b0 we deduce, on the other hand,

qn(〈b0, an, an−1, . . . , a2, a1〉) = qn(b0 +
1

〈an, an−1, . . . , a2, a1〉
) = qn

(

b0 +
qn−1

qn

)

= qn ,

since qn−1 and qn are coprime, too. Altogether we have shown for n ≥ 1 that

qn = qn(〈a0, a1, a2, . . . an−1, an〉) = qn(〈b0, an, an−1, . . . , a2, a1〉) (a0, b0 ∈ Z) . (21)

Now we prove the formula

q2j = q2j,2(k−j)−1 (0 ≤ j ≤ k − 2) . (22)

For j = 0 this reads 1 = q0 = q0,2k−1 = 1, so that we may assume j ≥ 1. Perron [5, § 24,
Satz 3.9] showed that the regular continued fraction expansion of

√
D has a symmetric form:

√
D = 〈a0, a1, a2, . . . , ar−1, ar, ar−1, . . . , a2, a1, ak 〉

for even k (where r = k/2), and

√
D = 〈a0, a1, a2, . . . , ar, ar, . . . , a2, a1, ak 〉

for odd k (where r = (k − 1)/2). Independently of the parity of k there is a symmetric
arrangement around every partial quotient ak, a2k, a3k, . . .. In particular, around a2k we
have

a2k+ν = a2k−ν = aν (ν = 1, 2, . . . , 2k − 1) . (23)

On the one hand, it is clear for j ≥ 1 that

q2j = q2j,0 = q2j(〈a0, a1, a2, . . . , a2j〉) , (24)

holds. On the other hand, we deduce the following equations for 1 ≤ j ≤ k − 2.

q2j,2(k−j)−1 = q2j(〈a2k−2j−1, a2k−2j , a2k−2j+1, . . . , a2k−2, a2k−1〉)
= q2j(〈a2j+1, a2j , a2j−1, . . . , a2, a1〉) , (25)

where the last identity relies on (23). Applying (21) (with n = 2j ≥ 2 and b0 = a2j+1) to the
representations of q2j and q2j,2(k−j)−1 from (24) and (25), respectively, we finish the proof of
(22). Then we obtain

k−2
∑

j=0

q2j =
k−2
∑

j=0

q2j,2k−2j−1 =
k−2
∑

j=0

q2k−2(k−2−j)−4,2(k−2−j)+3 =
k−2
∑

j=0

q2k−2j−4,2j+3 ,

which completes the proof of Lemma 9.
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Lemma 10. Let D be a positive integer, but not a perfect square. Moreover, let k be the
primitive period of the continued fraction expansion (5) of

√
D. Then we have the identity

q2k−2 + q2k = 2p2k−1 .

Proof. Applying (19) with j = 0, and taking into account that q0 = 1 and p0 = a0, we obtain

q2k = p2k−1 + a0q2k−1 . (26)

Additionally we express q2k by the basic recurrence formula

q2k = a2kq2k−1 + q2k−2 .

Taking (26) into account, this gives

q2k−2 = q2k − a2kq2k−1 = p2k−1 + a0q2k−1 − a2kq2k−1 = p2k−1 + (a0 − a2k)q2k−1 .

We know [5, § 24] that ak = 2a0 = 2⌊
√
D⌋ holds for ak in (5). Hence, a0 − a2k = a0 − ak =

a0 − 2a0 = −a0, which yields
q2k−2 = p2k−1 − a0q2k−1 .

Adding (26), we obtain the desired identity q2k−2 + q2k = 2p2k−1 in Lemma 10.

We continue proving (14). First, let k = 1. Then, (14) is equivalent with 2p1 − q2 − 2 =
q1p2 − p1q2 = −1, or 2p1 = q0 + q2. This holds by Lemma 10. In the following we may
assume k ≥ 2. With Lemma 9, Lemma 10, and q0 = 1, we obtain, step by step,

1 +
k−1
∑

j=1

q2k−2j−2,2j+1 = 1 +
k−2
∑

j=0

q2k−2j−4,2j+3 = 1− q2k−2 − q2k +
k

∑

j=0

q2j

= 1− 2p2k−1 +
k

∑

j=0

q2j = 2− 2p2k−1 +
k

∑

j=1

q2j .

On the left-hand side we express 1 by p2k−1q2k − p2kq2k−1 and the terms of the sum by (20)
with ν = 2k − 1, µ = 2j. This gives the identity

p2k−1

k
∑

j=1

q2j − q2k−1

k
∑

j=1

p2j = 1 +
k−1
∑

j=1

(p2k−1q2j − p2jq2k−1) = 2− 2p2k−1 +
k

∑

j=1

q2j ,

which is equivalent with (14). It remains to prove (15), which (similar to (22)) relies on the
basic identity

q2j−1 = q2j−1,2(k−j) (1 ≤ j ≤ k − 1) . (27)

11



Instead of (24) we have for j ≥ 1 that

q2j−1 = q2j−1,0 = q2j−1(〈a0, a1, a2, . . . , a2j−1〉) .

For 1 ≤ j ≤ k − 1 we replace (25) by

q2j−1,2(k−j) = q2j−1(〈a2k−2j, a2k−2j+1, a2k−2j+2, . . . , a2k−2, a2k−1〉)
= q2j−1(〈a2j, a2j−1, a2j−2, . . . , a2, a1〉) ,

where again (23) is taken into account. Finally, these results are combined by (21), which is
applied with n = 2j − 1 ≥ 1 and b0 = a2j. Thus,

q2j−1,2(k−j) = q2j−1(〈a0, a1, a2, . . . , a2j−1〉) = q2j−1 (1 ≤ j ≤ k − 1) .

This proves (27). Hence, it follows by (27) that

q2k−1 = q2k−1 +
k−1
∑

j=1

(q2j−1 − q2j−1,2(k−j))

= q2k−1 +
k−1
∑

j=1

q2j−1 −
k−1
∑

j=1

q2k−2(k−j)−1,2(k−j)

= q2k−1 +
k−1
∑

j=1

q2j−1 −
k−1
∑

j=1

q2k−2j−1,2j

=
k

∑

j=1

q2j−1 −
k

∑

j=1

q2k−2j−1,2j .

For the last equation we recall the formula q−1,2k = q−1 = 0. We express the terms of the
right-hand sum by (20), where we set ν = 2k − 1 and µ = 2j − 1. This gives

p2k−1q2j−1 − p2j−1q2k−1 = −q2k−2j−1,2j (1 ≤ j ≤ k) .

Hence we have

q2k−1 =
k

∑

j=1

q2j−1 + p2k−1

k
∑

j=1

q2j−1 − q2k−1

k
∑

j=1

p2j−1 ,

which is equivalent with (15). This completes the proof of Lemma 8.

3 Proof of Theorem 1

Proof of Theorem 1. The characteristic equation of the recurrence formula in Lemma 7 is
given by

z2 − 2p2k−1z + 1 = 0 .

12



We denote the roots of this equation by α and β, where α > β. In particular,

α = p2k−1 +
√

p22k−1 − 1 . (28)

X := p2k−1 and Y := q2k−1 form a solution of Pell’s equation X2 − DY 2 = 1 [5, §27,
Satz 3.18]. Therefore, (28) simplifies to

α = p2k−1 + q2k−1

√
D . (29)

The second zero β of the characteristic polynomial is

β = p2k−1 − q2k−1

√
D =

1

p2k−1 + q2k−1

√
D

=
1

α
.

Hence, by Lemma 7, we have the explicit formula

uj+2kn = C1α
n +

C2

αn
(n ≥ 0) , (30)

where the constants C1 and C2 only depend on the first and second term pj, pj+2k or qj, qj+2k,
respectively, of the sequence (uj+2kn)n≥0. To compute C1 and C2 we solve the linear system
of equations,

A = C1 + C2 ,

B = C1α +
C2

α
,

for C1 and C2. We obtain

C1 = (αB − A)
1

α2 − 1
,

C2 = (αA−B)
α

α2 − 1
.

Substituting A = pj, B = pj+2k for n = 0 and n = 1 into (30), we find the values of C1

and C2 for the sequence (pj+2kn)n≥0. Similarly we obtain the constants for (qj+2kn)n≥0 by
choosing A = qj, B = qj+2k. The resulting explicit formulas are

pj+2kn = (αpj+2k − pj)
αn

α2 − 1
+ (αpj − pj+2k)

α

αn(α2 − 1)
, (31)

qj+2kn = (αqj+2k − qj)
αn

α2 − 1
+ (αqj − qj+2k)

α

αn(α2 − 1)
. (32)

These formulas will be used to transform the error sums into geometric series. To shorten
the proofs of the two identities in Theorem 1, we introduce the notation E (1) := E∗ and
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E (−1) := E . Then, for s = ±1, we have

E (s)(
√
D) =

∞
∑

m=0

sm(qm
√
D − pm) =

√
D − p0 +

∞
∑

n=0

2k
∑

j=1

sj+2kn(qj+2kn

√
D − pj+2kn)

=
√
D − p0 +

∞
∑

n=0

2k
∑

j=1

sj
(
√
D(αqj+2k − qj)

αn

α2 − 1
+
√
D(αqj − qj+2k)

α

αn(α2 − 1)

−(αpj+2k − pj)
αn

α2 − 1
− (αpj − pj+2k)

α

αn(α2 − 1)

)

=
√
D − p0 +

2k
∑

j=1

sj
(
√
D(αqj+2k − qj)− (αpj+2k − pj)

)

∞
∑

n=0

αn

α2 − 1
(33)

+
2k
∑

j=1

sj
(
√
D(αqj − qj+2k)− (αpj − pj+2k)

)

∞
∑

n=0

α

αn(α2 − 1)
. (34)

The underlying concept for the formulas in Theorem 1 appears through the above sums
where j runs from 1 to 2k: Here we do not consider a primitive period of the continued
fraction expansion (5) of

√
D, but we combine two primitive periods to a period of length

2k, i.e., we use the expansion
√
D = 〈a0, a1, a2, . . . , a2k 〉. It follows from α > 1 that the

coefficient of the infinite series in (33) vanishes, since E (s)(
√
D) exists, while the second series

in (34) converges. Hence,

2k
∑

j=1

sj
(
√
D(αqj+2k − qj)− (αpj+2k − pj)

)

= 0 .

The left-hand side of (13) can be denoted by α using (29). An equivalent version of (13) is

2k
∑

j=1

√
D(αqj − qj+2k) = −

2k
∑

j=1

(αpj − pj+2k) .

This equation simplifies the coefficient of the infinite series in (34). Thus we obtain

E (s)(
√
D) =

√
D − p0 +

2k
∑

j=1

2sj
√
D(αqj − qj+2k)

∞
∑

n=0

α

αn(α2 − 1)

=
√
D − p0 + 2

√
D

α2

(α2 − 1)(α− 1)

2k
∑

j=1

sj(αqj − qj+2k) . (35)

Set d := 2p2k−1. The equations

α2

(α2 − 1)(α− 1)
=

α + 1

d2 − 4
,

α3

(α2 − 1)(α− 1)
=

(d+ 1)α− 1

d2 − 4

14



are a consequence of the algebraic identity α2 − dα + 1 = 0. Substituting into (35) and
replacing α by (29), we get

E (s)(
√
D) =

√
D − p0 + 2

√
D

2k
∑

j=1

sj
(d+ 1)α− 1

d2 − 4
qj − 2

√
D

2k
∑

j=1

sj
α + 1

d2 − 4
qj+2k

=
√
D − p0 +

2α
√
D(d+ 1)

d2 − 4

2k
∑

j=1

sjqj −
2
√
D

d2 − 4

2k
∑

j=1

sjqj −
2α

√
D

d2 − 4

2k
∑

j=1

sjqj+2k

− 2
√
D

d2 − 4

2k
∑

j=1

sjqj+2k

=
√
D − p0 +

2(d+ 1)

d2 − 4
(p2k−1

√
D + q2k−1D)

2k
∑

j=1

sjqj

− 2

d2 − 4
(p2k−1

√
D + q2k−1D)

2k
∑

j=1

sjqj+2k −
2
√
D

d2 − 4

2k
∑

j=1

sj(qj + qj+2k)

=
(

1 +
d

d2 − 4

(

(d+ 1)
2k
∑

j=1

sjqj −
2k
∑

j=1

sjqj+2k

)

− 2

d2 − 4

4k
∑

j=1

sjqj
)
√
D

+
2Dq2k−1

d2 − 4

(

(d+ 1)
2k
∑

j=1

sjqj −
2k
∑

j=1

sjqj+2k

)

− p0 .

With
d

d2 − 4
=

p2k−1

2Dq22k−1

,
2

d2 − 4
=

1

2Dq22k−1

,
2Dq2k−1

d2 − 4
=

1

2q2k−1

,

we finally obtain for s = ±1 the two identities stated in Theorem 1.

4 Proof of Theorem 2 and Theorem 3

Proof of Theorem 2. For any function f : N → N and any positive integer m the identities

2m
∑

j=1

(−1)jf(j)+
2m
∑

j=1

f(j) = 2
m
∑

j=1

f(2j) ,
2m
∑

j=1

f(j)−
2m
∑

j=1

(−1)jf(j) = 2
m
∑

j=1

f(2j−1) (36)
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hold obviously. We use the left-hand formula when we add the equations from Theorem 1.
Thus we obtain

E(
√
D) =

1

2

(

E(
√
D) + E∗(

√
D)

)

=
(

1 +
p2k−1

2Dq22k−1

(

(2p2k−1 + 1)
k

∑

j=1

q2j −
k

∑

j=1

q2j+2k

)

− 1

2Dq22k−1

2k
∑

j=1

q2j
)
√
D

+
1

2q2k−1

(

(2p2k−1 + 1)
k

∑

j=1

q2j −
k

∑

j=1

q2j+2k

)

− p0 . (37)

To prove the vanishing of the irrational part, we have to show the following identity:

2Dq22k−1 + p2k−1

(

(2p2k−1 + 1)
k

∑

j=1

q2j −
k

∑

j=1

q2j+2k

)

−
2k
∑

j=1

q2j = 0 . (38)

Noting that p22k−1 −Dq22k−1 = 1, we obtain

p2k−1 − 1

q2k−1

=
p22k−1 − 1

q2k−1(1 + p2k−1)
=

Dq2k−1

1 + p2k−1

.

Hence, equation (14) in Lemma 8 takes the form

Dq2k−1

1 + p2k−1

=

∑k

j=1 p2j

2 +
∑k

j=1 q2j
.

Then,

2Dq22k−1 = −Dq22k−1

k
∑

j=1

q2j + q2k−1(1 + p2k−1)
k

∑

j=1

p2j

=
k

∑

j=1

q2j − p22k−1

k
∑

j=1

q2j + q2k−1

k
∑

j=1

p2j + p2k−1q2k−1

k
∑

j=1

p2j

=
k

∑

j=1

q2j + p2k−1

k
∑

j=1

q2j + q2k−1

k
∑

j=1

p2j − p2k−1

(

(2p2k−1 + 1)
k

∑

j=1

q2j

− p2k−1

k
∑

j=1

q2j − q2k−1

k
∑

j=1

p2j
)

.
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We replace j by 2j in (19). Hence q2j+2k = p2k−1q2j + q2k−1p2j, which simplifies the above
formula by

2Dq22k−1 =
k

∑

j=1

q2j +
k

∑

j=1

q2j+2k − p2k−1

(

(2p2k−1 + 1)
k

∑

j=1

q2j −
k

∑

j=1

q2j+2k

)

=
2k
∑

j=1

q2j − p2k−1

(

(2p2k−1 + 1)
k

∑

j=1

q2j −
k

∑

j=1

q2j+2k

)

,

which is equivalent with (38). An equivalent version of (38) is

(2p2k−1 + 1)
k

∑

j=1

q2j −
k

∑

j=1

q2j+2k =
1

p2k−1

2k
∑

j=1

q2j −
2Dq22k−1

p2k−1

,

which transforms (37) into

E(
√
D) =

1

2q2k−1

(

(2p2k−1 + 1)
k

∑

j=1

q2j −
k

∑

j=1

q2j+2k

)

− p0

=
1

2p2k−1q2k−1

2k
∑

j=1

q2j −
Dq2k−1

p2k−1

− ⌊
√
D⌋ .

This completes the proof of Theorem 2.

Proof of Theorem 3. It was already mentioned in Section 1 that for E(
√
D) = ω1 + ω3

√
D

and E∗(
√
D) = ω2 + ω4

√
D the relation ω3 = −ω4 is an easy consequence of the rationality

of E(
√
D). To complete the proof of Theorem 3, it remains to show the relation ω2 = 1+ω1.

We take the expressions for ω2 and ω1 from Theorem 1 and apply the right-hand formula in
(36). This gives

ω2 − ω1 :=
1

2q2k−1

(

(2p2k−1 + 1)
2k
∑

j=1

qj −
2k
∑

j=1

qj+2k

)

− 1

2q2k−1

(

(2p2k−1 + 1)
2k
∑

j=1

(−1)jqj −
2k
∑

j=1

(−1)jqj+2k

)

=
1

q2k−1

(

(2p2k−1 + 1)
k

∑

j=1

q2j−1 −
k

∑

j=1

q2j+2k−1

)

.

Replacing k by 2k and ν by 2j in (17), we obtain the formula

q2j+2k−1 = q2j−1p2k−1 + p2j−1q2k−1 (1 ≤ j ≤ k) .
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Hence,

q2k−1(ω2 − ω1) = (2p2k−1 + 1)
k

∑

j=1

q2j−1 − p2k−1

k
∑

j=1

q2j−1 − q2k−1

k
∑

j=1

p2j−1

=
k

∑

j=1

(p2k−1q2j−1 − q2k−1p2j−1) +
k

∑

j=1

q2j−1

= q2k−1 .

The last identity is a consequence of (15) in Lemma 8. It follows that ω2 − ω1 = 1, which
completes the proof of Theorem 3.

5 Appendix

It is easy to compute the error sums E(
√
D), E∗(

√
D), and E(

√
D) by MAPLE using ad-

ditionally the identities from Theorem 1 and Theorem 2. Table 1 shows their values for
D = 2, 3, 5, 6, . . . , 20, D = 1000, and D = 4729494. For D = 1000 the complete regular
continued fraction of

√
1000 is given by

√
1000 = 〈31, 1, 1, 1, 1, 1, 6, 2, 2, 15, 2, 2, 6, 1, 1, 1, 1, 1, 62 〉 .

The square root of D = 4729494 plays an important role in solving Archimedes’ cattle
problem [7]. Here we obtain the error sum values

E(
√
D) =

20188024581818087903

42064753838929196629
+

60164573624755981416
√
4729494

163337439156562070510407
,

E∗(
√
D) =

62252778420747284532

42064753838929196629
− 60164573624755981416

√
4729494

163337439156562070510407
.

The results of the computations with D = 1000 and D = 4729494 reveal a general phe-
nomenon: numerators and denominators of the rationals ω1 and ω0 in E(

√
D) = ω1 +ω0

√
D

are significantly smaller than the denominators qν appearing in the formulas of Theorem 1.
For instance, for D = 4729494, we have

q4k = q368 = 2.3363 . . . · 10177 .

Similarly we compute the values of EMC(
√
D), E∗

MC(
√
D), and E2(

√
D) with the identities

from Theorem 5 and Theorem 6, respectively (Table 2).
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D
√
D k E(

√
D) E∗(

√
D) E(

√
D)

2 〈1, 2 〉 1

√
2

2
1−

√
2

2

1

2

3 〈1, 1, 2 〉 2
1

2
+

√
3

2

3

2
−

√
3

2
1

5 〈2, 4 〉 1 −1

4
+

√
5

4

3

4
−

√
5

4

1

4

6 〈2, 2, 2, 4 〉 2

√
6

4
1−

√
6

4

1

2

7 〈2, 1, 1, 1, 4 〉 4
1

2
+

5
√
7

14

3

2
− 5

√
7

14
1

8 〈2, 1, 4 〉 2
1

2
+

√
2

2

3

2
−

√
2

2
1

10 〈3, 6 〉 1 −1

3
+

√
10

6

2

3
−

√
10

6

1

6

11 〈3, 3, 6 〉 2 −1

6
+

√
11

6

5

6
−

√
11

6

1

3

12 〈3, 2, 6 〉 2

√
3

3
1−

√
3

3

1

2

13 〈3, 1, 1, 1, 1, 6 〉 5
13

36
+

11
√
13

36

49

36
− 11

√
13

36

31

36

14 〈3, 1, 2, 1, 6 〉 4
1

2
+

3
√
14

14

3

2
− 3

√
14

14
1

15 〈3, 1, 6 〉 2
1

2
+

√
15

6

3

2
−

√
15

6
1

17 〈4, 8 〉 1 −3

8
+

√
17

8

5

8
−

√
17

8

1

8

18 〈4, 4, 8 〉 2 −1

4
+

3
√
2

8

3

4
− 3

√
2

8

1

4

19 〈4, 2, 1, 3, 1, 2, 8 〉 6 − 1

26
+

5
√
19

26

25

26
− 5

√
19

26

6

13

20 〈4, 2, 8 〉 2

√
5

4
1−

√
5

4

1

2

1000 〈31, 1, . . . , 62 〉 18
4351

8886
+

965
√
10

2962

13237

8886
− 965

√
10

2962

4397

4443

4729494 〈2174, 1, . . . , 4348 〉 92 . . . . . .
82440803002565372435

84129507677858393258

Table 1
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D
√
D k EMC(

√
D) E∗

MC(
√
D) E2(

√
D) +

1

2

2 〈1, 2 〉 1 1 +

√
2

2
2− 3

√
2

2

√
2

2

3 〈1, 1, 2 〉 2 2 3−
√
3

2
√
3

3

5 〈2, 4 〉 1
7

2
−

√
5

2

9

2
− 5

√
5

2

√
5

4

6 〈2, 2, 2, 4 〉 2
9

2
−
√
6

11

2
− 2

√
6

7
√
6

24

7 〈2, 1, 1, 1, 4 〉 4 5− 8
√
7

7
6− 13

√
7

7

3
√
7

7

8 〈2, 1, 4 〉 2
13

2
− 5

√
2

2

15

2
− 7

√
2

2

7
√
2

8

10 〈3, 6 〉 1 8− 3
√
10

2
9− 7

√
10

2

√
10

6

11 〈3, 3, 6 〉 2 9− 2
√
11 10− 3

√
11

2
√
11

11

12 〈3, 2, 6 〉 2 10− 13
√
3

3
11− 17

√
3

3

5
√
3

12

13 〈3, 1, 1, 1, 1, 6 〉 5
169

18
− 37

√
13

18

187

18
− 53

√
13

18

11
√
13

36

14 〈3, 1, 2, 1, 6 〉 4 11− 16
√
14

7
12− 19

√
14

7

5
√
14

16

15 〈3, 1, 6 〉 2 13− 7
√
15

3
14− 8

√
15

3

√
15

3

17 〈4, 8 〉 1
29

2
− 5

√
17

2

31

2
− 9

√
17

2

√
17

8

18 〈4, 4, 8 〉 2
31

2
− 9

√
2

33

2
− 12

√
2

19
√
2

48

19 〈4, 2, 1, 3, 1, 2, 8 〉 6
199

13
− 40

√
19

13

212

13
− 51

√
19

13

122
√
19

741

20 〈4, 2, 8 〉 2
35

2
− 13

√
5

2

37

2
− 15

√
5

2

13
√
5

40

1000 〈31, 1, . . . , 62 〉 18
8577575

8886
− 2707235

√
10

8886

8586461

8886
− 2713225

√
10

8886

88525597
√
10

249696600

Table 2
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