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Abstract

We compute asymptotic series for Hofstadter’s figure-figure sequences.

1 Introduction

We consider disjoint partitions of the set of strictly positive integers into two subsets such
that one set, B, consists of the differences of consecutive elements of the other set, A,
and a given difference appears at most once. There are many such partitions. We call a
the (strictly increasing) sequence enumerating A, and b the (injective) sequence of its first
differences, both with offset 1. Hofstadter’s figure-figure sequences are the sequences a and b

corresponding to the partition with the set A lexicographically minimal. This is equivalent
to b being increasing. The sequences read

an = 1, 3, 7, 12, 18, 26, 35, 45, 56, 69, . . . (OEIS A005228),

bn = 2, 4, 5, 6, 8, 9, 10, 11, 13, 14, . . . (OEIS A030124).

These sequences were introduced by Hofstadter in [2, p. 73]. They appear as an example
of complementary sequences in [3]. Their asymptotic behavior does not seem to be given
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anywhere in the literature except for the asymptotic equivalents mentioned by Hasler and
Wilson in the related OEIS entries [1]. In this article, we compute asymptotic series for these
sequences.

We have by definition bn = an+1−an, so an = 1+
∑n−1

k=1 bk. Since the sequence a is strictly
increasing, given any n ≥ 1, there is a unique k ≥ 1 such that ak − k < n ≤ ak+1 − (k + 1).
This defines a sequence u by letting un be this k. Therefore,

a(un)− un < n ≤ a(un + 1)− (un + 1). (1)

The sequence u is non-decreasing (actually, un+1 − un ∈ {0, 1}) and u1 = 1. It reads

un = 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, . . . (OEIS A225687).

The partition condition implies
bn = n+ un.

As a consequence,

an = 1 +
(n− 1)n

2
+

n−1
∑

k=1

uk. (2)

2 Bounds and asymptotic equivalents

Since un ≥ 1, we have an ≥ 1
2
n(n+1). Therefore, the left inequality of (1) implies 1

2
un(un+

1)− un ≤ n− 1, or u2
n − un − 2(n− 1) ≤ 0, so un ≤ 1

2
+
√

1
4
+ 2(n− 1), and finally

1 ≤ un <
√
2n+

1

2
.

This implies n+ 1 ≤ bn < n+
√
2n+ 1

2
, so

bn ∼ n.

The upper bound on u implies in turn an < 1 + 1
2
(n − 1)n +

∑n−1
k=1(

√
2k + 1

2
). Since the

function
√
x is strictly increasing, we have

∑n−1
k=1

√
k <

∫ n

1

√
x dx = 2

3
(n3/2 − 1). Therefore

n2

2
+

n

2
≤ an <

n2

2
+

23/2

3
n3/2 − 1

3
and in particular

an ∼ n2

2
.

The relation an < n2

2
+ 23

3

(

n
2

)3/2 − 1
3
and the right inequality of (1) imply n <

(un+1)2

2
+

23/2

3
(un +1)3/2 − un − 4

3
, which implies un → +∞. Therefore 2n ≤ u2

n +O(u
3/2
n ), but we saw

that un = O(
√
n), so O(un

3/2) ⊆ O(n3/4) ⊆ o(n), so u2
n ≥ 2n+ o(n), so un ≥

√
2n+ o(

√
n).

Combining this with the above upper bound, we obtain

un ∼
√
2n

and in particular O(un) = O(
√
n).
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3 Asymptotic series

Since an ∼ n2

2
, we have an+1 − an = O(n). Now (1) gives a(un) = n + O(un). On the other

hand, (2) gives an = n2

2
+
∑n−1

k=1 uk + O(n), therefore u2
n

2
+
∑un−1

k=1 uk = n + O(un). Since
un = O(

√
n), we can increment the upper limit of the summation index by 1, and since

O(un) = O(
√
n), we obtain the main relation

u2
n

2
+

un
∑

k=1

uk = n+O(
√
n).

We are now ready to prove by induction that for all K ≥ 1, we have the asymptotic
expansion

un =
K
∑

k=1

(−1)k+1 21+(k−1)k/2

∏k−1
j=1(2

j + 1)

(n

2

)1/2k

+ o
(

n1/2K
)

. (3)

Indeed, the case K = 1 reduces to un ∼
√
2n, which we already proved. We also prove

the case K = 2 separately since it is slightly different from the general case. We write
un =

√
2n+ vn with vn = o(

√
n). We have

u2
n

2
− n =

√
2n vn +

v2n
2
.

We do not know a priori that v2n = O(
√
n), and that is why we have to prove this case

separately. We also have

un
∑

k=1

uk =
√
2

un
∑

k=1

√
k +

un
∑

k=1

vk =
23/2

3
un

3/2 + o
(

O(un)
3/2
)

+
un
∑

k=1

vk.

We have
∑un

k=1 vk = o
(

O(
√
n)3/2

)

⊆ o(n3/4) and o
(

O(un)
3/2
)

⊆ o(n3/4). We also have

un
3/2 ∼ (

√
2n)3/2 = (2n)3/4. Therefore,

u2
n

2
+

un
∑

k=1

uk − n =
√
2n vn +

v2n
2

+
29/4

3
n3/4 + o(n3/4).

This has to be O(
√
n) by the main relation. Dividing the right-hand side by

√
2n, we obtain

vn +
vn

2

2
√
2n

+
27/4

3
n1/4 = o(n1/4).

Since vn = o(
√
n), we have vn2

2
√

2n
= o(vn), so

vn +
27/4

3
n1/4 = o(n1/4) + o(vn),
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so vn ∼ −22

3

(

n
2

)1/4
, as desired.

Now, suppose that the expansion holds for some K ≥ 2. We prove it for K + 1. It will
be convenient to denote the coefficients of the expansion by

αk = (−1)k+1 21+(k−1)k/2

∏k−1
j=1(2

j + 1)
,

so α1 = 2. We write vn = o
(

n1/2K
)

for the remainder in (3). Then (3) gives

u2
n =

(

√
2n+

K
∑

k=2

αk

(n

2

)1/2k

+ vn

)2

= 2n

(

1 +
1√
2n

K
∑

k=2

αk

(n

2

)1/2k

+
vn√
2n

)2

= 2n

(

1 +
2√
2n

K
∑

k=2

αk

(n

2

)1/2k

+ 2
vn√
2n

+O
(

n1/4+1/4−1
)

+O

(

v2n
n

)

+O
(

n1/4−1vn
)

)

.

Since K ≥ 2, we have vn = o
(

n1/2K
)

⊆ o
(

n1/4
)

. Therefore

u2
n

2
− n = 2

K
∑

k=2

αk

(n

2

)1/2+1/2k

+
√
2n vn +O(

√
n).

On the other hand,

un
∑

k=1

uk =
K
∑

k=1

2
2k

2k + 1
αk

(un

2

)1+1/2k

+ o
(

un
1+1/2K

)

=
K
∑

k=1

2k+1

2k + 1
αk

(n

2

)1/2+1/2k+1

+ o
(

n1/2+1/2K+1
)

.

Therefore

u2
n

2
+

un
∑

k=1

uk − n = 2
K
∑

k=2

αk

(n

2

)1/2+1/2k

+
K
∑

k=1

αk
2k+1

2k + 1

(n

2

)1/2+1/2k+1

+
√
2n vn + o

(

n1/2+1/2K+1
)

= αK
2K+1

2K + 1

(n

2

)1/2+1/2K+1

+ 2
(n

2

)1/2

vn + o
(

n1/2+1/2K+1
)

since the terms in the sums cancel out except for the last in the second sum. This expression

has to be O(
√
n) by the main relation, so vn ∼ − 2K

2K+1
αK

(

n
2

)1/2K+1

, as desired.
From the expansion of un, we find that of bn = n + un, and that of an by term-by-term

integration. We obtain

bn = n+
K
∑

k=1

(−1)k+1 21+(k−1)k/2

∏k−1
j=1(2

j + 1)

(n

2

)1/2k

+ o
(

n1/2K
)
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and

an =
n2

2
+

K
∑

k=1

(−1)k+1 2k(k+1)/2

∏k
j=1(2

j + 1)

(n

2

)1+1/2k

+ o
(

n1+1/2K
)

.
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