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Abstract

A semiorder is a partially ordered set P with two certain forbidden induced sub-
posets. This paper establishes a bijection between n-element semiorders of length H

and (n + 1)-node ordered trees of height H + 1. This bijection preserves not only
the number of elements, but also much additional structure. Based on this correspon-
dence, we calculate the generating functions and explicit formulas for the numbers of
labeled and unlabeled n-element semiorders of length H. We also prove several concise
recurrence relations and provide combinatorial proofs for special cases of the explicit
formulas.

1 Introduction and Main Theorem

We will use partially ordered set (poset) notation and terminology from [5, Ch. 3]. A
semiorder is a poset without the following induced subposets:

• (2 + 2): four distinct elements x, y, z, w, such that x > y, z > w, and other pairs are
incomparable;

1The author’s research was part of an undergraduate research project at M.I.T. under the supervision of
Richard Stanley.
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• (3 + 1): four distinct elements x, y, z, w, such that x > y > z, and other pairs are
incomparable.
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(2+ 2)-structure
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(3+ 1)-structure

• •← first level

• • •← second level

(a) A semiorder with
5 elements and length 1

OOOOOOO

WWWWWWWWWWWWWW

OOOOOOO

In other words, semiorders are (2 + 2)-free and (3 + 1)-free posets. Every semiorder
can also be regarded as a partial ordering P of a subset of R defined by x < y in P if
x < y − 1 in R. The length H of a semiorder is the length of a longest chain. Every
semiorder R with n elements, up to isomorphism, can be uniquely represented as an integer
vector ρ(R) = (r1, r2, . . . , rn), where ri represents the number of elements smaller than the
ith element, and r1 ≥ r2 ≥ · · · ≥ rn ≥ 0, ri ≤ n− i, for all 1 ≤ i ≤ n. For instance, the above
graph (a) presents a semiorder R with 5 elements, length 1, and vector ρ(R) = (3, 2, 0, 0, 0).
For further basic information on semiorders, see [4].

There is much interest in enumerating the number of posets with certain properties.
For example, Bousquet-Mélou et al. enumerated the number of (2 + 2)-free posets [1]. It
is a classical result of Wine and Freund [6] that the number of nonisomorphic n-element
semiorders is the Catalan number Cn = 1

n+1

(

2n
n

)

, while Chandon, Lemaire, and Pouget [3]
showed (in an equivalent form) that if f(n) is the number of n-element labeled semiorders
(or semiorders on an n-element set), then

∑

n≥0 f(n)
xn

n!
=

∑

n≥0 Cn(1− e−x)n. For a general
principle implying this result, see Lemma 13. In this paper, we deal with semiorders of length
at most H. That is, we enumerate the number of posets which are (2+ 2)-free, (3+ 1)-free,
and of length at most H. We carry out the enumeration by establishing a bijection between
semiorders and ordered trees of a fixed height.

An ordered tree is a rooted tree that has been embedded in the plane so that the relative
order of subtrees at each node is part of its structure. The height H of an ordered tree is the
number of edges in a chain of maximum length. The following graph (b) shows an ordered
tree with 6 nodes and height 2.
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(c) A Dyck path with
semilength 5 and height 2
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A Dyck path of semilength n is a lattice path in the Euclidean plane from (0, 0) to (2n, 0)
whose steps are either (1, 1) or (1,−1) and the path never goes below the x-axis. The height
H of a Dyck path is the maximal y-coordinate among all points on the path. The above
graph (c) shows a Dyck path with semilength 5 and height 2.

It is well-known that there is a one-to-one correspondence between (i) ordered trees with
n+ 1 nodes and height H and (ii) Dyck paths with semilength n and height H. This paper
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establishes a bijection between n-element semiorders of length H and (n + 1)-node ordered
trees of height H + 1. Thus these semiorders simultaneously correspond to Dyck paths of
semilength n and height H + 1.

Theorem 1 (Main Theorem). For n ≥ 1 and H ≥ 0, the number of nonisomorphic n-
element unlabeled semiorders of length H is equal to the number of (n+1)-node ordered trees
of height H+1, which is also equal to the number of Dyck paths with semilength n and height
H + 1.

Section 2 gives a recurrence proof and a bijective proof for Theorem 1. Section 3 calcu-
lates the generating functions and explicit formulas for the number of unlabeled as well as
labeled semiorders with fixed lengths. Section 4 proves some concise recurrence relations,
and Section 5 shows explicit formulas for the number of semiorders of certain lengths H, and
provides simple bijective proofs for these formulas.

2 Proof of Main Theorem 1

Before proving Theorem 1, we first define some terminology that is used later in the proof.

Definition 2. A node A in an ordered tree has depth i if the distance from node A to the
root is i. In particular, the depth of the root is 0.

In this paper we regard the root as the uppermost node, and all other nodes are below
the root. We say node B is attached to node A if node B has depth i + 1 and node A has
depth i, and these two nodes are adjacent. Refer to graph (b) as an example.

Definition 3. An element a of a semiorder is on the ith level (i ≥ 1) if i is the largest integer
for which there exist i−1 elements a1, a2, . . . , ai−1 satisfying a1 > a2 > · · · > ai−1 > a. Refer
to graph (a) as an example.

Proposition 4. For a length H semiorder, and for 1 ≤ i ≤ H, there is at least one element
on the ith level that is larger than all elements on the (i+ 1)th level.

Proof. Suppose that there does not exist an element on the ith level that is larger than all
elements on the (i+1)th level. Since every element on the (i+1)th level must be smaller than
at least one element on the ith level, there must exist two elements a and c on the (i + 1)th

level which are smaller than two distinct elements b and d on the ith level, respectively, and
b is not larger than c, while d is not larger than a. Then {b > a, d > c} forms a (2 + 2)-
structure, a contradiction. Therefore, at least one element on the ith level is larger than all
elements on the (i+ 1)th level.

Proposition 5. For a length H semiorder, and for 1 ≤ i < j ≤ H + 1, j − i ≥ 2, every
element on the ith level is larger than all elements on the jth level.
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Proof. Assume to the contrary that there exist an element b on the ith level and an element
a on the jth level such that b is not larger than a. By Definition 3, there exist j− 1 elements
a1, a2, . . . , aj−1, such that a1 > a2 > · · · > aj−1 > a, and then aj−2 and aj−1 should be
on the (j − 2)th and (j − 1)th level, respectively. Since element b is on the ith level, and
j− i ≥ 2, element b cannot be smaller than any of aj−2, aj−1, or a. In addition, since b is not
larger than a and aj−2 > aj−1 > a, b is not comparable with any of aj−2, aj−1 or a. Hence,
{aj−2 > aj−1 > a, b} forms a (3+ 1)-structure, a contradiction. Therefore every element on
the ith level should be larger than all elements on the jth level, for j − i ≥ 2.

We are now ready to prove the Main Theorem 1. We give two proofs here: one considers
the recurrence formulas of the two numbers in the theorem, and the other directly establishes
a bijection between semiorders and ordered trees.

2.1 Recurrence proof

Let t(n, h, k) denote the number of (n + 1)-node ordered trees of height h + 1, for which
exactly k nodes have depth h + 1, 1 ≤ k ≤ n. Let f(n, h, k) be the number of n-element
semiorders of length h, and exactly k elements are on the last level. We show that t(n, h, k)
and f(n, h, k) have the same initial value and recurrence formula in the following lemmas,
and thus they are equal.

Lemma 6. For h ≥ 1, we have

t(n, h, k) =
n−k
∑

m=1

(

m+ k − 1

m− 1

)

· t(n− k, h− 1,m). (1)

Proof. Say we have an (n − k + 1)-node ordered tree of height h, and assume that exactly
m nodes have depth h, 1 ≤ m ≤ n − k. Consider adding k nodes to the tree to get a
new tree with n + 1 nodes and height h + 1, and the newly added nodes are exactly the
set of nodes of depth h + 1. Thus we need to attach the k new nodes to the m nodes
of depth h, and every new node is uniquely attached to one node. Let the m nodes be
A1, A2, . . . , Am, and the number of new nodes attached to Ai be ri, 1 ≤ i ≤ m. Then we
have r1 + r2 + · · ·+ rm = k, ri ≥ 0, 1 ≤ i ≤ m.

The number of integer solutions to the above equation is
(

m+k−1
m−1

)

. Therefore, we have
(

m+k−1
m−1

)

ways to add the k nodes. Summing up all possible m’s, we obtain

t(n, h, k) =
n−k
∑

m=1

(

m+ k − 1

m− 1

)

· t(n− k, h− 1,m).

Lemma 7. For h ≥ 1, we have

f(n, h, k) =
n−k
∑

m=1

(

m+ k − 1

m− 1

)

· f(n− k, h− 1,m). (2)

4



Proof. We say that an element of a semiorder is good if the element is on the last level of
the semiorder. Say we have an (n − k)-element semiorder S of length h − 1 and m good
elements, 1 ≤ m ≤ n− k. Consider adding k elements to S to get a new semiorder S ′ with
n elements and length h, and the newly added elements are exactly the set of good elements
of S ′. Call the original m good elements a1, a2, . . . , am, and the k new elements b1, b2, . . . , bk.
Then in the semiorder S ′, we have that a1, a2, . . . , am are the only elements on the hth level,
and b1, b2, . . . , bk are the only elements on the (h+ 1)th level.

If we remove all elements on the first h−1 levels of S ′, then we get a length one semiorder
P with m+ k elements, and there are exactly m elements on the upper level and k elements
on the lower level. On the other hand, given a semiorder S and a semiorder P as above, we
can uniquely determine the semiorder S ′, because based on Proposition 5, the k elements
on the (h + 1)th level of S ′ must be smaller than all elements on the ith level of S ′, for
1 ≤ i ≤ h − 1. Therefore, the semiorder P uniquely determines the way to add the k new
elements.

Let P with ρ(P ) = (p1, p2, . . . , pm+k) represent one such semiorder. Then we have

{

k = p1 ≥ p2 ≥ · · · ≥ pm ≥ 0;

pm+1 = pm+2 = · · · = pm+k = 0.
(3)

Notice that {p2, p3, . . . , pm} is an (m−1)-element multiset with elements from {0, 1, . . . , k},
and thus we have

(

k+1+m−1−1
m−1

)

=
(

m+k−1
m−1

)

such multisets. Therefore, there are
(

m+k−1
m−1

)

pos-
sible semiorder P ’s. Summing up all possible m’s, we have

f(n, h, k) =
n−k
∑

m=1

(

m+ k − 1

m− 1

)

· f(n− k, h− 1,m).

Proof of the Main Theorem 1. For h = 0, the (n+1)-element ordered tree of height h+1 = 1
can only be the tree with n nodes adjacent to the root; meanwhile, the n-element semiorder of
length 0 can only be the one with n elements and any two of the elements are incomparable.
As a result, we have

t(n, 0, k) = f(n, 0, k) =

{

1, if n = k;

0, if n 6= k.

For h ≥ 1, by Lemma 6 and 7, t(n, h, k) and f(n, h, k) have the same recurrence formula.
Therefore t(n, h, k) = f(n, h, k) for every n ≥ 1, h ≥ 0, and 1 ≤ k ≤ n. Summing on k
completes the proof of Theorem 1.
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2.2 Bijective proof

Recall that an element of a semiorder is good if it is on the last level of the semiorder. Based
on the idea in the recurrence proof, we can construct a one-to-one map from (n+1)-element
ordered trees of height H +1 with k nodes of depth H +1 to n-element semiorders of length
H with k good elements.

For an ordered tree with n + 1 nodes and height H + 1, let us assume that there are xi

nodes of depth i, 0 ≤ i ≤ H + 1. Since the root is the only node of depth 0, we have

H+1
∑

i=1

xi = n. (4)

Let sij denote the number of nodes of depth i that are adjacent to the jth node of depth
i−1, 1 ≤ j ≤ xi−1, 1 ≤ i ≤ H+1. Since every node of depth i should be adjacent to exactly
one node of depth i− 1, we must have

xi−1
∑

j=1

sij = xi. (5)

Let ui
j =

∑xi−1

k=j sik, 1 ≤ j ≤ xi−1, 1 ≤ i ≤ H + 1. Then ui
1 ≥ ui

2 ≥ · · · ≥ ui
xi−1

. Let

yi =
∑i

k=1 xk, 1 ≤ i ≤ H + 1, and y0 = 0. We now define Ri by induction, and let the
number of entries in Ri be yi.

Set R1 = (0, 0, . . . , 0), in which there are x1 = y1 zeros. Assume Ri = (ri1, r
i
2, . . . , r

i
yi
),

1 ≤ i ≤ H, and let

Ri+1 = (ri1+xi+1, r
i
2+xi+1, . . . , r

i
yi−1

+xi+1, r
i
yi−1+1+ui+1

1 , riyi−1+2+ui+1
2 , . . . , riyi−1+xi

+ui+1
xi

, 0, 0, . . . , 0)

in which there are xi+1 zeros, and thus Ri+1 has yi−1 + xi + xi+1 = yi+1 entries.

Theorem 8. The vector RH+1 represents an n-element semiorder of length H with xH+1

good elements. This gives a bijective map from (n+1)-node ordered trees of height H +1 to
n-element semiorders of length H.

Since this map is naturally derived from the recurrence proof, we do not give a rigorous
proof on why the map is valid and why it is a bijection. The main idea here is to map an
ordered tree of height H +1 to a semiorder with H +1 levels, where the number of elements
on the ith level of the semiorder is equal to the number of nodes of depth i in the tree,
1 ≤ i ≤ H + 1. We get a bijection between (a) the connections between nodes of depths i
and i+1 in the tree, and (b) the set of ordered pairs between elements on levels i and i+1 in
the semiorder, 1 ≤ i ≤ H. This bijection preserves not only the number of elements but also
much additional structure. It presents an effective way to connect semiorders and ordered
trees, as well as Dyck paths. In order to illustrate the bijection more clearly, we show by an
example how the map works.
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Example 9. Assume we have the following ordered tree:

•
• •
• • •

• • •
•

�� ??

�� ??

�� ??

Here the number of nodes is 10 and height is 4. We have (x1, x2, x3, x4) = (2, 3, 3, 1).
So the tree should correspond to a semiorder with 9 elements, length 3, and the num-
ber of elements of each depth is given by (2, 3, 3, 1). Write si = (si1, s

i
2, . . . , s

i
xi−1

) and

ui = (ui
1, u

i
2, . . . , u

i
xi−1

). Then the vectors representing the connections between two adjacent
depth-levels in the ordered tree are

s1 = (2), s2 = (1, 2), s3 = (2, 0, 1), s4 = (0, 0, 1).

We transform these vectors into vectors that can represent the set of ordered pairs between
two adjacent levels of the semiorder. These vectors are

u1 = (2), u2 = (3, 2), u3 = (3, 1, 1), u4 = (1, 1, 1).

Now let us construct Ri, 1 ≤ i ≤ 4:

R1 = (0, 0), R2 = (3, 2, 0, 0, 0), R3 = (6, 5, 3, 1, 1, 0, 0, 0), R4 = (7, 6, 4, 2, 2, 1, 1, 1, 0).

In fact, Ri depicts the semiorder with only the first i levels, 1 ≤ i ≤ 4, and R4 is the final
semiorder we desired. Its Hasse diagram is as follows:

• •

• • •

• • •

•

??
??

OOOOOOO
??

??

		
		

		
		

��
��
��
�

��
� ,,
,

KKK
KKK 22

2
��
�

RRRRRRRRR
KKK

KKK ,,
,

The inverse map can be done by reversing the steps.

3 Generating Functions and Explicit Formulas

3.1 On unlabeled semiorders

Let fn
h denote the number of nonisomorphic unlabeled semiorders with n elements and length

h, and fn
≤h denote the number of nonisomorphic unlabeled semiorders with n elements and

length at most h, so fn
h = fn

≤h−f
n
≤(h−1). Let Fh(x) =

∑∞
n=0 f

n
h x

n, and F≤h(x) =
∑∞

n=0 f
n
≤hx

n.

De Bruijn, Knuth, and Rice [2] calculated the generating function for the number of
fixed-height ordered trees in 1972. Based on this generating function and Theorem 1, we
have the following corollary.
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Corollary 10. For h ≥ 0,

• Fh(x) =
∞
∑

n=0

fn
h x

n =
xh+1

ph+1(x)ph(x)
(6)

• F≤h(x) =
∞
∑

n=0

fn
≤hx

n =
ph(x)

ph+1(x)
(7)

where
p0(x) = 1, p1(x) = 1− x, ph+1(x) = ph(x)− x · ph−1(x).

De Bruijn, Knuth, and Rice [2] also found the explicit formulas for the number of fixed-
height ordered trees. Based on their results and Theorem 1, we have the following corollary:

Corollary 11. f 1
≤h = f 0

≤h = 1. For n ≥ 2, h ≥ 0, we have

fn
≤h = (h+ 3)−1

∑

1≤j≤h+2
2

4n+1 sin2

(

jπ

h+ 3

)

cos2n
(

jπ

h+ 3

)

. (8)

3.2 On labeled semiorders

Let gnh denote the number of nonisomorphic labeled semiorders with n elements and length
h, and gn≤h denote the number of nonisomorphic labeled semiorders with n elements and

length at most h. Thus gnh = gn≤h − gn≤(h−1). Let Gh =
∑∞

n=0 g
n
h
xn

n!
and G≤h =

∑∞
n=0 g

n
≤h

xn

n!
.

We obtain the exponential generating function Gh from the ordinary generating function
Fh by the following lemma, which is due to Zhang [7]. We first define equivalence of elements
and then state the lemma.

Definition 12. Two elements p and p′ of a poset P are equivalent if

p′ < q ⇔ p < q, for all q ∈ P

and
p′ > q ⇔ p > q, for all q ∈ P.

Lemma 13. Define the following two operations on an unlabeled poset P .

• The expansion of P at p ∈ P is obtained from P by adjoining a new element p′ such
that p and p′ are equivalent.

• The contraction c(P ) of P is a poset c(P ) obtained from P by replacing every equiva-
lence class of elements with a single element. Call a poset P a seed if P = c(P ). Call
a seed P rigid if P has no nontrivial automorphisms.
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Let C be a family of unlabeled posets such that C is closed under expansion and contrac-
tion, and all seeds in C are rigid. Let F (x) =

∑

P∈C x#P and G(x) =
∑

P∈C Dp
x#P

(#P )!
, where

#P is the number of elements in poset P and Dp is the number of ways to label the elements
of P up to isomorphism, i.e. Dp = #P

#(aut P )
, where aut P is the automorphism group of P .

Then G(x) = F (1− e−x).

The class of semiorders of length h is closed under expansion and contraction. Zhang has
observed that all (2 + 2)-free seeds are rigid. Since semiorders are (2 + 2)-free, all seeds of
semiorders are rigid. As a result, Lemma 13 implies the following corollary.

Corollary 14. For h ≥ 0,

Gh(x) = Fh(1− e−x) =
(1− e−x)h+1

ph+1(1− e−x)ph(1− e−x)
(9)

and

G≤h(x) = F≤h(1− e−x) = F≤h(1− e−x) =
ph(1− e−x)

ph+1(1− e−x)
. (10)

4 Recurrence Relations

The generating functions and explicit formulas for the number of semiorders of fixed length
are complicated, but there are some concise recurrence relations underneath. We will discuss
two useful recurrence formulas in this section. The first recurrence formula (11) is a standard
result that is known for ordered trees [2, p.17], but only a proof using generating functions
was given, while the second recurrence formula (12) is not obvious for ordered trees. We will
provide concise combinatorial proofs for both formulas. In this way, we can better understand
the relations between fixed-length semiorders with different numbers of elements.

4.1 Recurrence formula 1

Theorem 15. For n ≥ 2 and h ≥ 1,

fn
≤h =

n−1
∑

t=0

f t
≤hf

n−1−t
≤h−1 , (11)

where f 0
≤h = 1.

Proof. Let us prove this theorem by first defining the relative positions of elements on the
same level of a semiorder.

Definition 16. For elements a and b on the same level of a semiorder S, we say that element
b is to the right of element a if b is smaller than more elements than a is, or b and a are
smaller than the same number of elements while b is larger than fewer elements than a is.
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Remark 17. The above definition is unique up to isomorphism. In fact, if semiorder S has
n elements and say the integer vector corresponding to semiorder S, as discussed in Section
1, is (r1, r2, . . . , rn), then element b is to the right of element a if b corresponds to rj, while
a corresponds to ri, i < j. For detailed basic properties of semiorders, see [4].

Let us now prove Theorem 15. Let a1 be the rightmost element on the first level of S,
and let T1 = {a1}. Once Ti is defined, let Ti+1 be the set of elements on the (i + 1)th level,
each of whose elements is smaller than at least one element in Ti, 1 ≤ i ≤ h. For a given
semiorder S, the set Ti is uniquely determined, 1 ≤ i ≤ h. Notice that it is possible that
Ti = ∅, for some i, 1 ≤ i ≤ h, and if Ti = ∅, then we must have Tj = ∅ for all i ≤ j ≤ h+ 1.
Let A2 = T1 ∪ T2 ∪ · · · ∪ Th+1, and A1 = A − A2, where A is the set of all elements of S.
Since a1 ∈ A2, we must have 1 ≤ |A2| ≤ n, 0 ≤ |A1| ≤ n− 1, and |A1|+ |A2| = n.

Let us separate S into two semiorders S1 and S2. Let S1 be the induced semiorder with
element set A1. Similarly, let S2 be the induced semiorder with element set A2. Let S3 be the
semiorder obtained from S2 by removing element a1. Then for a given semiorder S, we have
that S1, S2, S3 are uniquely defined. Since S is a semiorder of length at most h, semiorders
S1 and S2 have length at most h, and thus S3 has length at most h− 1.

Assume |A1| = t, so S3 is a semiorder with n − 1 − t elements. As a result, for a given
n-element semiorder S of length at most h, we can uniquely obtain a pair of semiorders S1

and S3, of length at most h and at most h−1, and with t and n−1−t elements, respectively,
0 ≤ t ≤ n− 1.

For example, if S is as follows,
• •
• • •
• • •

•

??
?

OOOOOO
??

?

		
		

		

��
��
��

��� ,,, KKK
KK 22

2
���

RRRRRRR
KKK

KK ,,,

the corresponding S1, S2, S3 are:

•
•

• •

S1

��
� ??

?

•
• •
•
•

S2

��
� ??

?

??
?

��
� • •

•
•

S3

??
?

��
�

On the other hand, given a pair of semiorders S1 and S3, of length at most h and at
most h− 1, and with t and n− 1− t elements, respectively, 0 ≤ t ≤ n− 1, we can first add
an element a1 to S3, and let a1 be larger than all other elements in S3. Let us call the new
semiorder S2. Then S2 has n− t elements and length at most h.

Let us construct a new semiorder S by combining S1 and S2 as follows. The elements on
the ith level of S are the elements on the ith level of S1 and S2, 1 ≤ i ≤ h+ 1, and the order
relations in S1 and S2 are preserved. In addition, let every element on the (i− 1)th level of
S1 be larger than all elements on the ith level of S2.
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This construction uniquely gives an n-element semiorder S of length at most h, and if
we separate S into two semiorders by the method discussed above, we get back S1 and S3.

As a result, there is a one-to-one map between n-element semiorders S of length at most
h, and pairs of semiorders S1 and S3, of length ≤ h and ≤ h − 1, and with t and n − 1 − t
elements, respectively, 0 ≤ t ≤ n− 1.

Therefore, summing up possible t’s, we have

fn
≤h =

n−1
∑

t=0

f t
≤hf

n−1−t
≤h−1 .

4.2 Recurrence formula 2

Theorem 18. For n ≥ 2 and h ≥ 1, we have

fn
≤h =

⌊h+2
2

⌋
∑

k=1

(−1)k−1

(

h+ 2− k

k

)

fn−k
≤h . (12)

Proof. Let us prove this theorem by first defining bad elements of a semiorder and then
considering removing one or more bad elements from a given semiorder.

Definition 19. We say an element of a semiorder is bad if the following two conditions hold.
• It is on the first level, or it is smaller than all elements on the level immediately above it,
and
• it is on the last level, or it is not larger than any element on the level immediately below
it.

Remark 20. By the above definition, there are no two adjacent levels which both have bad
elements. In addition, by Proposition 5, if two bad elements are on the same level, they must
be equivalent. Therefore there is at most one non-equivalent bad element on each level. We
thus only consider one bad element on each level.

Proposition 21. For every semiorder, there exist bad elements.

Proof. Assume to the contrary that there is no bad element for some semiorder. Say a is the
rightmost element on the last level based on Definition 16. Since a is not bad, there must
be some element b on the last but one level which is not larger than a. Let {a1, a2, . . . , as}
be the set of all elements on the last but one level which are larger than a. By the definition
of element levels, we must have s ≥ 1.

If there exists some element b1 on the last level such that b > b1, since a is the rightmost,
i.e., a is to the right of b1, there must exist some i, 1 ≤ i ≤ s, such that ai is not larger than
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b1. Then {ai > a, b > b1} forms a (2+ 2)-structure. This is a contradiction. Hence b is not
larger than any element on the last level, and thus b is the rightmost element on the last but
one level.

Since b is not bad, it must not be on the first level, and there must be some element c on
the level immediately above b that is not larger than b. Again due to the fact that b is the
rightmost element on its level and that we cannot have a (2 + 2)-structure, c must be not
larger than any element on the level immediately below the level c is on. Continuing, we can
find an element on each level that is not larger than any element on the level immediately
below it. Since the length of the semiorder is finite, we can finally obtain an element d on
the first level such that d is not larger than any element on the second level. Then d is bad,
and we get a contradiction. Hence, for every semiorder, bad element exists.

We are now ready to deduce the recurrence formula (18). For fixed k, consider adjoining
k bad elements to an (n− k)-element semiorder to get a new semiorder. Specifically, for an
(n − k)-element semiorder of length at most h, and for k nonadjacent levels among levels
1, 2, . . . , h+1, we consider adjoining k elements onto the given levels of the semiorder in the
following manner. Say we are adjoining an element onto the lth level.

• If l = 1, let the new element be larger than all elements on the ith level, i ≥ 3, and be
not comparable with any other element.

• If l ≥ 2, and the (l − 1)th level originally has at least one element, we let the new
element be smaller than all elements on the (l − 1)th level, be larger than all elements
on the ith level, i ≥ l + 2, and be not comparable with any other element.

• If l ≥ 2, and the (l− 1)th level originally has no element, we hang the new element on
the lth level, that is, we place it as an isolated vertex on the lth level. We then call the
new semiorder an invalid semiorder, and if some semiorder r0 can be obtained from
the invalid semiorder by taking out the hanging elements, we call the invalid semiorder
the disguise of r0.

By Definition 19, in the above adjoining, all new elements which are not hung are bad
elements in the new semiorder. There are

(

h+2−k

k

)

ways to choose k nonadjacent levels
among levels 1, 2, . . . , h + 1. Therefore, including multiplicity and the invalid ones, we can
obtain

(

h+2−k

k

)

· fn−k
≤h n-element semiorders from (n− k)-element semiorders by adjoining k

elements. Let Sk be the set of all such n-element semiorders, including multiplicity. Then
|Sk| =

(

h+2−k

k

)

· fn−k
≤h .

Let R be the set of all n-element semiorders of length at most h, and R′ be the set of
all semiorders with at most n− 1 elements and length at most h. By Proposition 21, every
semiorder has bad elements, so every semiorder r ∈ R can be obtained by the above process
from some (n − k)-element semiorder of length at most h and k given nonadjacent levels,
i.e., r ∈ Sk, for some 1 ≤ k ≤ ⌊h+2

2
⌋. However, r might be in Sk for multiple k’s, and r may

have multiple copies in Sk. Meanwhile, Sk may contain some semiorders not in R, but are
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the disguises of some semiorders r′ ∈ R′. Notice that |R| = fn
≤h. In the following argument,

we calculate the number of copies of a semiorder in each Sk and obtain a formula connecting
|R| and |Sk|, 1 ≤ k ≤ ⌊h+2

2
⌋.

For a semiorder r0 ∈ R∪R
′, let Sk

r0
be the set of all semiorders in Sk which are equal to

r0 or a disguise of r0. Then S
k =

⋃

r∈R∪R′ Sk
r , and

∑

r∈R∪R′

|Sk
r | = |S

k| =

(

h+ 2− k

k

)

· fn−k
≤h . (13)

Next, we show that
∑⌊h+2

2
⌋

k=1 (−1)k−1|Sk
r | = 1, for every r ∈ R, and

∑⌊h+2
2

⌋

k=1 (−1)k−1|Sk
r′ | = 0,

for every r′ ∈ R′.
1. For a semiorder r ∈ R, assume r has m bad elements. Since we adjoined k elements

to an (n− k)-element semiorder to obtain the semiorder r, which has n elements, the k new
elements should all be added to the levels among them levels where the bad elements are, and
no new element is hung. So k ≤ m. Further notice that for a given k, 1 ≤ k ≤ m, and given
k levels among the m levels where the bad elements are, there is a unique (n − k)-element
semiorder can be used to adjoin k bad elements to the chosen levels to obtain semiorder r.
There are

(

m

k

)

ways to choose the k levels, so |Sk
r | =

(

m

k

)

· 1, and

⌊h+2
2

⌋
∑

k=1

(−1)k−1|Sk
r | =

m
∑

k=1

(−1)k−1|Sk
r | =

m
∑

k=1

(−1)k−1

(

m

k

)

· 1 = 1. (14)

2. For a semiorder r′ ∈ R′, assume r′ has n′ elements, m′ of which are bad. Further
assume that semiorder r′ has length h′. For a given k, 1 ≤ k ≤ ⌊h+2

2
⌋, if we adjoined k

elements to an (n − k)-element semiorder to obtain r′, we need to adjoin t′ = n′ − (n − k)
elements to levels where the bad elements of r′ are, and hang the remaining n−n′ elements.
Moreover, since we hung n− n′ elements, there should be at least n− n′ nonadjacent levels
among levels h′ + 2, h′ + 3, . . . , h+ 1. As a result,

⌈

h−h′

2

⌉

≥ n− n′.
To obtain the semiorder r′, if we are given t′ levels among the m′ levels where the bad

elements of r′ are and n − n′ nonadjacent levels among levels h′ + 2, h′ + 3, . . . , h + 1,
there is a unique (n − k)-element semiorder to which we can adjoin k elements to the
chosen levels to obtain the disguise of r′. Notice that there are

(

m′

t′

)

ways to choose t′

levels among the m′ levels, and
(

h−h′+1−(n−n′)
n−n′

)

ways to choose n−n′ nonadjacent levels from
levels h′ + 2, h′ + 3, . . . , h+ 1. Thus,

|Sk
r′ | = |S

t′−n′+n
r′ | =

(

m′

t′

)

·

(

h− h′ + 1− (n− n′)

n− n′

)

· 1.

13



Then

⌊h+2
2

⌋
∑

k=1

(−1)k−1|Sk
r′ | =

m′

∑

t′=0

(−1)t
′−n′+n−1|St′−n′+n

r′ |

=
m′

∑

t′=0

(−1)t
′−n′+n−1

(

m′

t′

)

·

(

h− h′ + 1− (n− n′)

n− n′

)

· 1

= (−1)n−n′−1 ·

(

h− h′ + 1− (n− n′)

n− n′

) m′

∑

t′=0

(−1)t
′

(

m′

t′

)

= 0. (15)

However, we should be careful with the special case when t′ ≥ 1 and the (h′ + 1)th level
of r′ has bad elements. In this case, the (h′+1)th level and the (h′+2)th level might be both
chosen when we choose n − n′ nonadjacent levels among levels h′ + 2, h′ + 3, . . . , h + 1 and
choose t′ levels among the m′ levels where bad elements are (note that here the (h′ + 1)th

level is among the m′ levels). Further notice that Sk
r′ ∈ S

k and Sk is defined as the set
of all n-element semiorders generated by adjoining k elements to k nonadjacent levels to
(n − k)-element semiorders. Therefore, when we calculate |Sk

r′ |, we need to take out the
overcounts of cases when the two adjacent levels (h′ +1) and (h′ +2) are both chosen. Thus
in the special case where t′ ≥ 1 and the (h′ + 1)th level of r′ has bad elements,

|Sk
r′ | = |S

t′−n′+n
r′ |

=

(

m′

t′

)

·

(

h− h′ + 1− (n− n′)

n− n′

)

· 1−

(

m′ − 1

t′ − 1

)

·

(

h− h′ − 1− (n− n′ − 1)

n− n′ − 1

)

· 1

By similar calculations, we have
∑⌊h+2

2
⌋

k=1 (−1)k−1|Sk
r′ | = 0.

To conclude the proof, by equations (13), (14), and (15), we have

fn
≤h = |R| =

∑

r∈R

1 +
∑

r′∈R′

0 =
∑

r∈R

⌊h+2
2

⌋
∑

k=1

(−1)k−1|Sk
r |+

∑

r′∈R′

⌊h+2
2

⌋
∑

k=1

(−1)k−1|Sk
r′ |

=

⌊h+2
2

⌋
∑

k=1

(−1)k−1
∑

r∈R∪R′

|Sk
r |

=

⌊h+2
2

⌋
∑

k=1

(−1)k−1

(

h+ 2− k

k

)

· fn−k
≤h .

5 The Number of Semiorders of Small Length

We can substitute certain lengths H in the explicit formulas for the number of semiorders.
Though the original formulas are very complicated, we can get some simple results for small
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values of H. In this section, we list these simple results and give bijective proofs, which
present a clearer view of the number of fixed-length semiorders.

5.1 fn

≤1, the number of nonisomorphic unlabeled n-element semiorders

of length at most one

Theorem 22. For n ≥ 1, fn
≤1 = 2n−1.

We give a simple bijective proof here.

Proposition 23. For n elements a1, a2, . . . , an, put a1 on the upper level, and each of
a2, . . . , an either on the lower or upper level. Define the order relations in the following
way: ai > aj if and only if i < j, and ai is on the upper level while aj is on the lower level.

We claim that the above defines a bijective map from (a) an arrangement of n−1 elements
onto two levels in (b) an n-element semiorder of length at most one.

Here is an example of the map. Say n = 10, and for a2, . . . , a10, let {a2, a5, a9} be on the
upper level, and {a3, a4, a6, a7, a8, a10} on the lower level. Then the corresponding semiorder
looks like:

• • • •

• • • • • •

a1 a2 a5 a9

a3 a4 a6 a7 a8 a10

//
//

//
//

//
/

??
??

??
??

??
??

??

JJJJJJJJJJJJJJJJJJ

OOOOOOOOOOOOOOOOOOOOOOO

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

��
��
��
��
��
�

//
//

//
//

//
/

??
??

??
??

??
??

??

JJJJJJJJJJJJJJJJJJ

OOOOOOOOOOOOOOOOOOOOOOO

//
//

//
//

//
/

??
??

??
??

??
??

??

JJJJJJJJJJJJJJJJJJ

??
??

??
??

??
??

??

Proof. We first show that the map gives a semiorder of length at most one. It suffices to
show that the poset the map gives is indeed a semiorder. Then the only possible violation
is a (2 + 2)-structure. If there exist four distinct elements ai, aj, ak, am, such that ai > aj,
ak > am, ai ∼ ak, ai ∼ am, ak ∼ aj, am ∼ aj, then ai, ak must be on the upper level, while
aj, am must be on the lower level, and i < j, k < m. Since ai ∼ am, we must have i > m;
since ak ∼ aj, we must have k > j. Then k > j > i > m > k, which is a contradiction.
Hence the map gives a semiorder of length at most one.

We then claim that the inverse map is also well-defined, and thus the map is bijective. For
a given n-element semiorder r with m elements on the upper level, let ρ(r) = (r1, r2, . . . , rn).
Then rm+1 = rm+2 = · · · = rn = 0. Say element ati corresponds to ri, 1 ≤ i ≤ m,
and then there should be exactly ri elements on the lower level such that their subscripts
are larger than ti. As a result, note that a1 is on the upper level, we should also have
ar1−r2+2, ar1−r3+3, . . . , ar1−rm+m on the upper level. In other words, for a given semiorder
of length at most one, the elements arranged on the upper level are uniquely determined.
Therefore, the inverse map is well-defined.
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As an example, if we have (r1, r2, . . . , rn) = (6, 6, 4, 1, 0, 0, 0, 0, 0, 0), then the elements on
the upper level must be a1, a2, a5, a9.

There are 2n−1 ways to arrange elements a2, . . . , an on either upper or lower level, and
thus there are 2n−1 nonisomorphic unlabeled n-element semiorders of length at most one.

5.2 The number of nonisomorphic trees derived from semiorders

of length at most one

In this subsection, we take a closer look at the unlabeled semiorders of length at most one.
For an n-element semiorder S of length at most one, and exactly m elements on the first
level, let ρ(S) = (r1, r2, . . . , rm, 0, 0, . . . , 0), where there are n−m 0’s and n−m ≥ r1 ≥ r2 ≥
· · · ≥ rm ≥ 0. Let the elements of the semiorder be s1, s2, . . . , sn, with si corresponding to
ri, 1 ≤ i ≤ m, and then s1, s2, . . . , sm are on the upper level.

For a permutation σ = (a1, a2, . . . , am) of {1, 2, . . . ,m}, if we add the relations sa1 > sa2 >
· · · > sam to the original semiorder, we get a tree with the main trunk sa1 > sa2 > · · · > sam ,
and the elements sm+1, sm+2, . . . , sn attached to one of the elements on the main trunk in
the following manner. For m+ 1 ≤ i ≤ n, element si is attached to element sj on the main
trunk if and only if si < sj, and si is incomparable with all elements on the main trunk that
are below sj, 1 ≤ j ≤ m. We denote the tree derived from semiorder S and permutation σ
by T (S, σ).

For example, the Hasse diagram of the semiorder S with ρ(S) = (7, 5, 4, 2, 1, 0, 0, 0, 0, 0, 0)
is as follows:

• • • • •

• • • • • • •

s1 s2 s3 s4 s5

s6 s7 s8 s9 s10 s11 s12

//
//

//
//

//
/

??
??

??
??

??
??

??

JJJJJJJJJJJJJJJJJJ

OOOOOOOOOOOOOOOOOOOOOOO

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

//
//

//
//

//
/

??
??

??
??

??
??

??

JJJJJJJJJJJJJJJJJJ

OOOOOOOOOOOOOOOOOOOOOOO

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

//
//

//
//

//
/

??
??

??
??

??
??

??

JJJJJJJJJJJJJJJJJJ

OOOOOOOOOOOOOOOOOOOOOOO
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??

??
??
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??

??
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??
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??
??
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??

??

Suppose that σ = (1, 5, 3, 2, 4), and then we add the relations s1 > s5 > s3 > s2 > s4 to
the original semiorder. Then T (S, σ) is

•

•

•

•

•

•
•

•••

•
•

s1

s2

s3

s4

s5
s6

s7

s8
s9s10

s11
s12

QQQQQQ

??
??

?

QQQQQQ
JJJJJ

??
??

?

QQQQQQ

??
??

?
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Here we call s1 > s5 > s3 > s2 > s4 the main trunk, and say elements s6, s7 are attached
to s1, elements s8, s9, s10 are attached to s2, and elements s11, s12 are attached to s4.

The idea of transforming a semiorder of length at most one to a tree is suggested by R.
Stanley, in the context of finding the number of linear extensions of n-element semiorders of
length at most one. Though this idea may not be useful in its original context, we can give
a different application.

Theorem 24. Given an n-element semiorder Rm of length at most one and exactly m
elements on the first level, let ρ(Rm) = (r1, r2, . . . , rn). If ri 6= rj for any 1 ≤ i < j ≤ m,
then the number of nonisomorphic unlabeled trees in {T (Rm, σ)|σ ∈ Sm} is the Catalan
number Cm.

Proof. A permutation σ = (a1, a2, . . . , am) of {1, 2, . . . ,m} uniquely determines the main
trunk. For m + 1 ≤ i ≤ n, assume element si is smaller than ti elements. Then si must
be smaller than s1, s2, . . . , sti and is not comparable with the other elements. Let sui

be
the lowest element on the main trunk among s1, s2, . . . , sti . Then si is attached to sui

as a
leaf, meaning si is smaller than sui

but not comparable with any element on the main trunk
below sui

.
As a result, for an element su on the main trunk, su has leaves only if it is the lowest

element on the main trunk among s1, s2, . . . , st, for some 1 ≤ t ≤ m. In other words, assume
b1 < b2 < · · · < bk are the set of right-to-left minima of the permutation σ = (a1, a2, . . . , am),
and then only the elements sb1 , sb2 , . . . , sbk may have leaves. Further notice that the numbers
of leaves attached to sb1 , sb2 , . . . , sbk are rb1 − rb2 , rb2 − rb3 , . . . , rbk−1

− rbk , rbk , respectively,
and ri 6= rj for any 1 ≤ i < j ≤ m. Therefore, for a given n-element semiorder Rm of
length at most one and exactly m elements on the first level, the value and position of the
right-to-left minima of the permutation σ = (a1, a2, . . . , am) uniquely determines T (Rm, σ).

For instance, in the example above, we have σ = (1, 5, 3, 2, 4) and ρ(R5) = (r1, r2, . . . , r12) =
(7, 5, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0). The right-to-left-minima of σ and their positions with σ is given
by 1, ∗, ∗, 2, 4. Then the corresponding tree T (R5, σ) has five nodes on the main trunk,
r1 − r2 = 2 leaves attached to the first node, r2 − r4 = 3 leaves attached to the forth node,
and r4 = 2 leaves attached to the fifth node.

Therefore, the number of all possible nonisomorphic unlabeled trees in {T (Rm, σ)|σ ∈
Sm} is equal to the number of ways to specify the values and positions of the right-to-
left minima of permutations σ ∈ Sm. That is, if we let RtLM(σ) = {(a, σ(a))|1 ≤ a ≤
m,σ(a) is a right-to-left minima in σ}, then #{T (Rm, σ)|σ ∈ Sm} = #{RtLM(σ)|σ ∈ Sm}.
We calculate #{RtLM(σ)|σ ∈ Sm} in the following lemma.

Lemma 25. Let RL(σ) be the number of right-to-left minima of the permutation σ. For
1 ≤ k ≤ m, let f(m, k) = #{RtLM(σ)|σ ∈ Sm, RL(σ) = k}. Then f(m, k) = N(m, k) =
1
m

(

m

k

)(

m

k−1

)

, a Narayana number.

For example, for m = 3 and k = 2, f(3, 2) = #{RtLM(σ)|σ ∈ S3, RL(σ) = 2} =
#{RtLM(σ)|σ = (23), (12), or (132)} = #{{(3, 2), (1, 1)}, {(3, 3), (2, 1)}, {(3, 2), (2, 1)}} =
3.
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Proof. For 1 ≤ k ≤ m, the Narayana number N(m, k) is equal to the number of Dyck
paths of semilength m with k peaks, which are the turning points from a (1, 1) step to
a (1,−1) step on the path. We prove the lemma by establishing a bijection between (i)
Dyck paths of semilength m with k peaks, and (ii) the collection of different RtLM(σ)’s for
σ ∈ Sm, RL(σ) = k. We define a map from (i) to (ii) as follows:

Given a Dyck path of semilength m with k peaks, let us read the Dyck path from left to
right and do the following:

• Label the endpoints of (1, 1) steps from left to right with 1 to m. Since there are m
(1, 1) steps, there should be m such endpoints.

• Label the startpoints of (1,−1) steps from left to right with 1 to m. Since there are
m (1,−1) steps, there should be m such startpoints.

• Notice that a point on the Dyck path is a peak if and only if it is both an endpoint
of a (1, 1) step and a startpoint of a (1,−1) step. Let (i, j) be the coordinate of a
peak, if the peak is the ith endpoint and the jth startpoint. Assume the coordinate
of the k peaks are (a1, b1), (a2, b2), . . . , (ak, bk). Then a1 < a2 < · · · < ak = m and
1 = b1 < b2 < · · · < bk.

• Obtain a specification of the values and positions of the right-to-left minima of a
permutation by putting the number bi on position ai, 1 ≤ i ≤ k.

Proposition 26. The above map is valid, i.e., {(ai, bi), 1 ≤ i ≤ k} = RtLM(σ), for some
σ ∈ Sm, RL(σ) = k, and the above map is a bijection.

For example, if we have the following Dyck path:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

2

3

4 5

6

7

1

2 3

4

5

6 7
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??
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The semilength of the Dyck path is m = 7, and it has 4 peaks. The numbers in bold
face are the labels for the endpoints of (1, 1) steps, and the numbers in ordinary type are
the labels for the startpoints of (−1, 1) steps. Then the coordinates of the 4 peaks are
(3, 1), (4, 3), (6, 4), (7, 7). We put 1 on position 3, 3 on position 4, 4 on position 6, 7 on
position 7, and then we get a possible specification of the values and positions of the right-
to-left minima of a permutation:

∗, ∗, 1, 3, ∗, 4, 7. (16)
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Proof. • We first show that the above map gives us a valid specification of the values
and positions of the right-to-left minima of some permutation σ ∈ Sm. We prove the
validity by constructing such σ.

Assume the labels of the m− k endpoints of the (1, 1) steps which are not peaks, are
c1 < c2 < · · · < cm−k; assume the labels of the m − k startpoints of the (1,−1) steps
which are not peaks are d1 < d2 < · · · < dm−k. Then

{a1, a2, . . . , ak, c1, c2, . . . , cm−k} = {b1, b2, . . . , bk, d1, d2, . . . , dm−k} = {1, 2, . . . ,m}.

Since the path never goes below the x-axis, we must have cj < dj for every 1 ≤ j ≤
m− k.

Let σ be a permutation such that σ(ai) = bi, 1 ≤ i ≤ k, and σ(cj) = dj, 1 ≤ j ≤ m−k.
We will show that RtLM(σ) = {(ai, bi), 1 ≤ i ≤ k}.

For every j, 1 ≤ j ≤ m − k, since the Dyck path never goes below the x axis, there
must be a peak i on the path between cj and dj. Then cj < ai and bi < dj, and thus
in σ, bi = σ(ai) is smaller than dj = σ(cj), while ai > cj, i.e., bi is to the right of dj.
Therefore dj cannot be a right-to-left minimum.

On the other hand, for every i, 1 ≤ i ≤ k, there does not exist some 1 ≤ i′ ≤ k
such that bi′ < bi and ai′ > ai. In addition, if there exists some 1 ≤ j ≤ m − k such
that dj = σ(cj) < bi = σ(ai) and cj < ai, then by the above paragraph there exists
1 ≤ i′ ≤ k, such that bi′ < dj < bi and ai′ > cj > ai. We obtain a contradiction. As a
result, RtLM(σ) = {(ai, bi), 1 ≤ i ≤ k}.

For example, let us construct the permutation σ for the above example: c1 = 1, c2 = 2,
c3 = 5 and d1 = 2, d2 = 5, d3 = 6. We obtain σ = (2, 5, 1, 3, 6, 4, 7), and this
permutation exactly corresponds to the right-to-left minima as shown in Example 16.

• We now show that the inverse of the map is well-defined, and thus the map is bijective.

For a given specification {(ai, bi), 1 ≤ i ≤ k} = RtLM(σ), for some σ ∈ Sm, we
have a1 < a2 < · · · < ak = m and 1 = b1 < b2 < · · · < bk. We construct the
corresponding Dyck path as follows: when we walk along the path from left to right,
we first walk up a1 steps and then turn down, and walk down b2 − b1 steps and then
turn up. We continue to walk up a2 − a1 steps and then turn down, and walk down
b3 − b2 steps and then turn up. In general, we walk up ai − ai−1 steps and then
turn down, and walk down bi+1 − bi steps, 2 ≤ i ≤ m − 1. In the end, we walk up
am − am−1 steps and walk down m + 1 − bm steps. During the walk, we walk up
in total a1 + (a2 − a1) + · · · + am − am−1 = am = m steps, and walk down in total
(b2 − b1) + · · · + (bm − bm−1) +m + 1 − bm = m + 1 − b1 = m steps, and we make k
turns from up to down. Since {(ai, bi), 1 ≤ i ≤ k} is a collection of right-to-left minima
of some permutation, for any 1 ≤ i ≤ k − 1, ai ≤ ai+1 − 1 ≤ bi+1 − 1 = bi+1 − b1,
so we never walk below the x-axis on the path. Therefore we get a unique Dyck path
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with semilength m and k peaks. Hence the inverse map is well-defined, so Lemma 25
is proved.

To conclude the proof of Theorem 24, note that the Catalan number Cm =
∑m

k=1N(m, k).
Hence, we have that the number of nonisomorphic unlabeled trees in {T (Rm, σ)|σ ∈ Sm} is
equal to #{RtLM(σ)|σ ∈ Sm} =

∑m

k=1 f(m, k) =
∑m

k=1N(m, k) = Cm = 1
m+1

(

2m
m

)

.

Remark 27. Theorem 24, along with Lemma 25, gives another combinatorial explanation of
the Catalan number.

5.3 The generating function for the number of nonisomorphic la-

beled n-element semiorders of length at most one

Recall that an ordered partition of a set is a partition of the set into some pairwise disjoint
nonempty subsets, together with a linear ordering of these subsets. From the generating
function (9) for G≤h(x), we get G≤1(x) = (1− e−x)/(2e−x − 1) = (ex − 1)/(2− ex), which is
exactly the exponential generating function for the number of ordered partitions [5, p. 472].
As a result, we can get the following theorem:

Theorem 28. The number of nonisomorphic labeled n-element semiorders of length at most
one is equal to the number of ordered partitions of [n].

We give a simple bijective proof to Theorem 28.

Proposition 29. For an ordered partition (A1, . . . , Ak) of [n], let |Ai| = ai, 1 ≤ i ≤ k, so
n = a1 + a2 + · · ·+ ak. Define the semiorder R by ρ(R) = (m,m− 1, . . . , 1, 0, . . . , 0), where
m = ⌊k

2
⌋, and there are ⌈k

2
⌉ 0’s. Then R has k elements. Say the elements are t1, t2, . . . , tk,

with ti corresponding to the ith entry of R’s integer vector. Let R′ be another semiorder such
that its contraction c(R′) (defined in Lemma 13) is R, and in R′, the sizes of the equivalence
classes are a1, a2, . . . , ak, respectively, with ai corresponding to equivalence class ti. Label the
elements in the ith equivalence class with the corresponding numbers in Ai, 1 ≤ i ≤ k.

We claim that the above defines a bijective map from ordered partitions of [n] to n-element
labeled semiorders R′ of length at most one.

For example, if we have an ordered partition {1, 4}{2, 6, 8}{7}{3, 5}, then k = 4, m = 2,
and (a1, a2, a3, a4) = (2, 3, 1, 2). We have ρ(R) = (2, 1, 0, 0), and then the map works as
follows:

20



•

•

•

•

R

−→
??

??
??

??
??

??
? • •

•

• • •

• •

unlabeled R′

−→
��
��
��
��
�

��
��
��
��
�

��
��
��
��
��

%%
%%
%%
%%
%

��
��
��
��
�

??
??

??
??

??
??

?

99
99

99
99

99
9

DD
DD

DD
DD

DD
DD

DD

??
??

??
??

??
??

? • •

•

• • •

• •

labeled R′

1 4

7

2 6 8

3 5

��
��
��
��
�

��
��
��
��
�

��
��
��
��
��

%%
%%
%%
%%
%

��
��
��
��
�

??
??

??
??

??
??

?

99
99

99
99

99
9

DD
DD

DD
DD

DD
DD

DD

??
??

??
??

??
??

?

Proof. We first show that the map takes an ordered partition of [n] to a labeled n-element
semiorder of length at most one. The size of every equivalence class of R is one, and thus
semiorder R is a valid contraction. The length of R is at most one, and thus R′ also has
length at most one. In addition, R has k elements, so R′ has k equivalence classes. Therefore,
we can construct the equivalence classes of R to have sizes a1, a2, . . . , ak. Moreover, within
an equivalence class with ai elements, 1 ≤ i ≤ k, since we only consider nonisomorphic
semiorders, it does not matter which of the ai numbers in Ai is assigned to which element in
this equivalence class. Hence the way to label elements is unique up to isomorphism. Thus
each ordered partition of [n] uniquely corresponds to a labeled n-element semiorder of length
at most one.

Next we show that the inverse map is well-defined and uniquely determines an ordered
partition of [n]. Let the labeled n-element semiorder R′ of length at most one have k
equivalence classes. Let us group up the labels within every equivalence class, so

[n] =
⋃

{labels in each equivalence class}.

To obtain an ordered partition of [n], it suffices to find the way to order the k equivalence
classes of R′. The contraction c(R′) must have length at most one with ρ(c(R′)) = (⌊k

2
⌋, ⌊k

2
⌋−

1, . . . , 1, 0, . . . , 0), where there are ⌈k
2
⌉ 0’s.

Order the k elements of c(R′) such that the ith element corresponds to the ith entry of
ρ(c(R′)). Afterwards, we can order the k equivalence classes of R′ correspondingly. Thus we
get a unique ordered partition of [n], so the inverse map is well-defined.

5.4 The number of nonisomorphic unlabeled n-element semiorders

of length at most three

Theorem 30. For n ≥ 1, we have

fn
≤3 =

3n−1 + 1

2
. (17)

Corollary 31. For n ≥ 2, fn
3 = 3fn−1

3 + fn−2
≤2 − 1 = 3fn−1

3 + fn−2
2 + fn−2

1 .
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Proof. By Theorem 18, fn
≤2 = 3fn−1

≤2 − fn−2
≤2 . By equation (17), fn

≤3 = 3fn−1
≤3 − 1. Therefore,

fn
3 = fn

≤3 − fn
≤2 = 3fn−1

≤3 − 1− (3fn−1
≤2 − fn−2

≤2 )

= 3(fn−1
≤3 − fn−1

≤2 ) + fn−2
≤2 − 1

= 3fn−1
3 + fn−2

2 + fn−2
1 .

Remark 32. Theorem 30 can be directly derived from equation (8), or from the recurrence
formula in Theorem 18. Like Theorem 22, there might also be a more straightforward
bijective proof for Theorem 30, which may give us a more intuitive way to understand why
fn
≤3 grows roughly exponentially with a base 3. This leaves an open question for this paper.

This paper studies the number of unlabeled semiorders of size n and lengthH and gives an
explicit formula for this number by establishing a bijection between semiorders and ordered
trees. With this result, we derive a series of related results including the number of fixed-
length labeled semiorders, some recurrence relations of semiorders of fixed length, and some
interesting properties of the number of semiorders of small length. Bijections are widely used
in this paper and as can be seen, bijective proofs can sometimes provide us pretty neat ways
to view the semiorder and its relationship with some other sets of combinatorial objects.
Further research may combine the results of this paper with some other bijective results of
(2+ 2)-free posets and find more interesting results about semiorders.
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