
23 11

Article 14.11.1
Journal of Integer Sequences, Vol. 17 (2014),2

3

6

1

47

Lagrange’s Algorithm Revisited:

Solving at2 + btu + cu2 = n in the

Case of Negative Discriminant

Keith R. Matthews
School of Mathematics and Physics

University of Queensland
Brisbane, QLD 4072

Australia
and

Centre for Mathematics and its Applications
Australian National University

Canberra, ACT 0200
Australia

keithmatt@gmail.com

Abstract

We make more accessible a neglected continued fraction algorithm of Lagrange for
solving the equation at2 + btu+ cu2 = n in relatively prime integers t, u, where a > 0,
gcd(a, n) = 1, and D = b2 − 4ac < 0. The cases D = −4 and D = −3 present a
consecutive convergents phenomenon which aids the search for solutions.

1 Introduction

At the end of a memoir in 1770, Lagrange [8, pp. 717–726] gave a method for finding the
solutions of a positive definite binary form equation

at2 + btu+ cu2 = n, (1)
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where gcd(t, u) = 1, gcd(a, n) = 1, b2 − 4ac < 0, a > 0, and n > 0. For such a solution,
gcd(u, n) = 1 and hence the congruence θu ≡ t (mod n) has a unique solution θ in the range
−n/2 < θ ≤ n/2. Then

at2 + btu+ cu2 ≡ 0 (mod n)

a(θu)2 + b(θu)u+ cu2 ≡ 0 (mod n)

aθ2 + bθ + c ≡ 0 (mod n). (2)

Lagrange [8, p. 700] used the transformation

t = θu− ny (3)

to convert equation (1) to
Pu2 +Quy +Ry2 = 1, (4)

where P = (aθ2 + bθ + c)/n,Q = −(2aθ + b), R = na.
(We remark that, conversely, if (u, y) is a solution of (4), then (t, u) = (θu − ny, u) is a

solution of (1) with gcd(t, u) = 1.)
We note that D = b2−4ac = Q2−4PR. Also if (u, y) is a solution of (4), so is (−u,−y).
Lagrange [8] proved in Sections 20, 35 and 39 of his paper that u/y, y > 0 is a convergent

to −Q/2P . His proof was long and hard to follow. The aim of this paper is to give a short
proof that Lagrange’s assertion holds, apart from certain exceptional cases. If D 6= −3, this
is done in Section 3, where we use the following standard test due to Lagrange [7, Satz 2.11,
p. 39]:

Lemma 1. If a rational x/y with gcd(x, y) = 1 and y ≥ 1 has the property that |ω− x/y| <
1/2y2, then x/y is a convergent of the continued fraction expansion of ω.

If D = −3, more care is needed. In Section 5, we use the following criterion from [3,
Theorem 172, p. 140]:

Lemma 2. If ω = Pζ+R

Qζ+S
, where ζ > 1 and P,Q,R, S are integers such that Q > S > 0 and

PS −QR = ±1, then R/S = An−1/Bn−1 and P/Q = An/Bn are consecutive convergents of

ω. Also ζ is the (n+ 1)th complete convergent of ω.

(The author [5] used this approach successfully in an earlier paper [5] on Lagrange’s work,
when D > 0.)

Lagrange gave solution bounds

u ≤
√

4R/(4PR−Q2), y ≤
√

4P/(4PR−Q2), (5)

which are easy to derive by completion of the square in equation (4).
We note that in a series of papers, K. S. Williams [9] also considered congruence (2), but

did not consider equation (4) and instead examined the continued fraction of θ/n, thereby
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generalizing a method of Hermite and Cornacchia. The algorithm presented in Section 6 of
the present paper is quite different and is also easy to program.

We use the continued fraction notation [a0, . . . , an].
It is well-known (see [1, Theorem 59, p. 75]) that equation (4), when soluble, has two

solutions if D < −4, four solutions if D = −4 and six solutions if D = −3.
It is easy to show that if D = −4, Q = 2N and (u, y) is a solution of (4), then (−(Nu+

Ry), Pu+Ny) is also a solution. Whereas if D = −3, Q = 2N +1 and (u, y) is a solution of
(4), then (−(Nu+Ry), Pu+(N +1)y) and (−(u(N +1)+ yR), Pu+Ny) are also solutions.
In sections 4 and 5, if D = −4 or −3, it is shown that apart from certain exceptional cases,
these solutions of (4), apart from sign, arise from consecutive convergents to −Q/2P . This
important fact is used in the algorithm of Section 6 and was not mentioned by Lagrange.

The algorithm is available for online experimentation at [6].

Remark 3. The assumption that gcd(a, n) > 1 involves no loss of generality. For we can
assume that gcd(a, b, c) = 1. Then as pointed out by Gauss [2, p. 221] (also see [4, Lemma
2, pp. 311–312]), there exist relatively prime integers α, γ such that aα2 + bαγ + cγ2 = A,
where gcd(A, n) = 1. The construction uses the factorization of n. Then if αδ− βγ = 1, the
transformation t = αT + βU, u = γT + δU converts at2 + btu+ cu2 to AT 2 + BTU + CU2,
with the two forms representing the same integers.

2 Exceptional cases

We first list some exceptional cases where the solutions (u, y) of (4) are easily found.

(a) D < −4 and P = 1. Then the solutions are (u, y) = ±(1, 0).

(b) D = −4. Then Q = 2N .

(i) If P = 1, then R = N2 + 1 and the solutions (u, y) are ±(1, 0) and ±(−N, 1).
Here (−N, 1) = (A0, B0).

(ii) If P = 2, then R = (N2 + 1)/2, where N is odd and the solutions (u, y) are

±( (−N+1)
2

, 1) and ±(−(N+1)
2

, 1). Here (−(N + 1)/2, 1) = (A1, B1).

(c) D = −3. Then Q = 2N + 1.

(i) If P = 1, then R = N2+N +1 and the solutions (u, y) are ±(1, 0),±(−N, 1) and
±(−(N + 1), 1). Here (−(N + 1), 1) = (A0, B0).

(ii) If P = 3, then R = (N2+N +1)/3, where N ≡ 1 (mod 3) and solutions (u, y) are

±( (−N+1)
3

, 1),±(−(2N+1)
3

, 2) and ±(−(N+2)
3

, 1). Here (−(2N+1)
3

, 2) = (A1, B1) and

(−(N+2)
3

, 1) = (A0, B0).

From now on, we exclude these cases.
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3 The case D 6= −3

Theorem 4. Let u and y > 0 be integers satisfying (4), where D = Q2 − 4PR < 0 and

P,Q,R are integers, P > 0, D 6= −3 and P 6= 2 if D = −4. Then u/y is a convergent to

ω = −Q/2P .

Proof. We derive the inequality
∣

∣

∣

∣

ω −
u

y

∣

∣

∣

∣

<
1

2y2
. (6)

Then Lemma 1 shows that u/y is a convergent to ω = −Q/2P .

(a) Let Q = 2N . Then ω = −N/P and
∣

∣

∣

∣

ω −
u

y

∣

∣

∣

∣

=

∣

∣

∣

∣

−
N

P
−

u

y

∣

∣

∣

∣

<
1

2y2

⇐⇒ |Pu+Ny| <
P

2y
. (7)

From (4), with ∆ = −D/4 = PR−N2, we have

u =
−Ny ±

√

P −∆y2

P
(8)

and hence
Pu+Ny = ±

√

P −∆y2. (9)

Then (7) becomes
√

P −∆y2 <
P

2y
, (10)

which reduces, on cross-multiplying, to

(P − 2y2)2 + 4(∆− 1)y4 > 0. (11)

However (11) holds if ∆ > 1 or if ∆ = 1 and P 6= 2y2. But if ∆ = 1 and P = 2y2, then
y = 1, as gcd(P, y) = 1. Hence P = 2 and this case was excluded.

(b) Let Q = 2N + 1 and ∆ = −D = 4PR− (2N + 1)2 > 0. Then
∣

∣

∣

∣

ω −
u

y

∣

∣

∣

∣

=

∣

∣

∣

∣

−
2N + 1

2P
−

u

y

∣

∣

∣

∣

<
1

2y2

⇐⇒ |2Pu+ (2N + 1)y| <
P

y
. (12)

From (4), we have

u =
−(2N + 1)y ±

√

4P −∆y2

2P
(13)
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and hence
2Pu+ (2N + 1)y = ±

√

4P −∆y2. (14)

Then (12) becomes
√

4P −∆y2 <
P

y
, (15)

which reduces, on cross-multiplying, to

(P − 2y2)2 + (∆− 4)y4 > 0. (16)

This inequality holds, as ∆ ≡ −1 (mod 4) and so ∆ > 4 if ∆ 6= 3.

4 The case D = −4: Finer detail

The next result has the useful computational aspect that once we find a convergent that gives
a solution of (4), we know that the next convergent will also give a solution and complete
the search for that value of θ.

Theorem 5. Let D = −4, P 6= 1, 2 and (u, y), y > 0 be a solution of (4). Then Q = 2N

and u
y
and

−t(Nu+Ry)
t(Pu+Ny)

are consecutive convergents to −Q/2P , where t = sgn(Pu+Ny).

Proof. We have the identity

−Q

2P
=

−N

P
=

uξ −Nu−Ry

yξ + Pu+Ny
, (17)

where ξ = y

Pu+Ny
. From equation (8) with ∆ = 1, we have

Pu+Ny = ±
√

P − y2, (18)

where P > y2. (We note that P = y2 would imply y = 1 = P , as gcd(P, y) = 1 and this is
excluded.)

Case 1. Assume Pu+Ny =
√

P − y2. Then ξ = y/
√

P − y2 > 0. Then ξ 6= 1, as otherwise
√

P − y2 = y, P = 2y2 and y = 1, P = 2, as gcd(P, y) = 1; however this case was excluded.

(i) Assume 2y2 > P . Then ξ > 1. For

ξ > 1 ⇐⇒ y >
√

P − y2

⇐⇒ 2y2 > P.

Also
−N

P
=

uξ + (−Nu−Ry)

yξ + (Pu+Ny)
.

Then as y > Pu + Ny > 0, Lemma 2 implies that u
y
= Am

Bm

and −Nu−Ry

Pu+Ny
= Am−1

Bm−1

are

consecutive convergents to −N/P .

5



(ii) Assume 2y2 < P . Then 0 < ξ < 1. Also

−N

P
=

u− (Nu−Ry)(ξ−1)

y + (Pu+Ny)(ξ−1)
.

Then as y < Pu + Ny, Lemma 2 implies that u
y

= Am−1

Bm−1

and −Nu−Ry

Pu+Ny
= Am

Bm

are

consecutive convergents to −N/P .

Case 2. Assume Pu + Ny = −
√

P − y2. Then ξ = y/(−
√

P − y2) < 0. We cannot have
ξ = −1 as otherwise P = 2.

(i) Assume 2y2 > P . Then |ξ| > 1 and hence −ξ > 1. Also

−N

P
=

u(−ξ) +Nu+Ry

y(−ξ)− (Pu+Ny)
,

and y > −(Pu + Ny) > 0. Hence u
y
= Am

Bm

and Nu+Ry

−(Pu+Ny)
= Am−1

Bm−1

are consecutive

convergents to −N/P .

(ii) Assume 2y2 < P . Then |ξ| < 1 and hence −ξ−1 > 1. Also

−N

P
=

u+ (Nu+Ry)(−ξ−1)

y − (Pu+Ny)(−ξ−1)
,

where y < −(Pu+Ny). Hence u
y
= Am−1

Bm−1

and Nu+Ry

−(Pu+Ny)
= Am

Bm

are consecutive conver-

gents to −N/P .

5 The case D = −3

The case D = −3 was excluded from Theorem 4 and we discuss it now.
The next result has the useful computational aspect that once we find a convergent that

gives a solution of (4), we know that the next two convergents will give two further solutions
and complete the search for that value of θ.

Theorem 6. Let D = −3, P 6= 1, 3 and (u, y), y > 0 be a solution of (4). Then Q = 2N + 1
and the rational numbers

u

y
,

−s(Nu+Ry)

s(Pu+ (N + 1)y)
,

t(u(N + 1) + yR)

t(Pu+Ny)

are consecutive convergents in some order to −Q/2P , where s = sgn(Pu + (N + 1)y and

t = sgn(Pu+Ny).
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Proof. We have the identity

−Q

2P
=

−(2N + 1)

2P
=

uξ − (N + 1)u−Ry

yξ + Pu+Ny
, (19)

where ξ = Pu+(N+2)y
2Pu+(2N+1)y

. From equation (14) with ∆ = 3, we have

2Pu+ (2N + 1)y = ±
√

4P − 3y2, (20)

where 4P > 3y2. (We have 4P − 3y2 6= 0, as otherwise 4P = 3y2 and hence y = 2, P = 3,
which was excluded.)

Case 1. Assume 2Pu+ (2N + 1)y =
√

4P − 3y2. Then

Pu+ (N + 2)y =

√

4P − 3y2 + 3y

2
> 0

and hence ξ > 0. Also ξ 6= 1. For

ξ = 1 =⇒

√

4P − 3y2 + 3y

2
=

√

4P − 3y2

=⇒ 3y =
√

4P − 3y2

=⇒ 3y2 = P

=⇒ y = 1, P = 3,

which was excluded.
We note that Pu+Ny > 0 ⇐⇒

√

4P − 3y2 > y ⇐⇒ P > y2.

(i) Assume 3y2 < P . Then 0 < ξ < 1. For

ξ < 1 ⇐⇒ Pu+ (N + 2)y < 2Pu+ (2N + 1)y

⇐⇒ y < Pu+Ny

⇐⇒ y <

√

4P − 3y2 − y

2

⇐⇒ 3y <
√

4P − 3y2

⇐⇒ 3y2 < P.

Then (19) gives

−Q

2P
=

−(2N + 1)

2P
=

u− ((N + 1)u+Ry)ξ−1

y + (Pu+Ny)ξ−1
. (21)

Also we have y < Pu+Ny and ξ−1 > 1. Then Lemma 2 applied to (21) implies that
u
y
= Am−1

Bm−1

and −(N+1)u−Ry

Pu+Ny
= Am

Bm

are consecutive convergents of −Q/2P .
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(ii) Assume 3y2 > P > y2. Then we have ξ > 1, y > Pu + Ny > 0 and by Lemma 2

applied to equation (21), it follows that u
y
= Ar

Br

and −(N+1)u−Ry

Pu+Ny
= Ar−1

Br−1

are consecutive

convergents to −Q/2P .

(iii) Assume P < y2. Then we have ξ > 2. For

ξ > 2 ⇐⇒ Pu+ (N + 2)y > 2(2Pu+ (2N + 1)y)

⇐⇒ 0 > Pu+Ny

⇐⇒ P < y2.

We rewrite equation (19) as

−(2N + 1)

2P
=

u(ξ − 1)− (Nu+Ry)

y(ξ − 1) + Pu+ (N + 1)y
. (22)

Then we have ξ − 1 > 1, y > Pu+ (N + 1)y > 0 and by Lemma 2 applied to equation
(22), it follows that u

y
= As

Bs

and −Nu−Ry

Pu+(N+1)y
= As−1

Bs−1

are consecutive convergents to

−Q/2P .

We now link up each pair of solution convergents found in Cases 1(i)–(iii) with a third
solution convergent. We start by employing the equations

ξ1 =
−Pu− (N − 1)y

2Pu+ (2N + 1)y
, (23)

−(2N + 1)

2P
=

uξ1 −Nu−Ry

yξ1 + Pu+ (N + 1)y
. (24)

We find a pair of convergents which we list corresponding to Cases 1(i) and (ii):

(i)
u

y
=

Am−1

Bm−1

,
−(N + 1)u−Ry

Pu+Ny
=

Am

Bm

−Nu−Ry

Pu+ (N + 1)y
=

Am+1

Bm+1

,

(ii)
−(N + 1)u−Ry

Pu+Ny
=

Ar−1

Br−1

,
u

y
=

Ar

Br

,
−Nu−Ry

Pu+ (N + 1)y
=

Ar+1

Br+1

.

For Case 1(iii), we employ the equations

ξ2 =
−Pu− (N − 1)y

Pu+ (N + 2)y
, (25)

−(2N + 1)

2P
=

((N + 1)u+Ry)ξ2 −Nu−Ry

−(Pu+Ny)ξ2 + Pu+ (N + 1)y
. (26)

We then find a pair of convergents that is listed with the pair found in Case 1(iii):

(iii)
(N + 1)u+Ry

−(Pu+Ny)
=

As−1

Bs−1

and
−Nu−Ry

Pu+ (N + 1)y
=

As

Bs

,
u

y
=

As+1

Bs+1

.
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This finishes Case 1.

Case 2. Assume 2(Pu + Ny) + y = −
√

4P − 3y2. Summarising, we find after tedious
calculation, the following three results:

(i) P > 3y2:

u

y
=

Am−1

Bm−1

,
Nu+Ry

−Pu− (N + 1)y
=

Am

Bm

,
(N + 1)u+Ry

−Pu−Ny
=

Am

Bm+1

;

(ii) 3y2 > P > y2:

Nu+Ry

−Pu− (N + 1)y
=

Am−1

Bm−1

,
u

y
=

Am

Bm

,
(N + 1)u+Ry

−Pu−Ny
=

Am+1

Bm+1

;

(iii) y2 > P :

−Nu−Ry

Pu+ (N + 1)y
=

Am−1

Bm−1

,
(N + 1)u+Ry

−Pu−Ny
=

Am

Bm

,
u

y
=

Am+1

Bm+1

.

6 The continued fraction based algorithm

The following algorithm finds all solutions (t, u) with gcd(t, u) = 1, of equation (1), when
gcd(a, n) = 1. The most time-consuming part involves solving the quadratic congruence (2),
as this depends on finding the prime factorization of n. This is also a feature of Williams’
algorithm, as well as Gauss’ algorithm in [1, p. 75]. This dependence means that for practial
purposes, n is restricted to less than 200 digits. The present algorithm, like that of Williams,
also uses Euclid’s algorithm, whereas Gauss’ algorithm uses reduction of positive definite
forms, and these have similar running times.

Input: Integers a, b, c, n, b2 − 4ac < 0, n > 0, gcd(a, n) = 1.
Output: All solutions, if any, of at2 + btu+ cu2 = n, gcd(t, u) = 1.
Solve aθ2 + bθ + c ≡ 0 (mod n), −n/2 < θ ≤ n/2.
If there are no solutions, exit.
Let θ0, . . . , θs−1 be the congruence solutions in the range (−n/2, n/2].
D := b2 − 4ac.
for k = 0, . . . , s− 1 do

P := (aθ2k + bθk + c)/n,Q := 2aθk + b;
if D < −4 and P = 1 then (u, y) := ±(1, 0);
if D = −4, then N := Q/2;

if P = 1, then (u, y) := ±(1, 0),±(−N, 1);
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if P = 2, then (u, y) := ±(−N + 1)/2, 1),±(−(N + 1)/2, 1).
if D = −3, then N := (Q− 1)/2.

if P = 1, then (u, y) := ±(1, 0),±(−N, 1),±(−(N + 1), 1).
if P = 3, then

(u, y) := ±((−N + 1)/3, 1),±(−(2N + 1)/3, 2),±(−(N + 2)/3, 1).
print exceptional solutions (t, u) := (θku− ny, u);
continue to next k;
i := 0;
bound :=

√

4P/(−D);
calculate convergent A0/B0 of −Q/2P ;
while (Bi ≤ bound) do

if aA2
i + bAiBi + cB2

i = 1 then

print solutions (t, u) := ±(θkAi − nBi, Ai);
if D < −4, continue to next k;
if D = −4 or −3 then

calculate convergent Ai+1/Bi+1 of −Q/2P ;
print solutions (t, u) := ±(θkAi+1 − nBi+1, Ai+1);
if D = −4, continue to next k;
if D = −3, then

calculate convergent Ai+2/Bi+2 of −Q/2P ;
print solutions (t, u) := ±(θkAi+2 − nBi+2, Ai+2);
continue to next k;

i := i+ 1;
calculate convergent Ai/Bi of −Q/2P ;

end while loop;
end for loop.

Example 7. Find all solutions of 7t2 − 9tu+ 3u2 = 19, gcd(t, u) = 1. Here D = −3.
The congruence 7θ2 − 9θ + 3 ≡ 0 (mod 19) has solutions θ = −1 and 5.

θ = −1: The transformation t = −u − 19y converts 7t2 − 9tu + 3u2 = 19 to u2 + 23uy +
133y2 = 1. This is one of the exceptional cases from Section 2, with solutions (u, y) =
(±1, 0),±(−11, 1),±(−12, 1).

These produce primitive solutions (t, u) = ±(1,−1),±(8,−11),±(7,−12).

θ = 5: The transformation t = 5u−19y converts 7t2−9tu+3u2 = 19 to 7u2−61uy+133y2 = 1.
Then −Q/2P = 61/14 = [4, 2, 1, 4] and we find that convergents A0/B0 = 4/1, A1/B1 =

9/2, A2/B2 = 13/3 give solutions (u, y). These in turn give (t, u) = (1, 4), (7, 9), (8, 13).
Hence we get primitive solutions ±(1, 4),±(7, 9),±(8, 13) of 7t2 − 9tu+ 3u2 = 19.

Hence the equation 7t2 − 9tu+ 3u2 = 19 has 12 primitive solutions.
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Théor. Nombres Bordeaux 14 (2002) 257–270.

[6] K. R. Matthews, Finding primitive solutions of the diophantine equation ax2 +
bxy + cy2 = n, where b2 − 4ac < 0, gcd(a, b, c) = 1, and a > 0, available at
http://www.numbertheory.org/php/posrep2.html.

[7] O. Perron, Die Lehre von den Kettenbrüchen, Band 1, B. G. Teubner, 1954.
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