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Abstract

We enumerate P-positions in the game of Nim in two different ways. In one series

of sequences we enumerate them by the maximum number of counters in a pile. In

another series of sequences we enumerate them by the total number of counters.

We show that the game of Nim can be viewed as a cellular automaton, where the

total number of counters divided by 2 can be considered as a generation in which

P-positions are born. We prove that the three-pile Nim sequence enumerated by the

total number of counters is a famous toothpick sequence based on the Ulam-Warburton

cellular automaton. We introduce 10 new sequences.

1 Introduction

The study of the game of Nim is fundamental to the field of combinatorial game theory.
Nim is known as an impartial combinatorial game, a game in which each player has the same
moves available at each point in the game and has a complete amount of information about
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the game and the potential moves. In addition, there is no randomness in the game (such
as rolling dice).

Originally introduced by Charles Bouton in 1901 [4], Nim has played a role in many com-
binatorial games. The relationship between Nim and other impartial combinatorial games
can be described with the Sprague-Grundy Theorem [5, 10], which states that all impartial
games are equivalent to a Nim heap.

Although the game of Nim has been studied extensively [1, 3, 6, 8], in this paper, we
invent new sequences related to enumeration of the P-positions of Nim.

In Section 2 we introduce the game of Nim as well as Bouton’s general formula for P-
positions. In Section 3 we define the sequences we want to count and provide examples for
the games with one and two piles. One set of sequences is indexed by the maximum number
of counters in a P-position and the other by the total number of counters. All of these
sequences exhibit fractal-like behavior.

We continue with calculating formulae for the sequences indexed by the maximum number
of counters in Section 4. We calculate the three-piles case in Section 4.1 and the four-piles
case in Section 4.2. It can be noted that the calculation method is different for an odd and
an even number of piles. But these sections provide enough background for a general formula
in Section 4.3.

Then we turn our attention to the sequences indexed by the total number of counters in
Section 5. We start with calculating the three-piles case in Section 5.1. We were motivated by
the fractal-like patterns in this sequence to discover that this sequence describes an evolution
of a particular cellular automaton. We explain in Section 5.2 how Nim can be viewed as
an automaton. We extend the definitions to allow any impartial combinatorial game to
be viewed as an automaton in Section 5.3. In Section 5.4 we define the Ulam-Warburton
automaton, three branches of which correspond to Nim with three piles. We proceed to
enumerating four piles in Section 5.5 and arbitrarily many piles in Section 5.6.

2 The game of Nim

In Nim, there are k piles of counters, with pi counters in each pile. Two players alternate
turns by taking some or all of the counters in a single pile. The player who takes the last
counter (or equivalently, makes the last move) wins. We may denote the state or position of
a game with an ordered tuple P = (p1, p2, . . . , pk).

We begin by introducing some general definitions in game theory. Assuming that both
players use an optimal strategy, there are two types of positions in a game such as Nim:

Definition 1. A P-position is a position in which the previous player will win (the one who
just moved). An N-position is a position in which the next player will win (the one about
to move).

We denote the set of P-positions as P , and the set of N-positions as N . Thus, any move
from a P-position must be an N-position, and conversely, every N-position has at least one
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move that results in a P-position. This motivates the following theorem [1]:

Theorem 2. Suppose that the positions of a finite impartial game can be partitioned into

disjoint sets A and B with the properties:

1. Every move of a position in A is to a position in B.

2. Every position in B has at least one move to a position in A.

3. The terminal positions are in A.

Then A = P and B = N .

By definition, the Nim position (0, 0, . . . , 0) will be a (terminal) P-position. Note that
the general winning strategy is to move to a P-position if possible.

To explicitly give a formula for P-positions, we need the following definition:

Definition 3. The nim-sum of two non-negative integers x, y is their bit-wise XOR: x ⊕
y. Suppose that x = (bj . . . b2b1)2 and y = (cj . . . c2c1)2 in binary with leading zeroes as
necessary, where j is the minimum number of digits sufficient for the binary representations
of x and y. Then the nim-sum of x and y is (dj . . . d2d1)2, where di = bi + ci (mod 2) for
1 ≤ i ≤ j.

The nim-sum is clearly associative and commutative, and 0 is the identity element. Fur-
ther, x ⊕ y = x ⊕ z implies y = z. We can extend the concept of nim-sum to a position
(p1, p2, . . . , pk): it is simply p1 ⊕ p2 ⊕ · · · ⊕ pk.

The following theorem [4] describes the set of P-positions in Nim.

Theorem 4 (Bouton, 1901). P is the set of positions in the game of Nim with nim-sum 0,
and N is the complement.

From here, we can show that the last pile in a P-position is a function of the previous
k − 1 piles.

Corollary 5. A position (p1, . . . , pk−1, pk) is a P-position if and only if pk = p1⊕· · ·⊕ pk−1.

3 Nim sequences

We would like to enumerate P-positions in the game of Nim. We assume that the number
of piles, k, is fixed, which means that piles of zero are allowed. There are two natural ways
to enumerate these P-positions.

In the first set of sequences, we want to count the number of P-positions where the
number of counters in each pile is bounded by some number n. We call these sequences
indexed-by-maximum.
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• ak(n) is the number of P-positions in the game of Nim with k piles such that each pile
has no more than n counters.

• dk(n) is the number of P-positions in the game of Nim with k piles such that the largest
pile has exactly n counters.

Note that dk(n) is the sequence of first differences of ak(n), and ak(n) is the sequence of
partial sums of dk(n).

Another natural way to enumerate P-positions is bounding the total number of counters
in all the piles. Note that the total number of counters in a P-position is even. We call these
sequences indexed-by-total.

• Ak(n) is the number of P-positions in the game of Nim with k piles such that the total
number of counters is no more than 2n.

• Dk(n) is the number of P-positions in the game of Nim with k piles such that the total
number of counters is exactly 2n.

Once again, note that Dk(n) is the sequence of first differences of Ak(n), and Ak(n) is
the sequence of partial sums of Dk(n).

These sequences exhibit fractal-like behavior. The source of this behavior is the self-
similarity in the set of P-positions. Consider the positions (p1, p2, p3), (2

k + p1, 2
k + p2, p3),

(2k + p1, p2, 2
k + p3), and (p1, 2

k + p2, 2
k + p3), where max(p1, p2, p3) < 2k. If one of these is

a P-position then the other three are also P-positions.
In our proofs, we loosely use the term “pile” to refer to the number of counters in the

pile.

3.1 Relationship between sequences

Let #(P ) be the total number of counters in a P-position P = (p1, p2, . . . , pk); that is,
#(P ) =

∑

pi. We will refer to this as the total sum of the P-position. Further, let max(P )
denote the largest pile of P ; that is, max(P ) = max{pi}.

The sequences ak(n) and Ak(n) can bound each other due to the following lemma:

Lemma 6. 2max(P ) ≤ #(P ) ≤ kmax(P ).

Proof. The upper bound is obvious. To prove the lower bound, consider the place values of
the ones in the binary representation of max(P ). By Theorem 4, the nim-sum is 0, and the
only way for this to occur is if the other piles collectively have ones in each of those place
values. The lower bound then follows immediately since the sum of the numbers other than
max(P ) is at least max(P ).

Corollary 7. ak(⌊2n/k⌋) ≤ Ak(n) ≤ ak(n).
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Proof. The sequence Ak(n) enumerates P-positions with no more than 2n counters. These
positions cannot have more than n counters in any pile by Lemma 6, so they all are included
in the enumeration corresponding to ak(n). Further, every position with a maximum pile
of no more than 2n/k must have a total sum of less than 2n. Thus, P-positions that are
counted by ak(⌊2n/k⌋) are all included in the count of Ak(n).

In the sections below we provide recursive formulae for sequences a, d, A, and D. For
indices of the form 2m − 1 the formula for ak is particularly simple.

Lemma 8. ak(2
m − 1) = 2m(k−1).

Proof. There are 2m choices for each of the first k− 1 piles, for a total of 2m(k−1) choices. By
Corollary 5, the last pile is uniquely determined, and since no pile is greater than 2m − 1,
which is the largest number that has m digits in binary, the last pile will also not be greater
than 2m − 1.

Together with Corollary 7, we can prove the following bound:

Corollary 9.

2(k−1)⌊log
2
(⌊2n/k⌋+1)⌋ ≤ ak(⌊2n/k⌋) ≤ Ak(n) ≤ ak(n) ≤ 2(k−1)⌈log

2
(n+1)⌉.

3.2 One or two piles

If there is only one pile, there is only one P-position: (0). Thus, a1(n) = A1(n) = 1 for
all n, which is sequence A000012 in the OEIS [7]. Correspondingly, d1(0) = D1(0) = 1 and
d1(n) = D1(n) = 0 for n ≥ 1, which is sequence A000007.

The P-positions for the game with two piles are described by the following lemma:

Lemma 10. A position P is a P-position if and only if P = (x, x) for a non-negative integer

x.

This means that a2(n) = A2(n) = n+1, which is sequence A000027 with an initial offset
of 0. In addition, d2(n) = D2(n) = 1, which is sequence A000012.

From here, the formulae for the sequences become cumbersome to express only in terms
of n, so we define n = 2b − 1 + c, where b = ⌊log2 n⌋, and 1 ≤ c = n + 1 − 2⌊log2 n⌋ ≤ 2b.
In other words, b is the number of digits in the binary representation of n, and c − 1 is n
without its first digit.

4 Indexed-by-maximum sequences

4.1 Three piles

Consider the set of P-positions in Nim with three piles. We want to find a formula for the
number of such P-positions P with max(P ) = n.
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Theorem 11. For n > 0, d3(n) = 6c− 3.

Proof. There are three P-positions that are permutations of (n, n, 0). All other P-positions
have exactly one pile with n counters. However, in order for the nim-sum to be 0, one of
the other piles must be at least 2b, and then the last pile is uniquely defined. There are 3
choices for which pile has n counters, 2 choices for the pile that is at least 2b, and c − 1
choices for the number of counters in this pile. This results in a total of 3+6(c− 1) = 6c− 3
P-positions.

In other words, d3(n) = 6(n+1−2⌊log2 n⌋)−3. This is sequence A241717 in the OEIS [7]:
1, 3, 3, 9, 3, 9, 15, 21, 3, 9, 15, 21, 27, 33, 39, 45, 3, 9, . . ..

If we arrange the numbers into a triangle as follows, the fractal-like behavior of the
sequence can be seen:

3,
3, 9,
3, 9, 15, 21,
3, 9, 15, 21, 27, 33, 39, 45,
3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93,

...
The length of each line is a power of 2, and each line converges to A016945—the sequence

6n+ 3.

Theorem 12. For n > 0, a3(n) = 22b + 3c2.

Proof. This statement is true for n = 2b − 1 by Lemma 8. Now we prove the statement for
all n = 2b − 1 + c. There are 22b P-positions such that all piles are less than 2b. If one of
the piles is at least 2b, then exactly one other pile must also be at least 2b. The leftover pile
is uniquely defined and is less than 2b. There are 3 ways to designate the two piles greater
than or equal to 2b, and c different choices for each of those two piles, so the total is 22b+3c2

P-positions, as desired.

In other words, a3(n) = 22⌊log2 n⌋ + 3(n + 1 − 2⌊log2 n⌋)2. This is sequence A236305 in
the OEIS [7]: 1, 4, 7, 16, 19, 28, 43, 64, 67, 76, 91, 112, . . .. This sequence also displays
fractal-like behavior, much like the previous sequence.

4.2 Four piles

When there are four piles, we cannot apply the argument used in Theorem 12 because there
is a possibility that all four piles have more than 2b − 1 counters, and we need to make sure
that each of them does not exceed n. However, a slight modification of our argument shows
that we can find a recursive formula:

Theorem 13. For n > 0, a4(n) = 23b + 6c22b + a4(c− 1).
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Proof. Suppose that all of the piles are not greater than 2b − 1. Similar to the argument in
Theorem 12, the first three piles that are not less than 2b uniquely define a P-position where
all the piles are not less than 2b. There are 23b such positions.

In addition to that, we can have either 2 or 4 piles that are greater than or equal to 2b. If
there are 2 such piles, we can choose them in 6 different ways, and each of those piles can be
any of c possible numbers. We can then choose another pile in 2b ways, and the last pile will
thus be fixed and less than 2b. This accounts for the total of 6 ·2bc2 ways. If there are 4 piles
that are greater than 2b − 1, we can remove 2b counters from each pile without changing the
nim-sum, thus reducing this situation to one when all piles are no greater than c− 1, which
can be done in a4(c− 1) ways.

The sequence a4(n) is sequence A241522: 1, 8, 21, 64, 89, 168, 301, 512, 561, 712, . . ..

Corollary 14. For n > 0, d4(n) = (12c− 6)2b + d4(c− 1).

Proof. We can either use a similar argument as before or the fact that this sequence is the
first difference sequence of the sequence above.

The sequence d4(n) is sequence A241718: 1, 7, 13, 43, 25, 79, 133, 211, 49, 151, 253, . . ..

4.3 Many piles

We will now prove a more general formula for ak(n) based on the parity of k.

Theorem 15. If k is odd, ak(n) =
(2b + c)k + (2b − c)k

2b+1
, for n > 0.

Proof. Suppose that 2i of the piles are at least 2b. There are

(

k

2i

)

ways to choose which

piles these are, and there are c choices for each of these 2i piles. Of the remaining k−2i piles,
there are 2b choices for the first k − 2i − 1 piles. The last pile will be uniquely determined

by Lemma 5, and its size will not exceed 2b. Hence, we get a total of

(

k

2i

)

2b(k−2i−1)c2i

P-positions.
Since 2i can range from 0 to k − 1, we get the following formula:

ak(n) =

(

k

0

)

2b(k−1)c0 +

(

k

2

)

2b(k−3)c2 + · · ·+

(

k

k − 1

)

20ck−1.

We multiply both sides of this equation by 2b:

2bak(n) =

(

k

0

)

2bkc0 +

(

k

2

)

2b(k−2)c2 + · · ·+

(

k

k − 1

)

2bck−1.
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Since

(2b ± c)k =

(

k

0

)

2bkc0 ±

(

k

1

)

2b(k−1)c1 +

(

k

2

)

2b(k−2)c2 ± · · · ,

we have that

2bak(n) =
(2b + c)k + (2b − c)k

2

and

ak(n) =
(2b + c)k + (2b − c)k

2b+1
,

as desired.

Note that if k = 3, we get a3(n) = 22b + 3c2 as expected. If k = 5, we get a5(n) =
24b + 10 · 22bc2 + 5c4. This is sequence A241523: 1, 16, 61, 256, 421, 976, 2101, 4096, 4741,
. . ..

We can calculate dk(n) for odd k in a similar manner, or by subtracting consecutive
terms:

Theorem 16. If k is odd,

dk(n) =
(2b + c)k + (2b − c)k − (2b + c− 1)k − (2b − c+ 1)k

2b+1
.

For example, if k = 5, d5(n) = 10 · 22b(2c− 1) + 20c3 − 30c2 + 20c− 5. This sequence is
sequence A241731: 1, 15, 45, 195, 165, 555, 1125, 1995, 645, . . ..

Theorem 17. If k is even, ak(n) =
(2b + c)k + (2b − c)k − 2ck

2b+1
+ ak(c− 1), for n > 0.

Proof. We can use the same argument as above for all cases except for when all of the piles

are at least 2b. So if we do not consider this case, there are
(2b + c)k + (2b − c)k − 2ck

2b+1
such

P-positions. Suppose, now, that all of the piles are at least 2b. Note that if we subtract
2b from each of these piles, the nim-sum will not be changed, and now each pile is no
more than n − 2b = c − 1, so there are ak(c − 1) such P-positions. So our formula is

ak(n) =
(2b + c)k + (2b − c)k − 2ck

2b+1
+ ak(c− 1).

We can calculate dk(n) for even k in a similar manner:

Theorem 18. If k is even, dk(n) equals

(2b + c)k + (2b − c)k − (2b + c− 1)k − (2b − c+ 1)k − 2ck + 2(c− 1)k

2b+1
+ dk(c− 1).
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5 Indexed-by-total

We will now fix the total number of counters as 2n. Let s2(n) denote the binary weight of
n; that is, the number of ones in the binary expansion of n.

5.1 Three piles

Theorem 19. D3(n) = 3s2(n).

Proof. Represent each pile as a sum of distinct powers of 2. Each power of two, 2i, can be
present in exactly two piles, or not present at all. That means if we sum all the piles we get
that n is the sum of powers of two that are present in exactly two piles. For each power of
two that is present in the binary representation of n we can chose in 3 ways in which piles
they occur, for a total of 3s2(n) ways.

This sequence is sequence A048883: 1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27, 9, 27, 27, 81, 3,
9, . . .. Indexing starts as follows: D3(0) = 1, and D3(1) = 3. This sequence satisfies the
following recursion: D3(2n) = D3(n) and D3(2n+ 1) = 3D3(n).

We can see the fractal-like behavior of this sequence by considering a recursive definition:
Start with the multiset S0 = {1}. Then form a new multiset Si+1 by concatenating the
elements of Si with the three times the elements of Si, and repeat ad infinitum. For example,
S2 = {1, 3, 3, 9}. We form S3 by concatenating the elements of the set {3, 9, 9, 27}.

The sequence A3(n): partial sums of D3(n) is also present in the database. It is sequence
A130665: 1, 4, 7, 16, 19, 28, 37, 64, 67, 76, 85, 112, 121, 148, 175, . . .. The sequence satisfies
the recursion: A3(2n) = 3A3(n− 1) + A3(n) and A3(2n+ 1) = 4A3(n).

We calculated this sequence and discovered that it is in the database as the sequence
describing the number of cells in three branches of the Ulam-Warburton cellular automaton

(see Ulam [12], Singmaster [9], Stanley and Chapman [11], Wolfram [13]). It is amazing how
the On-Line Encyclopedia of Integer Sequences makes it possible to connect different areas
of mathematics.

5.2 Evolution of Nim

A natural question that arises is that if P-positions in Nim can be enumerated by cells in an
automaton, can we find a bijection between P-positions of Nim and cells in the automaton?
We provide the construction in this subsection.

Call a P-position P1 a parent of a P-position P2 if #(P1)+2 = #(P2) and P1 differs from
P2 in exactly two piles with the same index, by one counter in each. Correspondingly, if P1

is a parent of P2, we call P2 a child of P1. The following lemma connects the parent-child
relationship to the game.

Lemma 20. A parent P1 can be achieved in a game from P-position P2.
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Proof. Suppose piles i and j have one fewer counter in P1 than in P2. Then in the first move
a player takes one counter from the i-th pile. In the next move the next player takes one
counter from the j-th pile.

The zero position: (0, 0, . . . , 0) does not have a parent. But any other P-position has a
parent that is described by the following lemma:

Lemma 21. Any non-zero P-position has a parent. Each parent can be achieved by sub-

tracting 1 from piles i and j, where pi and pj are non-empty piles with the same number of

zeros at the end of their binary representations.

Proof. The nim-sum of pi and pj should not change: pi⊕pj = (pi−1)⊕(pj−1). This is only
possible if pi and pj have the same number of zeros at the end of their binary representations
since they have to regroup in the same number of places.

Corollary 22. If there are 3 piles, each non-zero P-position has exactly one parent.

Proof. Consider the rightmost 1 in the binary representations of p1, p2 and p3. This 1 must
appear in exactly two of the representations, and so these numbers have the same number
of zeroes at the end of their binary representation.

Similarly, we can also describe a child.

Lemma 23. Each child can be achieved by adding 1 to piles i and j, where pi and pj has

the same number of ones at the end of their binary representation.

Proof. The nim-sum of pi and pj should not change: pi⊕pj = (pi+1)⊕ (pj+1). This is only
possible if pi and pj have the same number of ones at the end of their binary representations
since they have to regroup in the same number of places.

If we play the game with 3 piles each P-position has exactly 0, 1, or 3 children.
This way we get a cellular automaton. We start with a zero position and call it alive. At

each step the children of the living positions are born. Children that are born at step n are
called n-generation and Dk(n) enumerates them. Similarly, Ak(n) enumerates all the cells
that are alive by the time n.

After we wrote this paper, we discovered that there is a well-known notion of a game
position being born on day n [1, 8]. If a P-position is of generation n, then it is born on day
n.

5.3 Evolution of an impartial combinatorial game

Note that we can describe an evolution of any impartial combinatorial game using the fol-
lowing definition. We assume that the players behave optimally. That is, if they can move
to a P-position they will do so.
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A P-position P1 is a parent of P2 if there exists an optimal game of maximal length in
which P1 is achieved from P2 in exactly two moves.

If the longest game starting with P1 takes 2n moves, then n is the generation number
of P1. For Nim this definition coincides with the previous one because the longest game
starting from a P-position with 2n counters cannot take more than 2n moves.

There is a standard algorithm for finding P-positions. Start with the terminal P-positions
and assume they were found at step 0. Then proceed by induction. Denote the set of P-
positions found at steps up to i as Pi. Denote the positions that are one move away from
Pi as Ni. Then the P-positions that do not belong to Pi and all moves from which belong
to Ni are the P-positions from Pi+1 \ Pi. Note that Pi ⊂ Pi+1 and Ni ⊂ Ni+1.

Lemma 24. P-positions found at step i are born in generation i.

Proof. All optimal moves from Ni lead to Pi. All moves from Pi lead to Ni−1. Thus, if
there is an optimal game where the P-position P1 is reached after P-position P2, then P1

was found at an earlier step. That means an optimal game starting with P1 ∈ Pi can not
take more than 2i steps.

Now suppose P1 ∈ Pi \ Pi−1. That means there exists a move from P1 to Ni−1 \ Ni−2.
Similarly, there exists a move from Ni−1 to Pi−1 \ Pi−2. That means there exists an optimal
game from P1 that takes 2i moves, so P1 is born in generation i.

5.4 Ulam-Warburton cellular automaton

Now we will describe an automaton that produces the same sequences as P-positions in the
game of Nim with three piles.

Consider points on an infinite square grid on the plane. Start with the point (0, 0) and
forbid any growth in the south branch. That is, points with coordinates (x, y), where y < 0
and y ≤ −|x| are not allowed to be born. At each moment a child is born if it has exactly one
alive neighbor horizontally or vertically. Note that this corresponds to three branches of the
Ulam-Warburton automaton when any direction is allowed. Figure 1 shows 6 generations of
the automaton. We can clearly see the fractal formed by this automaton. The dots represent
cells, and the dots are connected if they form a parent-child pair. The starting cell is in the
bottom center.

The description of points born in generation n is well-known [2, 9, 11, 12, 13]. Suppose
n =

∑i
j=1 2

rj for distinct integers r1 > r2 > · · · > ri ≥ 0. Then the points that are born

in generation n have coordinates Σi
j=12

rjvj, where vj ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)} and
vj 6= −vj−1 for j > 1.

We can describe three branches of this automaton in the following manner: Start in any
of three directions (N, E, W) and move 2r1 steps, then either continue forward or turn 90
degrees and move 2r2 steps, and so on.

Theorem 25. The evolution graph of the game of Nim with three piles is the same as three

branches of the evolution graph of the Ulam-Warburton automaton.
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Figure 1: Ulam-Warburton automaton without the South branch after 6 generations

Proof. Consider a P-position in the game of Nim with three piles: (p1, p2, p3). If this P-
position was born on step n, it means p1 ⊕ p2 ⊕ p3 = 0 and p1 + p2 + p3 = 2n. Suppose that
we decompose each pi into distinct powers of 2. Then the powers of 2 that appear will be
the rj. Further, each rj is present in exactly two out of three piles. Now let us describe the
ancestors of this P-position. Start with the zero position, then chose pile i1 and i2 in which
the power r1 is present. Add 1 to both piles, and continue adding 2r1 times. Then move to
the next power and so on.

Analogously, with respect to the graph of the cellular automaton, chose a legal direction
for each pair of piles. Pick a direction corresponding to the largest power of 2 in n and make
2r1 steps forward in this direction. Take the next power of 2. If it corresponds to the same
two piles continue forward, otherwise turn 90 degrees either left or right depending on the
new pair and move 2r2 steps.

Now we want to make an explicit bijection between cells in the automaton and P-
positions. To start, we identify the P-position (0, 1, 1) with the point (−1, 0) and West
direction, the P-position (1, 0, 1) with the point (0, 1) and East direction, and the P-position
(1, 1, 0) with the point (1, 0) and North direction. Now we define turns:

• Left turn: changing direction from (0, 1, 1) to (1, 1, 0), from (1, 1, 0) to (1, 0, 1), and
from (1, 0, 1) to (0, 1, 1)

• Right turn: changing direction from (0, 1, 1) to (1, 0, 1), from (1, 0, 1) to (1, 1, 0), and
from (1, 1, 0) to (0, 1, 1).

Each cell in the automaton (correspondingly, P-position) has exactly one parent. The cell
(P-position) is uniquely described by the path from the starting point (terminal position).
We showed the bijection between the paths which establishes the bijection between the cells
and the P-positions.

For example, consider the P-position (14, 11, 5), which can be decomposed into powers of
2: (8 + 4 + 2, 8 + 2 + 1, 4 + 1). This means that the evolution happens in the following way.
Start with the P-position (0, 0, 0), then 8 generations are born in the direction (1, 1, 0) until
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the P-position (8, 8, 0) is reached. After that 4 generations are born in the direction (1, 0, 1)
until the P-position (12, 8, 4) is reached. After that 2 generations are born in the direction
(1, 1, 0) reaching (14, 10, 4), then the child is born in the direction (0, 1, 1) reaching the final
destination (14, 11, 5). This corresponds to the following walk on the automaton: 8 steps
to the right until the coordinates (8, 0), turn right, 4 more steps reaching (8,−4), turn left
and make 2 more steps reaching (10,−4), then turn left again and make one step to get to
(10,−3).

It is more natural to place the Nim evolution in 3D, but such a graph is more difficult to
draw and to visualize; see Figure 2.

Figure 2: Nim evolution after 6 generations in 3D

5.5 Four piles

Let us move to four piles. Each P-position can be represented as four non-negative integers.
The number of possible parents is 1, 2, or 6. We describe the possibilities by considering the
binary representation of the four numbers:

• 1: if there is exactly one pair of binary numbers with the same number of zeros at the
end,

• 2: if the binary numbers can be paired so that the number of zeros at the end is the
same within each pair and different for different pairs,

• 6: all four binary numbers have the same number of zeros at the end.

Similarly, the number of possible children is 1, 2, or 6. Table 1 shows examples of
P-positions with different numbers of parents and children.
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1 child 2 children 6 children
1 parent (0,1,2,3) (0,0,1,1) (0,0,2,2)
2 parents (0,1,4,5) (1,1,2,2) (2,2,4,4)
6 parents (1,3,5,7) (1,1,3,3) (1,1,1,1)

Table 1: P-positions with different numbers of parents/children

Suppose the total number of counters is 2n. We computed the sequence D4(n), which is
sequence A237711: 1, 6, 7, 36, 13, 42, 43, 216, 49, 78, 55, 252, 85, . . .. Sequence D4(n) can
be described recursively:

Lemma 26. D4(0) = 1, D4(1) = 6, D4(2n + 1) = 6D4(n) for n ≥ 0, and D4(2n + 2) =
D4(n+ 1) +D4(n) for n ≥ 0.

Proof. As we discussed before, the total number of counters in a P-position is even. Moreover,
given a position, each 1 in the binary representation of a pile has a matching 1 in the binary
representation of another pile. Thus, the ones not in unit positions do not affect the total
number of counters modulo 4. That means if #(P ) = 4n + 2, there are exactly two odd
piles, and, if #(P ) = 4n+ 4, the total number of odd piles is either 0 or 4.

Suppose #(P ) = 4n + 2, so there are two odd piles. Consider the following operation:
subtract one counter from both odd piles and then divide all piles by two. This operation is
a map from P-positions with total sum 4n+2 to all P-positions with total sum 2n. This map
is a surjection, and each pre-image has 6 elements because by doubling a P-position with
total sum 2n and adding two counters in any pair of 4 piles, we can get from any P-position
with sum 2n to 6 P-positions with total sum 4n+ 2. Therefore, D4(2n+ 1) = 6D4(n).

Similarly, suppose #(P ) = 4n+4, so there are 0 or 4 odd piles. We can create a bijection
between all P-positions with total sum 2n+2 and P-positions with all even piles by doubling
the piles in the former P-position. Doubling all piles and adding one counter to each of the
piles is a bijection between all P-positions with total sum 2n and P-positions with all odd
piles. Therefore, D4(2n+ 2) = D4(n+ 1) +D4(n).

The corresponding sequence of partial sums A4(n) is sequence A237686: 1, 7, 14, 50,
63, 105, 148, 364, 413, 491, 546, 798, 883, 1141, . . .. This sequence can also be described
recursively:

Lemma 27. A4(0) = 1, A4(1) = 7, A4(2n + 1) = 7A4(n) + A4(n − 1) for n ≥ 1, and

A4(2n+ 2) = 7A4(n) + A4(n+ 1) for n ≥ 1.

Proof. We use induction to prove this statement. We can see that the base cases hold
via direct computation. Now assume that the recurrence relation holds for k ≤ 2n. By
definition, A4(2n+1) = A4(2n)+D4(2n+1). Using the inductive hypothesis, A4(2n+1) =
7A4(n−1)+A4(n)+6D4(n) = A4(n−1)+6(A4(n−1)+D4(n))+A4(n) = 7A4(n)+A4(n−1).

Similarly, by definition: A4(2n+2) = A4(2n+1)+D4(2n+2). Using the previous result,
A4(2n+2) = 7A4(n)+A4(n−1)+D4(n)+D4(n+1) = 7A4(n)+A4(n+1), which completes
the induction.

14

http://oeis.org/A237711
http://oeis.org/A237686


5.6 Many piles

We now calculate these sequences for any number of piles. First, we compute the initial
terms of Dk.

Lemma 28. Dk(0) = 1, Dk(1) =

(

k

2

)

.

Proof. It is easy to see that Dk(0) = 1 because this is just the position (0, . . . , 0). In the

case of Dk(1), we can choose two piles to have one counter each in

(

k

2

)

ways, and this is

the only way for this position to have a nim-sum of zero.

The following theorem provides a recursive formula for Dk(n).

Theorem 29. Assuming Dk(j) = 0 for negative j:

Dk(2n+ 1) =

(

k

2

)

Dk(n) +

(

k

6

)

Dk(n− 1) +

(

k

10

)

Dk(n− 2) + . . .,

Dk(2n+ 2) =

(

k

0

)

Dk(n+ 1) +

(

k

4

)

Dk(n) +

(

k

8

)

Dk(n− 1) + . . .,

Proof. We exploit the fact that each P-position with only even piles and total sum 2m can
be realized by doubling each pile in a corresponding P-position with total sum m, which
means that there is a bijection between all P-positions and all P-positions with only even
piles.

If the total number of counters is 4n + 2, then the number of odd piles could be 4i + 2,
where 4i + 2 ≤ k. If there are 4i + 2 odd piles, then we can choose which piles are odd in
(

k

4i+ 2

)

ways. Then we can remove one counter from every odd pile and divide each pile

by 2. Using the bijection above, there will be

(

k

4i+ 2

)

Dk(n − i) such P-positions for each

choice of i. The case 4n+ 4 is similar.

For example, if k = 5, then, D5(0) = 1, D5(1) = 10, D5(2n + 1) = 10D5(n), and
D5(2n + 2) = D5(n + 1) + 5D5(n). This is sequence A238759: 1, 10, 15, 100, 65, 150, 175,
1000, 565, . . ..

Similarly, we can prove a recursive formula for Ak(n).

Theorem 30.

Ak(2n+1) =

((

k

2

)

+

(

k

0

))

Ak(n)+

((

k

6

)

+

(

k

4

))

Ak(n−1)+

((

k

10

)

+

(

k

8

))

Ak(n−

2) + · · · ,

Ak(2n+ 2) =

(

k

0

)

Ak(n+ 1) +

((

k

2

)

+

(

k

4

))

Ak(n) +

((

k

6

)

+

(

k

8

))

Ak(n− 1) + · · · ,

Proof. We can show this by using the partial sums of Dk.
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For example, if k = 5, then, A5(0) = 1, A5(1) = 11, A5(2n+ 1) = 11A5(n) + 5A5(n− 1),
and A5(2n+ 2) = A5(n+ 1) + 15A5(n). This is sequence A238147: 1, 11, 26, 126, 191, 341,
516, 1516, 2081, . . ..
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