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Abstract

We study extensions of the classical impartial combinatorial game of Wythoff Nim.
The games are played on two heaps of tokens, and have symmetric move options, so
that, for any integers 0 ≤ x ≤ y, the outcome of the upper position (x, y) is identical to
that of (y, x). First we prove that φ−1 = 2

1+
√
5
is a lower bound for the lower asymptotic

density of the x-coordinates of a given game’s upper P-positions. The second result
concerns a subfamily, called a Generalized Diagonal Wythoff Nim, recently introduced
by Larsson. A certain split of P-positions, distributed in a number of so-called P-
beams, was conjectured for many such games. The term split here means that an
infinite sector of upper positions is void of P-positions, but with infinitely many upper
P-positions above and below it. By using the first result, we prove this conjecture for
one of these games, called (1, 2)-GDWN, where a player moves as in Wythoff Nim, or
instead chooses to remove a positive number of tokens from one heap and twice that
number from the other.

1 Introduction

We study generalizations of the 2-player impartial take-away games 2-pile Nim [2], and
Wythoff Nim [13]. A background on impartial (take-away) games can be found in the books
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[1, 3]. The literature on variations of Wythoff Nim is steadily increasing; for some further
background, we refer to the papers [4, 5, 8, 9, 10, 11, 12]. We use standard terminology for
the outcomes of such games without ties. A position is a previous-player win, a P-position,
if none of its options is a P-position; otherwise it is a next-player win, an N-position. We
follow the conventions of normal play, that is, a player who is not able to move loses. Thus,
given an impartial game, we get a recursive characterization of the set of all P-positions
beginning with the terminal position(s).

We let N denote the positive integers and N0 the non-negative integers. The game of
2-pile Nim is played on two piles of a finite number of tokens. A legal move consists of
removing any positive number of tokens from exactly one pile, at most a whole pile. We
represent a position by an ordered pair (x, y) ∈ N0 × N0, denoting the number of tokens in
the respective heaps. That is, the set of options from any position (x, y) is

Nim(x, y) = {(x− t, y) | x− t ≥ 0} ∪ {(x, y − t) | y − t ≥ 0}.

It is easy to see that the P-positions of this game are those where the pile heights are equal;
the positions (x, x), for x ∈ N0, Bouton [2]. We regard these positions as an infinite P-beam
of slope 1, with its source at the origin. See Figures 1 and 2.

In the game of Wythoff Nim a player moves as in Nim or instead removes the same
number of tokens from both piles, at most the number in the smaller pile. Thus the set of
options from any position (x, y) is

WN(x, y) = Nim(x, y) ∪ {(x− t, y − t) | x− t ≥ 0, y − t ≥ 0}.

Let

φ =

√
5 + 1

2

denote the golden ratio. It is known, Wythoff [13], that a position of this game is P if and
only if it belongs to the set

{(⌊φn⌋, ⌊φ2n⌋), (⌊φ2n⌋, ⌊φn⌋) | n ∈ N0};

see also Table 1. Thus, in the transformation from 2-pile Nim to Wythoff Nim, the single
Nim-beam of P-positions has split into two distinct beams, with sources in the origin, and
slopes 1/φ and φ respectively. The intuitive meaning of the term split is that there is an
infinite sector, between two infinite regions of P-positions, which contains only N-positions.
More formally, a sequence of pairs of natural numbers (xi, yi) splits, or (α, ǫ)-splits, if there
are positive real numbers α and ǫ such that the set

{

i > n | α ≤ yi
xi

≤ α + ǫ

}

is empty, for n sufficiently large, and such that both
{

(xi, yi) | α >
yi
xi

}

,
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and
{

(xi, yi) | α + ǫ <
yi
xi

}

are infinite.
Let p, q ∈ N (with p < q). The game of Generalized Diagonal Wythoff Nim, (p, q)-GDWN

[10], extends the rules of Wythoff Nim such that a player may instead remove pt tokens from
either pile and qt tokens from the other, where t ∈ N, provided that both heap sizes remain
non-negative. (For given p and q we sometimes simply denote this game by GDWN.) That
is, the set of options from any position (x, y) is

(p, q)-GDWN(x, y) = WN(x, y) ∪ {(x− pt, y − qt) | x− pt ≥ 0, y − qt ≥ 0}
∪ {(x− qt, y − pt) | x− qt ≥ 0, y − pt ≥ 0}.

See also Figure 1 for the rules of (1, 2)-GDWN and its first few P-positions. In Figure 2
we view the initial behavior of their respective P-beams.

Figure 1: The pictures illustrate typical move options (in gray) and initial P-positions of Nim,
Wythoff Nim, and (1, 2)-GDWN respectively. The black square is a given game position.
The white P’s represent the winning options from this position for the respective games.
Hence the given position is N for each game. The lower left corner represents the terminal
position (0, 0).

The motivation for this paper considers the splitting of Wythoff Nim’s P-beams for the
case (1, 2)-GDWN; Section 3. In Section 4 we indicate why an analogous result holds also
for (2, 3)-GDWN. Before this, in Section 2, we demonstrate a general result for certain
extensions of Wythoff Nim. We show that the density φ−1, obtained by projecting the
upper P-positions of Wythoff Nim on the x-axis, suffices as a lower bound for the lower
asymptotic density of similar projections, for any extension of Wythoff Nim. Let us begin
by defining this general class of games.
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Figure 2: These figures give the initial P-positions of the games Nim, Wythoff Nim and
(1, 2)-GDWN. The left most figure illustrates 2-pile Nim’s single P-beam of slope 1. Then,
in the middle we find Wythoff Nim’s pair of P-beams with slopes φ−1 and φ respectively and,
at last, the initial P-positions of (1, 2)-GDWN, for all x-coordinates ≤ 50000. Experimental
results from [10] indicate that the split of the upper P-positions “accumulate” on two lines
of slope 1.477 · · · and 2.247 · · · respectively.

2 A density bound for Wythoff Nim extensions

An extension of Wythoff Nim, say G, has a set of options G(x, y) ⊇ WN(x, y), from each
given position (x, y) ∈ N0 × N0. The options are of the form (x − m1, y − m2) ∈ G(x, y),
x ≥ x −m1 ≥ 0 and y ≥ y −m2 ≥ 0; not both m1 = m2 = 0, to disallow ties. We require
that all options be symmetric, that is, (m1,m2) is a move from (x, y) if and only if (m2,m1)
is a move from (y, x). Note that this is a relaxation of the traditional form of symmetric
move options for variations of Wythoff Nim in the literature. We have chosen our symmetric
variant, because it appears to be the weakest general form that guaranties symmetric P-
positions; that is (x, y) is P if and only if (y, x) is P. We also require that at most finitely
many moves of the form (m1,m2), m1 > 0 and m2 > 0, have the same m1-coordinate (m2-
coordinate) whenever moving from a fixed column (row). That is, given a column x > 0, the
total number of non-Nim type options, from all positions of the form (x, y), is finite (and by
symmetry, given a row y > 0, the total number of non-Nim type options, from all positions
of the form (x, y), is finite). As we will see, in this way the new game will have so-called
complementary sets (sequences) defining the P-positions.

Two sets of positive integers are complementary if each positive integer occurs in precisely
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one of these sets. A pair of sequences are complementary if they are complementary regarded
as sets, and if there is no repetition within each sequence. The P-positions of Wythoff Nim
are very well structured, in particular, the differences of coordinates are ∆n := Bn−An = n,
where An := ⌊φn⌋ and Bn := ⌊φ2n⌋, for all n ∈ N0. We obviously get the density for the
A-sequence as limn∈N

n
An

= φ−1. It is well known that the sequences defining Wythoff Nim’s
non-terminal P-positions are complementary; see also Table 1. We will use this notation for
Wythoff’s sequences throughout the paper.

Bn

An

n

∆n

0 1 2 3 4 5 6 . . .

. . .

. . .

. . .

0 1 3 4 6 8 9

0 2 5 7 10 13 15

0 1 2 3 4 5 6

Table 1: Wythoff Nim’s unique terminal position is (A0, B0) = (0, 0). Its upper P-positions
are (1, 2), . . . , (An, Bn), . . . and ∆n = Bn − An = n for all n.

We code the upper P-positions of a given Wythoff Nim extension G by (an, bn) where
0 < an < bn, for all n > 0, and where the a-sequence is strictly increasing. By symmetry, G’s
complete set of P-positions will be {(ai, bi), (bi, ai) | i ∈ N} ∪ {(0, 0)}. We let δi := bi − ai,
for all i. For convenience we denote the unique terminal position by (a0, b0) := (0, 0). That
this is indeed the unique terminal position follows since all Nim-type moves are legal for any
Wythoff extension.

bn
an

n

δn

0 1 2 3 4 5 6 . . .

. . .

. . .

. . .

0 1 2 4 7 8 9

0 3 6 5 10 14 17

0 2 4 1 3 6 8

Table 2: These sequences constitute the first few P-positions of the Wythoff Nim extension
(1, 2)-GDWN and δi = bi−ai, for all i. Note that the b-sequence is not increasing and hence
neither the δ-sequence. It is not known whether all positive integers are represented in the
latter sequence.

Proposition 1. The P-positions of any Wythoff Nim extension satisfy the following Prop-
erty W: for all n ∈ N, an−1 < an and an < bn; for all i 6= j, δi 6= δj, and the sequences

a = (ai)i∈N and b = (bi)i∈N are complementary.
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Proof. The inclusion G(x, y) ⊇ WN(x, y) implies that we can choose the a and b sequences
such that an−1 < an, an < bn for all n > 0: the Nim-type moves give the first inequality
and the diagonal type moves give the latter. Indeed, if there were ai, aj such that ai = aj
and where bi < bj, then a Nim-type move would take (aj, bj) to (ai, bi), which is impossible,
so all ai’s have to be distinct. Neither can there be any index such that bn = an, because
then a diagonal type move would connect (0, 0) with (an, bn). Hence it is clear that an < bn,
for all n, where we let positions of the form (an, bn) represent the upper P-positions (and
by symmetric rules of game, it follows that positions of the form (bn, an) represent the lower
P-positions). Further, we cannot have repetitions in the δ-sequence because this would
connect two P-positions via a diagonal Wythoff type move. It remains to demonstrate that
the sequences a and b are complementary. Symmetry and the inclusion of all Nim-type moves
guarantee that there can be no repetitions of entries. That is, for each positive integer x,
there is at most one index i such that ai = x or bi = x, but not both. Thus it suffices to
demonstrate that, for each x, there is an index i such that either ai = x or bi = x. Let x
be an arbitrary column. By the previous argument, there are at most x P-positions in the
lower x − 1 columns (starting with x = 1 and the terminal P-position (0, 0)). Each such
P-position is an option for at most finitely many game positions in the xth column, by the
definition of a Wythoff extension. Hence, there is a least row y for which (x, y) does not
have any P-position as an option. Then (x, y) is P. Hence there is at least one P-position in
each column and so, by symmetry, a and b must be complementary.

bn
an

n

δn

0 1 2 3 4 5 6 . . .

. . .

. . .

. . .

0 1 3 4 7 8 9

0 2 5 6 10 13 15

0 1 2 2 3 5 6

Table 3: These sequences do not correspond to the initial P-positions of any Wythoff Nim
extension. Although the sequences do not contain any repetitions, they cannot correspond
to such P-positions since δ2 = δ3 = 2. The table indicates the consequences of a given lower
sequence growing too fast. The “7” in column 4 forces both “5” and “6” to reside in a lower
column in the upper sequence. We study this type of behavior in our asymptotic result in
Theorem 2.

For the other direction, one can see that any pair of sequences satisfying Property W
constitute the P-positions of some Wythoff Nim extension. Namely, for each i, there are only
finitely many positions of the form (ai, y), with y < bi. Therefore, at most bi−1 extra moves
need to be adjoined to Wythoff’s moves, for each i, to obtain a desired Wythoff extension.
For example, we can include moves that take the (ai, y)s to (0, 0), for all i. But we will
not need this latter property in this paper. Note that, if we put an extra requirement that
the move options be independent of the position moved from (apart from the non-negitivity
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condition of heap sizes), then it is easy to find counter examples to this converse statement.
For example, upper P-positions beginning (1, 3), (2, 5), . . . will do. The reason that we do
not require the move options to be independent of the positions moved from, is that the next
result does not depend on it. On the other hand, the rules for the family of (p, q)-GDWN
games are independent of the position moved from.

Theorem 2. Suppose that the sequences (ai) and (bi) satisfy Property W as defined in

Proposition 1. Then, for n ∈ N,

#{i > 0 | ai < n}
n

≥ φ−1 − o(1) (1)

and

#{i > 0 | bi < n}
n

≤ φ−2 + o(1). (2)

In particular the result holds for {(ai, bi)} representing the upper P-positions of any Wythoff

Nim extension.

Proof. For any given Wythoff Nim Extension, define the y-sequence as the unique permu-
tation of the b-sequence with entries in increasing order. That is yn < yn+1 for all n and
{yn} = {bn}. Define the unique surjective function j : N → N, j = j(n) such that, for all n,
aj ≤ n < aj+1. (This is well defined by (ai) strictly increasing and a1 = 1.) Suppose that (1)
does not hold. Then, by (ai) increasing, there is an ǫ′ > 0 such that, for all sufficiently large

n, j(n)
aj(n)

< φ−1− ǫ′. By inverting this equation, we obviously get 1
φ−1−ǫ′

<
aj(n)

j(n)
, which implies

that there is an ǫ > 0 such that, for all sufficiently large n, φn+ ǫn
2
< an. By complementarity

this implies, for all sufficiently large n, φ2n − γ(ǫ) ≥ yn, where γ(ǫ) > ǫn
2
is a function of ǫ

only. Thus

δ′n := yn − an

< (φ2 − φ)n− ǫn

= (1− ǫ)n, (3)

for all sufficiently large n. Hence, since all entries in the sequence (δ′n)n≤N are positive
integers, it must contain at least ǫN (pairwise) repetitions, for all sufficiently large N .

Given C ∈ N, define the finite set Sb = Sb(C), by x ∈ Sb if and only if bx ≤ C. That is
Sb contains the indices of all b-entries smaller than C. For a given C, let (ni) be the unique
increasing sequence of the numbers in Sb. Then, clearly ni ≥ i, for all i, and therefore also,
by (ai) increasing, ani

≥ ai, for all i. Suppose now that N is sufficiently large, so that
(δ′n)n≤N contains ǫN repetitions, as defined in the previous paragraph, and study the unique
set Sb of size N . It contains the indices of the N smallest entries in the b-sequence, (ni)

N
i=1.

Thus, since
∑

Sb
ai ≥

∑N

i=1 ai and
∑

Sb
bi =

∑N

i=1 yi, we get
∑

Sb
δi ≤

∑N

i=1 δ
′
i, and so the

sequence (δi)
N
i=1 must also contain at least ǫN repetitions for all sufficiently large N . This

contradicts property W, and so (1) must hold and thus, by complementarity also (2).
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3 Splitting P-positions for (1, 2)-GDWN

In this section we analyze the game (1, 2)-GDWN from paper [10] and prove that its upper
P-positions (2, 0.05)-split. The following lemma shows that it suffices to establish a positive
lower asymptotic density for x-coordinates of P-positions above the line y = 2x.

Lemma 3. Suppose that there is a positive lower asymptotic density of x-coordinates of

P-positions above the line y = 2x. Then, the upper P-positions {(an, bn) | n ∈ N0}, of

(1, 2)-GDWN, split.

Proof. Let (ki) denote the unique increasing sequence of indices such that, for all i ∈ N,
2 < bki/aki and if ki < j < ki+1 then bj/aj < 2 (put k0 = 0). Already in paper [10] we
proved that (ki) is infinite. Further it was demonstrated that, by a ‘greedy’ choice, the
b-sequence satisfies, for all i,

bki+1
= 2(aki+1

− aki) + bki + 1. (4)

The assumption is that there is an ǫ > 0 such that, for all sufficiently large N ,

#{i | aki < N} ≥ ǫN. (5)

It suffices to show that, for all sufficiently large N , the set

{(N, 2N), (N, 2N + 1), . . . , (N, (2 + ǫ)N)} (6)

will contain only N-positions (assuming that ǫN is an integer). We use induction with base
case: there is a move from (N, 2N) to (0, 0). Further, the induction hypothesis is that
there is a move from (N, 2N + x) to (aki , bki), x ∈ N0 of the form: 2N + x − bki = 2t and
N − aki = t, t ∈ N. By (5), it suffices to show that there is a move from (N, 2N + x+ 1) to
(aki+1

, bki+1
). By eliminating t, we get 2N+x+1−bki = 2(N−aki)+1 which, by (4) becomes

2N + x + 1 − bki+1
= 2(N − aki+1

). Thus, the P-positions of the form in (4) contribute at
least ǫN consecutive N-positions above the line y = 2x, for each x-coordinate x = N , as
described in (6). These N-positions separate the infinite sequence of P-positions of the form
(aki , bki) from the other ones. By [10] we know that there are infinitely many P-positions
(an, bn) satisfying 1 ≤ bn

an
≤ 2. Hence, given the assumptions, each requirement for a split is

satisfied.

Lemma 4. For any p, q ∈ N, (p, q)-GDWN is a Wythoff extension.

Proof. Obvious.

Theorem 5. The upper P-positions {(an, bn) | n ∈ N0} of (1, 2)-GDWN split.

Proof. If there is a positive lower density of P-positions above the line y = 2x then, by
Lemma 3 the result holds.
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Assume for a contradiction that there are at most o(N) P-positions above the line y = 2x
with x-coordinate less than N . Then almost all upper P-positions lie in the sector defined by
the lines y = x and y = 2x. By Lemma 4 and Theorem 2, the number of upper P-positions
with x-coordinate less than N is at least φ−1N − o(N).

We denote by

τ = τ(N) :=
#{i | ai ≤ N}

N

and observe that τ > φ−1 − o(1).
By Theorem 2, for all sufficiently large N , the number of N-beams of slope 1, which

intersect the (red) dashed line in Figure 3 between y = N and y = 3N
2
, and originating from

P-positions in region

(I) is at least τ N
2
,

(II) is at least cτ N
2
, where 0 < c < 1 is some real constant.

Similarly, the number of N-beams of slope 2, which intersect the (red) dashed line between
y = 3N

2
and y = 2N , originating from P-positions in region

(I) is at least τ N
2
,

(III) is at least (1− c)τ N
2
, where 0 < c < 1 is the real constant from (II),

(IV) is at least (1− τ)N
3
,

where the last item is by complementarity of the a and b sequences. Hence, the number of
N-beams of slope 1, from regions I and II, is at least

(1 + c)
τN

2
.

The number of N-beams of slope 2, from regions I, III and IV, is at least

(

τ

2
+ (1− c)

τ

2
+ (1− τ)

1

3

)

N.

From these expressions we see that the constant c does not affect the total number of N-
beams. Hence we omit it and, by τ ≥ φ−1− o(1), get that the total number of N-beams is at

least N 7φ−1+2
6

> 1.05N , which contradicts the definition of N and P, namely it implies that
either there are two P-positions on the same line of slope 2 or there are two P-positions on
the same line of slope 1.

9



y

x

I

II

II

III

IV

NN/2N/3

(N,N)

(N, 3N/2)

(N, 2N)

(N/2, N/2)

(N/3, N/6)

Figure 3: We consider P-positions in four regions sending N-positions to lattice points with
x-coordinate N . The ones from region I and II have slope 1 and the ones from region I, III
and IV have slope 2. The y-coordinate 3N/2 is pivotal in our argument. Below it we count
the beams of slope 1 and above it the beams of slope 2.

4 The game (2, 3)-GDWN

By an analogous method one can also prove that the upper P-positions of (2, 3)-GDWN
split. Some extra care is needed for the treatment of the P-positions above the line of slope
3/2, but one can see that the packing of the N-beams originating from P-positions above
this line will be dense also for this game; within an O(N) distance to the y-coordinate 3N/2
(with N even), although they will not be strictly “greedy” as for (1, 2)-GDWN. Another
slight complication is that one needs to regard two columns, N,N + 1 for this game, rather
than the single N -column in (1, 2)-GDWN. However this still implies that the number of
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positions to check for its N-status, between this line and the one of slope 1, is N . Further,
the contribution from analogues of regions I, II and III in Figure 3 gives the same estimate
as for (1, 2)-GDWN. By Theorem 2 and by inspection, for this case the contribution from
region IV gives an additional number of P-positions below x-coordinate 3N/10; there are at
least 3(1− τ)N/10 of them. Hence the total number is at least (6τ

5
+ 3

10
)N > 1.04N .

Theorem 6. The upper P-positions {(an, bn) | n ∈ N0} of (2, 3)-GDWN split.

For other variations of GDWN the analysis seems more technical and new ideas may be
needed. In particular, for such games, various log-period behaviors of diverging P-beams
are observed in the paper [10], as does not appear to be the case for (1,2)-GDWN and
(2,3)-GDWN.

5 Discussion and questions

The final question in the thesis [7] concerns an analog to Property W (as defined in Proposi-
tion 1) for general permutations. Let us restate it: is there any permutation g on the natural
numbers such that g(x)− x 6= g(y)− y whenever x 6= y and such that

lim sup
i→∞

g(i)

i
− lim inf

i→∞

g(i)

i
< 1?

In this paper we have provided a negative answer in case g is an involution. The question
remains open for general permutations.

Via Theorem 2, Property W in fact implies a property for a given set S of positive
integers as follows. Let {si} = S ⊂ N, with the si’s distinct (and in increasing order).
We have demonstrated that, if there is an ordering (ti) of the numbers in N \ S such that
ti − si = tj − sj > 0 implies i = j, then the lower asymptotic density of S must be greater
than or equal to φ−1.

The converse does not hold in general. For example any set S beginning as the a-sequence
in Table 3 does not have this property, but it can easily be constructed to have lower density
greater than or equal to φ−1, for example, by letting it converge to Wythoff’s A-sequence.
This converse question is more meaningful in the game’s setting. For example, one would
like to classify those restrictions of Wythoff Nim that satisfy (1). Does the removal of
finitely many diagonal moves from Wythoff Nim change this property? Then there will be
repetitions in the δ-sequence, even occurrences ai = bi, so we have to relax property W as
appropriate.

A sequence (xi, yi) density-splits if it (α, ǫ)-splits and each of the sets {xi | α ≥ yi
xi
} and

{xi | α+ ǫ ≤ yi
xi
} has a positive lower asymptotic density. Do our results hold if we exchange

split for density-split everywhere? We conjecture a positive answer, but some details are still
missing for the upper P-positions’ lower P-beam, see paper [10].
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