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Abstract

In this paper we extend the definition of Stirling numbers of the first kind by way

of a special multiset. This results in a family of number triangles for which we show

how to obtain ordinary generating functions for the rows and exponential generating

functions for the columns. The latter are derived via a recursive process. We also

indicate how to obtain formulas, in terms of factorials, generalized harmonic numbers,

and polynomials, for the entries in the columns of these number triangles.

1 Introduction

Stirling numbers of the first kind may most easily be visualized by way of a scenario involving
n people sitting at k circular tables, subject to the condition that each table is occupied by
at least one person. Assuming the tables to be indistinguishable from one another, we
enumerate all possible arrangements of n people at these tables, where, rather than being
concerned with the actual seat an individual sits on, we are interested merely in who is
sitting with whom on a particular table, and in who is sitting next to who (distinguishing
between left and right). The number of such arrangements is given by the Stirling number
of the first kind s(n, k). More formally, we have the following:

Definition 1. The Stirling number of the first kind s(n, k) is defined to be the number of
permutations of n distinct elements comprising exactly k disjoint cycles. We set s(0, 0) = 1.
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From this definition it may be seen that s(n, k) = 0 when k > n and, other than the
case k = 0, when n ≤ 0. The Stirling numbers of the first kind thus form a triangle, as
illustrated in Table 1 of Section 7. This also appears as sequence A130534 in the On-line

Encyclopedia of Integer Sequences [13]. Note, incidentally, that in the literature there are
signed and unsigned versions of these numbers [5, 11]. However, given Definition 1, we will
use s(n, k) and subsequent generalizations to denote the unsigned versions of these numbers
throughout this paper.

To take an example, we list below, using cycle-structure notation, all the permutations
of the elements in {1, 2, 3, 4} having exactly two disjoint cycles:

(1)(234), (1)(243),

(2)(134), (2)(143),

(3)(124), (3)(142),

(4)(123), (4)(132),

(12)(34), (13)(24),

(14)(23).

From this we see that s(4, 2) = 11.
The permutations of the elements in {1, 2, 3, 4} having exactly three disjoint cycles is

given by

(1)(2)(34), (1)(3)(24),

(1)(4)(23), (2)(3)(14),

(2)(4)(13), (3)(4)(12),

which tells us that s(4, 3) = 6. There are several well-known results concerning these numbers
[4, 6, 7, 11].

Beck [2] introduced the so-called near-Bell numbers. The nth near-Bell number enu-
merates all possible partitions of the particular multiset {1, 1, 2, 3, . . . , n − 1}. Multisets
may be thought of as generalizations of sets in the sense that it is permissible to have re-
peated elements in a multiset whereas this is not the case for sets. The number of times a
particular element x appears in a multiset M is termed the multiplicity of x in M. Thus,
{1, 1, 2, 3, . . . , n−1}may also be described as an n-multiset with multiplicities 1, 1, 1, . . . , 1, 2.
By extending Beck’s multiset to {1, 1, . . . , 1, 2, 3, . . . , n− r + 1}, in which the element 1 has
multiplicity r, we obtained results concerning generalizations of Bell numbers and Stirling
numbers of the second kind [8, 9].

For example, we defined Bn,r [8] to be the total number of partitions of the multiset
{1, 1, . . . , 1, 2, 3, . . . , n− r + 1}, and subsequently derived the recurrence relation

Bn,r =
n−r−1
∑

k=0

(

n− r − 1

k

)

Bn−k−1,r + Bn−1,r−1
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for n ≥ r+1. Then, employing exponential generating functions, we obtained Dobiński-like
formulas such as

Bn+3,3 =
1

6e

∞
∑

m=0

(m+ 3)n + 6(m+ 2)n + 9(m+ 1)n + 2mn

m!
.

Generating function techniques were also used to obtain formulas for generalized Stirling
numbers of the second kind Sr(n, k) [9], where Sr(n, k) is defined to be the number of
partitions of {1, 1, . . . , 1, 2, 3, . . . , n−r+1} into k non-empty parts. By way of some examples,
we showed that

S2(n, 4) =
1

3

(

5 · 4n−3 − 3n−1 + 3 · 2n−2 − 2
)

and

S3(n, 4) =
1

3

(

10 · 4n−4 − 5 · 3n−3 + 9 · 2n−4 − 1
)

.

The purpose of the current paper is to complete this work by considering the correspond-
ing situation for the Stirling numbers of the first kind. When carrying out the enumeration
of s(4, 2) and s(4, 3) above, it was tacitly assumed that the n individuals were distinguishable
from one another. Here we study a scenario in which this is not necessarily the case. Indeed,
we now obtain results for the situation in which r of the n are indistinguishable from one
another. In other words, the party of n people now contains a group of identical r-tuplets.

This extension to the Stirling numbers of the first kind results in a family of number tri-
angles. We show how to obtain ordinary generating functions for the rows and exponential
generating functions for the columns, the latter of which are derived via a recursive pro-
cess. We also indicate how to obtain formulas, in terms of factorials, generalized harmonic
numbers, and polynomials, for the entries in the columns of these number triangles.

2 Initial definitions and results

For the sake of convenience we restate here a number of definitions given in a related paper
on extended Stirling numbers of the second kind [9]. The formal definition of a multiset is
as follows [1]:

Definition 2. Amultiset is a pair (A,m) where A is some set andm is a functionm : A 7→ N.
The set A is called the set of underlying elements. For each a ∈ A the multiplicity of a is
given by m(a). A multiset is called an n-multiset if

∑

a∈A m(a) = n for some n ∈ N.

As alluded to in the Section 1, one of way of representing an n-multiset is as a set with
(potentially) repeated elements. To take an example,

{1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6}

is a 14-multiset with elements 1, 2, 3, 4, 5 and 6 having multiplicities 2, 5, 1, 3, 1, and 2,
respectively.

We consider here the following family of multisets:
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Definition 3. Let M(n, r) denote, for 0 ≤ r ≤ n, the n-multiset

{1, 1, . . . , 1, 2, 3, . . . , n− r + 1},

where the element 1 appears with multiplicity r and the remaining n − r elements each
appear with multiplicity 1.

There are two points worth highlighting here. First, since M(n, 1) and M(n, 0) both
contain precisely n distinguishable elements, it is the case that s0(n, k) = s1(n, k). Second,
the multiset M(n, n) consists simply of n copies of the element 1.

The family of multisets given by Definition 3 leads to a particular extension of the Stirling
numbers of the first kind, which is defined as follows:

Definition 4. Let n, k and r be non-negative integers. Then sr(n, k) is defined to be the
number of ways in which the elements from M(n, r) can be arranged into exactly k disjoint
cycles. Note that sr(n, k) = 0 when n < k or n < r.

For example, on using cycle-structure notation once more, the arrangements of the ele-
ments from M(4, 2) = {1, 1, 2, 3} into exactly two disjoint cycles are given by

(1)(123), (1)(132),

(2)(113), (3)(112),

(11)(23), (12)(13),

while the arrangements of the elements from M(4, 2) having exactly three disjoint cycles are
as follows:

(1)(1)(23), (1)(2)(13),

(1)(3)(12), (2)(3)(11).

From the above we see that s2(4, 2) = 6 and s2(4, 3) = 4. The corresponding entries in the
number triangle for s2(n, k) may be seen in Table 2 of Section 7.

Definition 5. Let Tr denote the infinite number triangle with entries sr(n, k) for some fixed
r ≥ 0.

Note that each of the entries in the first r − 1 rows of Tr is equal to 0. This gives the
triangles a truncated appearance when r ≥ 2, as may be seen in Section 7. These number
triangles do not appear in OEIS [13] for r ≥ 2.

It follows from Definitions 3 and 4 that sr(r, k) enumerates the ways of expressing r ∈ N as
a sum of k positive integers (disregarding the order in which these integers are written). We
shall use p(r, k) to denote this, which is sometimes known as a restricted partition function.
The number triangle for p(r, k) appears as sequence A008284 in the OEIS [13].
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The generating function for the number of partitions of r into at most m parts [10] is
given by

Fm(x) =
1

(1− x) (1− x2) · · · (1− xm)
.

The generating function for p(r, k) is thus given by

Fk(x)− Fk−1(x) =
xk

(1− x) (1− x2) · · · (1− xk)
,

and sr(r, k) is equal to the coefficient of xr in the series expansion of this expression. Note
also that p(0, k) = 0 for k ∈ N and p(0, 0) = 1 by definition. We show in Theorems 10, 13,
and 15 how the remaining entries in Tr may be calculated.

Definition 6. Let qi denote the multiset {1, 1, . . . , 1} containing exactly i 1s.

Definition 7. Let Ci be the cycle (11 · · · 1) comprising exactly i 1s.

3 Row generating functions

We take two different approaches in this paper to the evaluation of the entries in Tr. In the
current section we carry this out by obtaining the ordinary generating functions for the rows
of Tr.

Definition 8. The ordinary generating function Gn,r(x) for the nth row of Tr is given by

Gn,r(x) =
n
∑

k=1

sr(n, k)x
k.

Definition 9. The Pochhammer symbol (x)n, also known as the rising factorial, is defined
by

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1).

We note here the well-known result [11]

(x)n =
n
∑

k=0

s1(n, k)x
k.

Theorem 10. We have

Gn,r(x) = (x)n−r

r
∑

i=0

xr−i

i
∑

j=0

(

n− r + j − 1

j

)

p(r − j, r − i). (1)
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Proof. Suppose that we wish to evaluate sr(n, k) for some n, k, r ∈ N such that n ≥ k and
n ≥ r. Here is one way in which this may be done. First, let j ≥ 0 and m ≥ 0 satisfy
r − j ≥ k − m ≥ 0 and n − r ≥ m. Then consider any permutation P of the elements in
{2, 3, 4, . . . , n− r + 1} comprising exactly m disjoint cycles, noting that the number of such
permutations is given by s0(n− r,m) = s1(n− r,m). We now insert a total of j 1s into the
cycles of P to give some arrangement P ′ of the elements of qj ∪{2, 3, 4, . . . , n− r+1} into m

disjoint cycles such that each cycle contains at least one element from {2, 3, 4, . . . , n−r+1}.
The number of distinct ways in which this can be done is

(

n− r + j − 1

j

)

since this process is, in terms of enumeration, equivalent to the number of ways of selecting j

objects from a set of n−r objects such that repetitions are allowed and order is not significant
[5]. A key point is that this result is true for every permutation P on {2, 3, 4, . . . , n− r+1}.
It is the case, therefore, that

s1(n− r,m)

(

n− r + j − 1

j

)

enumerates the ways in which the elements of qj ∪ {2, 3, 4, . . . , n − r + 1} may be written
as a product of exactly m disjoint cycles such that each cycle contains at least one element
from {2, 3, 4, . . . , n− r + 1}.

Next, consider S = (1)(1) · · · (1), consisting of the product of k−m singleton cycles each
containing a 1. The number of distinct cycle structures that can be obtained by inserting
r − j − k +m 1s into the cycles of S is given by p(r − j, k −m). Let S ′ be one such cycle
structure. On appending S ′ to P ′ we obtain an arrangement of the elements of M(n, r)
into k disjoint cycles such that exactly m of these cycles contain at least one element from
{2, 3, 4, . . . , n− r+1}, and a total of exactly j 1s appear amongst them. It follows from this
that

s1(n− r,m)

(

n− r + j − 1

j

)

p(r − j, k −m) (2)

enumerates the ways in which the elements ofM(n, r) can be arranged into exactly k disjoint
cycles such that precisely m contain at least one element each from {2, 3, 4, . . . , n − r + 1}
and a total of j 1s between them. We now sum (2) over j to give

s1(n− r,m)
r−k+m
∑

j=0

(

n− r + j − 1

j

)

p(r − j, k −m), (3)

which counts the number of ways in which the elements of M(n, r) can be arranged into
exactly k disjoint cycles such that precisely m of them contain at least one element from
{2, 3, 4, . . . , n− r + 1}.
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In order to evaluate sr(n, k), it remains to sum (3) over m to obtain the result

sr(n, k) =
k
∑

m=0

s1(n− r,m)
r−k+m
∑

j=0

(

n− r + j − 1

j

)

p(r − j, k −m).

On setting i = r − k +m, this can be rewritten as

sr(n, k) =
r
∑

i=r−k

s1(n− r, k − r + i)
i
∑

j=0

(

n− r + j − 1

j

)

p(r − j, r − i), (4)

noting in fact that the lower limit of summation on the outer sum may be given as i = 0
since if r − k ≥ 0 then k − r + i < 0 when i < r − k, in which case s1(n− r, k − r + i) = 0,
while the inner sum is defined to be zero for negative values of i. Then, noting that

(x)n−r =
n−r
∑

l=0

s1(n− r, l)xl

is the generating function for the (n− r)th row of T1, we see that the coefficient of xk in (1)
is indeed equal to (4), thereby showing that (1) is the ordinary generating function for the
nth row of Tr.

We illustrate the key ideas in the proof of Theorem 10 by way of a concrete example.
Suppose that n = 16, r = 9, k = 5, j = 4, and m = 3. Let us consider the permutation
P = (2784)(6)(35), which is an arrangement of the elements of {2, 3, 4, . . . , n − r + 1} =
{2, 3, 4, 5, 6, 7, 8} into m = 3 disjoint cycles. The number of such permutations is given
by s1(n − r,m) = s1(7, 3). We now insert a total of j = 4 1s into the cycles of P to
give some arrangement P ′ of the elements of q4 ∪ {2, 3, 4, . . . , 8} = {1, 1, 1, 1, 2, . . . , 8} into
m = 3 disjoint cycles such that each cycle contains at least one element from {2, 3, 4, . . . , 8}.
One way of doing this is by choosing four elements from {2, 3, 4, . . . , 8} in such a way that
repetitions are allowed and order is not significant; 4, 6, 4, and 7 say. We then place as
many 1s as are necessary to the left of each of the corresponding numbers in P . This gives
rise to P ′ = (2178114)(16)(35), noting that there were two 4s in our choice of elements from
{2, 3, 4, . . . , 8}. The number of ways of selecting 4 objects from a set of 7 objects such that
repetitions are allowed and order is not significant [5] is given by

(

7 + 4− 1

4

)

=

(

10

4

)

.

This is true for all permutations P on {2, 3, 4, . . . , 8}. It is the case, therefore, that

s1(7, 3)

(

10

4

)
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enumerates the ways in which the elements of {1, 1, 1, 1, 2, . . . , 8} may be written as a prod-
uct of exactly 3 disjoint cycles such that each cycle contains at least one element from
{2, 3, 4, . . . , 8}.

Since k −m = 2, we have S = (1)(1). The number of distinct cycle structures that can
be obtained by inserting r−j−k+m = 3 1s into the cycles of S is equal to p(r−j, k−m) =
p(5, 2) = 2. One of these cycle structures is given by S ′ = (111)(11). On appending S ′ to P ′

we obtain (111)(11)(2178114)(16)(35), which is an arrangement of the elements of M(16, 9)
into 5 disjoint cycles such that exactly 3 of these cycles contain at least one element from
{2, 3, 4, . . . , 8}, and a total of exactly 4 1s appear amongst them. It follows from this that

s1(7, 3)

(

10

4

)

p(5, 2)

enumerates the ways in which the elements of M(16, 9) can be arranged into exactly 5
disjoint cycles such that precisely 3 contain at least one element each from {2, 3, 4, . . . , 8}
and a total of 4 1s between them. There then follows the reasonably straightforward task of
summing over j and then m.

It is of course the case that Gn,1(x) generates the rows of the number triangle of the
Stirling numbers of the first kind. However, the generating functions also take particular
simple forms for the cases r = 2 and r = 3 by using [11]

c
∑

b=0

(

a+ b

b

)

=

(

a+ c+ 1

c

)

together with the fact that the non-zero entries of the first three rows of the number triangle
for p(n, k) are each equal to 1. We have, bearing in mind once more that p(0, k) = 0 for
k ∈ N and p(0, 0) = 1 by definition,

Gn,2(x) = (x)n−2

(

x2 +

(

n− 1

1

)

x+

(

n− 1

2

))

,

Gn,3(x) = (x)n−3

(

x3 +

(

n− 2

1

)

x2 +

(

n− 1

2

)

x+

(

n− 1

3

))

.

Next,

Gn,4(x) = (x)n−4

(

x4 +

(

n− 3

1

)

x3 +

((

n− 2

2

)

+ 1

)

x2 +

(

n− 1

3

)

x+

(

n− 1

4

))

,

and the generating functions for r > 4 become increasingly complicated as more of the
restricted partition numbers take on values exceeding 1.

Definition 11. The generalized harmonic number H
(m)
n [11] is given by

H(m)
n =

n
∑

k=1

1

km
.
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Stirling numbers of the first kind may be given as expressions involving factorials and
generalized harmonic numbers [3, 11]. For example,

s1(n, 2) = (n− 1)!H
(1)
n−1,

s1(n, 3) =
(n− 1)!

2!

(

(

H
(1)
n−1

)2

−H
(2)
n−1

)

,

s1(n, 4) =
(n− 1)!

3!

(

(

H
(1)
n−1

)3

− 3H
(1)
n−1H

(2)
n−1 + 2H

(3)
n−1

)

.

We may use (4), in conjunction with these results, to obtain formulas involving factorials,
generalized harmonic numbers, and polynomials for the entries in the columns of Tr for r ≥ 2.
For example, we have, for n ≥ 3,

s2(n, 2) = s1(n− 2, 0) +

(

n− 1

1

)

s1(n− 2, 1) +

(

n− 1

2

)

s1(n− 2, 2)

= (n− 1)(n− 3)! +
(n− 1)(n− 2)

2
(n− 3)!Hn−3

=
(n− 1)(n− 3)!

2
(2 + (n− 2)Hn−3)

and, for n ≥ 4,

s2(n, 3) = s1(n− 2, 1) +

(

n− 1

1

)

s1(n− 2, 2) +

(

n− 1

2

)

s1(n− 2, 3)

= (n− 3)! + (n− 1)(n− 3)!Hn−3 +
(n− 1)(n− 2)

2
·
(n− 3)!

2

(

(Hn−3)
2 −H

(2)
n−3

)

=
(n− 3)!

4

(

4 + 4(n− 1)Hn−3 + (n− 1)(n− 2)
(

(Hn−3)
2 −H

(2)
n−3

))

.

4 A recurrence relation

In Section 5 we show how to obtain, in a recursive manner, exponential generating functions
for the columns of Tr. This is achieved by way of a recurrence relation that is derived in the
current section. Use will be made of the following well-known lemma [4, 5].

Lemma 12.

s1(n, k) = (n− 1)s1(n− 1, k) + s1(n− 1, k − 1).

Proof. First, if we append the singleton cycle (n) to any permutation of the elements of
{1, 2, . . . , n − 1} comprising exactly k − 1 disjoint cycles, we obtain a permutation of the
elements of {1, 2, . . . , n} consisting of exactly k disjoint cycles. This process contributes to
s1(n− 1, k − 1) of the permutations enumerated by s1(n, k).
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Next, suppose we are given some permutation P of the elements of {1, 2, . . . , n − 1}
comprising exactly k disjoint cycles. Let X be one of these cycles. If X is composed of
m elements from {1, 2, . . . , n − 1}, there are m possible positions in which the element n

could be inserted into X to form a cycle, each of which gives rise to a permutation of the
elements of {1, 2, . . . , n} consisting of exactly k disjoint cycles. Summing over all possi-
ble cycles of P results in the generation of a total of n − 1 permutations of the elements
of {1, 2, . . . , n} consisting of exactly k disjoint cycles. We then sum over all possible per-
mutations of {1, 2, . . . , n − 1} comprising exactly k cycles, a process which contributes to
(n− 1)s1(n− 1, k) of the permutations enumerated by s1(n, k).

This completes the proof of the Lemma, bearing in mind that each of the permutations
of the elements of {1, 2, . . . , n} comprising exactly k disjoint cycles will eventually arise by
way of the above processes, and the resultant permutations will in fact all be distinct.

The result given by Lemma 12 does not apply when calculating sr(n, k) for r ≥ 2, and
requires considerable modification in order to cover the more general case we are considering
here. The extended Stirling numbers of the first kind satisfy the recurrence relation as given
in Theorem 13:

Theorem 13. For n > r,

sr(n, k) = (n− 1)sr(n− 1, k) + sr(n− 1, k − 1)−
r
∑

i=2

(i− 1)

⌊ r

i
⌋

∑

j=1

sr−ji(n− 1− ji, k − j)

−

⌊ r

2
⌋

∑

i=1

⌊ r

i
⌋

∑

j=2

sr−ji(n− 1− ji, k − j).

Proof. If the 1s inM(n, r) were distinguishable from one another, we could use the argument
as given in Lemma 12 to establish that sr(n, k) = (n− 1)sr(n− 1, k) + sr(n− 1, k− 1). The
fact that the 1s are indistinguishable from one another, however, does in fact mean there are
two potential sources of overcounting that arise when using (n−1)sr(n−1, k)+sr(n−1, k−1)
in an attempt to evaluate sr(n, k), both of which will be considered in due course. This is
in contrast to the corresponding situation for the extended Stirling numbers of the second
kind [9], for which there was only one source.

Note first that the term sr(n − 1, k − 1) does not contribute to any overcounting. This
is because, on appending the singleton cycle (n− r+ 1) to any arrangement of the elements
of M(n− 1, r) into exactly k − 1 disjoint cycles, we obtain an arrangement of the elements
of M(n, r) into exactly k disjoint cycles that is distinct from any other arrangement formed
in this manner. The overcounting arises solely from the term (n− 1)sr(n− 1, k), and occurs
when attempting to obtain new arrangements by inserting the element n− r+ 1 into cycles
of the form Ci present in arrangements of the elements of M(n− 1, r) into exactly k disjoint
cycles.
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One source of overcounting comes about when an arrangement Q of M(n− 1, r) into k

disjoint cycles contains multiple copies of Ci (see Definition 7) for some i ≥ 1. If Q has j

copies of Ci for some j ≥ 2, then, on inserting the element n− r+1 to each of these cycles in
turn, we will obtain j − 1 redundant arrangements. Let N(|Ci| = j) and N(|Ci| ≥ j) denote
the number of the arrangements enumerated by sr(n− 1, k) possessing exactly j copies of Ci
and at least j copies of Ci, respectively. Note here that

N(|Ci| ≥ j) = sr−ji(n− 1− ji, k − j).

This is because each of the arrangements enumerated by the expression on the left-hand side
possesses j copies of Ci, and the removal of these, therefore, will not affect the enumeration.
When these cycles have been removed, we are left with all those arrangements possessing
k − j disjoint cycles, r − ji 1s, and a total of n− 1− ji elements, which are precisely those
arrangements enumerated by sr−ji(n− 1− ji, k − j).

We first consider the situation for some fixed i ∈ N. With a =
⌊

r
i

⌋

, we sum over all such
redundant arrangements to obtain

a
∑

j=2

(j − 1)N (|Ci| = j) =
a−1
∑

j=2

(j − 1) (N (|Ci| ≥ j)−N (|Ci| ≥ j + 1)) + (a− 1)N (|Ci| = a)

=
a
∑

j=2

sr−ji(n− 1− ji, k − j).

This is then summed over all possible values of i to give the second double sum in the
statement of the theorem. Note that the upper limit on the outer sum is equal to

⌊

r
2

⌋

since,
for any given i, we would require at least two copies of Ci for redundant arrangements to
occur in this way.

The second source of overcounting arises when inserting the element n−r+1 into a cycle
Ci for some i ≥ 2. This results in just one possible cycle. The insertion of n − r + 1 into a
cycle of length i comprising at least a pair of distinct elements, on the other hand, gives rise
to i possible cycles. Thus, whenever n− r + 1 is inserted into a cycle of length i, there is a
discrepancy of i − 1 in the enumeration if, and only if, this cycle is Ci. As in the previous
case, we first fix i ∈ N, let a =

⌊

r
i

⌋

and sum over all such redundant arrangements to give

(i− 1)
a
∑

j=1

jN (|Ci| = j) = (i− 1)
a−1
∑

j=1

j (N (|Ci| ≥ j)−N (|Ci| ≥ j + 1)) + aN (|Ci| = a)

= (i− 1)
a
∑

j=1

sr−ji(n− 1− ji, k − j).

We then sum over all possible values of i once more to give the first double sum in the
statement of the theorem, noting that the upper limit of the outer sum in this case is r

rather than
⌊

r
2

⌋

since a single copy of Ci will give rise to redundant arrangements in the
manner described above.

11



5 Exponential generating functions

Definition 14. The shifted exponential generating function Hr,k(x) for the sequence of col-
umn k of the number triangle Tr is defined by

Hr,k(x) =
∞
∑

n=0

sr(n+ b, k)

n!
xn,

where b is a function of both r and k given by b(r, k) = max{r, k}.

It is well-known [4, 5] that the exponential generating function for the kth column of T1

is given by
(

− log(1− x)
)k

k!
.

From this and Definition 14 it follows that

H1,k(x) =
dk

dxk

(

(− log(1− x))k

k!

)

=
1

(1− x)k

k−1
∑

j=0

c1(k, k − j)

j!
(− log(1− x))j .

We show here how to calculate recursively the exponential generating function for the
kth column of Tr for r ≥ 2. We shall find it expedient to obtain, in the order given,
the sequence of generating functions H2,1(x), H2,2(x), H2,3(x), H2,4(x), . . . followed by the
sequence H3,1(x), H3,2(x), H3,3(x), H3,4(x), . . ., and so on. Theorem 13 will be used in order
to carry out these calculations.

As will be seen, each of the generating functions is obtained by solving a differential
equation. The reason for using the shifted exponential generating functions in the manner
described above is to keep the solutions of these equations relatively straightforward. The
shifts ensure that the first non-zero coefficient of each generating function appears at position
zero (i.e. the constant term in each of these shifted power series is non-zero), as becomes
clear on examining the tables in Section 7.

Theorem 15.

H2,1(x) =
2− 2x+ x2

2(1− x)2
.

Proof. First, we utilise Theorem 13 to obtain the recurrence relation

s2(n, k) = (n− 1)s2(n− 1, k) + s2(n− 1, k − 1)− s0(n− 3, k − 1)− s0(n− 3, k − 2). (5)

On setting k = 1, replacing n with n+ 3, and noting that s0(n, k) = s1(n, k), we have

s2(n+ 3, 1) = (n+ 2)s2(n+ 2, 1) + s2(n+ 2, 0)− s1(n, 0)− s1(n,−1),

12



Then, since s2(n + 2, 0) = s1(n,−1) = 0 for all n ≥ 0, and s1(n, 0) = 1 if n = 0 but 0
otherwise, it follows that

∞
∑

n=0

s2(n+ 3, 1)

n!
xn =

∞
∑

n=0

(n+ 2)s2(n+ 2, 1)

n!
xn −

∞
∑

n=0

s1(n, 0)

n!
xn

=
∞
∑

n=0

ns2(n+ 2, 1)

n!
xn + 2

∞
∑

n=0

s2(n+ 2, 1)

n!
xn − 1

=
∞
∑

n=1

s2(n+ 2, 1)

(n− 1)!
xn + 2

∞
∑

n=0

s2(n+ 2, 1)

n!
xn − 1

= x

∞
∑

n=0

s2(n+ 3, 1)

n!
xn + 2

∞
∑

n=0

s2(n+ 2, 1)

n!
xn − 1,

from which we obtain
(1− x)H ′

2,1(x)− 2H2,1(x) = −1.

Solving this first-order linear differential equation [12], with the boundary conditionH2,1(0) =
1, gives

H2,1(x) =
2− 2x+ x2

2(1− x)2
.

In order to obtain the shifted exponential generating function H2,2(x), we may, in a
similar manner to that given in Theorem 15, use (5) to give

(1− x)H ′

2,2(x)− 2H2,2(x) =
∞
∑

n=0

s2(n+ 2, 1)

n!
xn −

∞
∑

n=0

s1(n, 1)

n!
xn − 1.

The first and second sums on the right are equal to H2,1(x) and − log(1 − x), respectively,
so that we are left to solve

(1− x)H ′

2,2(x)− 2H2,2(x) = H2,1(x) + log(1− x)− 1.

With H2,2(0) = 1, this has the solution

H2,2(x) =
(2− 2x+ x2) (1− log(1− x))

2(1− x)2
.

For the case k = 3 we have the differential equation

(1− x)H ′

2,3(x)− 3H2,3(x) = H ′

2,2(x)−

∫ x

0

H1,2(t) dt−H1,1(x),
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from which it follows that

H2,3(x) =
(2− 2x+ x2) + (4− 2x+ x2)L+ L2

2(1− x)3
,

where L = − log(1− x). In fact, for k ≥ 3, we have the general differential equation

(1− x)H ′

2,k(x)− kH2,k(x) = H ′

2,k−1(x)−

∫ x

0

H1,k−1(t) dt−H1,k−2(x),

which gives

H2,4(x) =
(4− 4x+ 2x2) + (16− 8x+ 4x2)L+ (12− 2x+ x2)L2 + 2L3

4(1− x)4
,

and so on.
In order to calculate the shifted exponential generating functions G3,k(x) we use the

recurrence

s3(n, k) = (n− 1)s3(n− 1, k) + s3(n− 1, k − 1)

− s1(n− 3, k − 1)− 2s0(n− 4, k − 1)− s1(n− 3, k − 2)− s0(n− 4, k − 3),

which may be obtained via Theorem 13. The first two such functions are given by

H3,1(x) =
3− 6x+ 6x2 − 2x3

3(1− x)3
and H3,2(x) =

6− 6x+ 3x2 + (−6 + 12x− 12x2 + 4x3)L

6(1− x)3
.

Although the manipulations do become a little more complicated for larger values of r, the
underlying method is the same, with the generating functions being obtained recursively.
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7 Tables

n s1(n, 1) s1(n, 2) s1(n, 3) s1(n, 4) s1(n, 5) s1(n, 6) s1(n, 7) s1(n, 8)

1 1

2 1 1

3 2 3 1

4 6 11 6 1

5 24 50 35 10 1

6 120 274 225 85 15 1

7 720 1764 1624 735 175 21 1

8 5040 13068 13132 6769 1960 322 28 1

Table 1: Unsigned Stirling numbers of the first kind, s1(n, k).

n s2(n, 1) s2(n, 2) s2(n, 3) s2(n, 4) s2(n, 5) s2(n, 6) s2(n, 7) s2(n, 8)

1

2 1 1

3 1 2 1

4 3 6 4 1

5 12 26 20 7 1

6 60 140 121 51 11 1

7 360 894 849 410 110 16 1

8 2520 6594 6763 3634 1135 211 22 1

Table 2: The number of arrangements of the elements from the multiset M(n, 2) into
exactly k disjoint cycles, s2(n, k).
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n s3(n, 1) s3(n, 2) s3(n, 3) s3(n, 4) s3(n, 5) s3(n, 6) s3(n, 7) s3(n, 8)

1

2

3 1 1 1

4 1 3 2 1

5 4 10 9 4 1

6 20 50 48 24 7 1

7 120 310 315 171 56 11 1

8 840 2254 2419 1409 505 116 16 1

Table 3: The number of arrangements of the elements from the multiset M(n, 3) into
exactly k disjoint cycles, s3(n, k).

n s4(n, 1) s4(n, 2) s4(n, 3) s4(n, 4) s4(n, 5) s4(n, 6) s4(n, 7) s4(n, 8)

1

2

3

4 1 2 1 1

5 1 4 4 2 1

6 5 15 17 10 4 1

7 30 85 97 61 25 7 1

8 210 595 691 451 192 57 11 1

Table 4: The number of arrangement of the elements from the multiset M(n, 4) into
exactly k disjoint cycles, s4(n, k).
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