On a Conjecture of Farhi

Soufiane Mezroui, Abdelmalek Azizi, and M’hammed Ziane
Laboratoire ACSA
Département de Mathématiques et Informatique
Université Mohammed Premier
Oujda 60000
Morocco
mezroui.soufiane@yahoo.fr
abdelmalekazizi@yahoo.fr
ziane12001@yahoo.fr

Abstract

Recently, Farhi showed that every natural number $N \not \equiv 2(\bmod 24)$ can be written as the sum of three numbers of the form $\left\lfloor\frac{n^{2}}{3}\right\rfloor \quad(n \in \mathbb{N})$. He conjectured that this result remains true even if $N \equiv 2(\bmod 24)$. In this note, we prove this statement.

1 Introduction

Throughout this note, we let \mathbb{N} and \mathbb{Z}, respectively, denote the set of the non-negative integers and the set of the integers. We let $\lfloor\cdot\rfloor$ and $\langle\cdot\rangle$ denote the integer-part and the fractional-part functions. Let X be a set. We denote the cardinality of X by $\# X$. We also recall that (\vdots) is the Jacobi symbol.

Recently, Farhi [1] showed that every natural number $N \not \equiv 2(\bmod 24)$ can be written as the sum of three numbers of the form $\left\lfloor\frac{n^{2}}{3}\right\rfloor \quad(n \in \mathbb{N})$. He conjectured that this result remains true even if $N \equiv 2(\bmod 24)$. We recall his conjecture.

Conjecture 1. Every natural number can be written as the sum of three numbers of the form $\left\lfloor\frac{n^{2}}{3}\right\rfloor \quad(n \in \mathbb{N})$.

In fact, he proposed a more general conjecture.

Conjecture 2. Let $k \geq 2$ be an integer. There then exists a positive integer $a(k)$ that satisfies the following property: every natural number can be written as the sum of $k+1$ numbers of the form $\left\lfloor\frac{n^{k}}{a(k)}\right\rfloor \quad(n \in \mathbb{N})$.

In this note, we prove Conjecture 1.

2 Proof of Conjecture 1

We recall Legendre's theorem [3, pp. 331-339], which is a necessary tool for our proof:
Theorem 3. Every natural number not of the form $4^{h}(8 k+7)(h, k \in \mathbb{N})$ can be represented as the sum of three squares of natural numbers.

We note that since $4^{h}(8 k+7)$ is congruent to 0,4 or 7 modulo 8 , every natural number not congruent to 0,4 or 7 modulo 8 can be represented as the sum of three squares of natural numbers. We will use this result later.

Let $r_{3}(n)$ be the number of representations of the positive integer n as the sum of three squares of integers. The following theorem provides an interesting formula for $r_{3}(n)$, which can be proven using the theory of modular functions.

Theorem 4 (see [2]). For any positive integer n, we have

$$
r_{3}(n)=\frac{16}{\pi} \sqrt{n} \chi_{2}(n) K(-4 n) \prod_{p^{2} \mid n}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{b-1}}+\frac{1}{p^{b}}\left(1-\left(\frac{-p^{-2 b} n}{p}\right) \frac{1}{p}\right)^{-1}\right)
$$

where $b=b(p)$ is the largest integer such that $p^{2 b} \mid n$,

$$
K(-4 n)=\sum_{m=1}^{\infty}\left(\frac{-4 n}{m}\right) \frac{1}{m},
$$

and if 4^{a} is the highest power of 4 dividing n, then

$$
\chi_{2}(n)= \begin{cases}0, & \text { if } 4^{-a} n \equiv 7(\bmod 8) \\ \frac{1}{2^{a}}, & \text { if } 4^{-a} n \equiv 3(\bmod 8) ; \\ \frac{3}{2^{a+1}}, & \text { if } 4^{-a} n \equiv 1,2,5,6(\bmod 8)\end{cases}
$$

We will require the following technical lemma.
Lemma 5. For any positive integer $n \equiv 1(\bmod 8)$, we have

$$
r_{3}(9 n)>\frac{3}{2} r_{3}(n) .
$$

Proof. We have

$$
\begin{gathered}
r_{3}(9 n)=\frac{16}{\pi} \sqrt{9 n} \chi_{2}(9 n) K(-36 n) \times \\
\prod_{p^{2} \mid 9 n}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{b^{\prime}-1}}+\frac{1}{p^{b^{\prime}}}\left(1-\left(\frac{-9 p^{-2 b^{\prime}} n}{p}\right) \frac{1}{p}\right)^{-1}\right),
\end{gathered}
$$

where $b^{\prime}=b^{\prime}(p)$ denotes the largest integer for which $p^{2 b^{\prime}} \mid 9 n$. Since $n \equiv 1(\bmod 8)$, it follows that $4^{0}=1$ is the highest power of 4 dividing n. This result implies that $\chi_{2}(n)=\frac{3}{2}$. Similarly, we have $9 n \equiv 1(\bmod 8)$. Thus, $4^{0}=1$ is the highest power of 4 dividing $9 n$, which gives $\chi_{2}(9 n)=\chi_{2}(n)=\frac{3}{2}$. Conversely, it follows from [2, p. 84] that

$$
K(-36 n)=K\left(-4 \times 3^{2} \times n\right)=\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right) K(-4 n) .
$$

Since $n \equiv 1(\bmod 8)$, it follows from Legendre's theorem that n can be represented as the sum of three squares of natural numbers. Thus, $r_{3}(n) \neq 0$. Dividing through by $r_{3}(n)$ then yields an identity equivalent to

$$
\frac{r_{3}(9 n)}{r_{3}(n)}=\frac{3}{\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right)^{-1}} \times \frac{\prod_{p^{2} \mid 9 n}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{b^{\prime}-1}}+\frac{1}{p^{b^{\prime}}}\left(1-\left(\frac{-9 p^{-2 b^{\prime}}}{p}\right) \frac{1}{p}\right)^{-1}\right)}{\prod_{p^{2} \mid n}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{b-1}}+\frac{1}{p^{b}}\left(1-\left(\frac{-p^{-2 b} n}{p}\right) \frac{1}{p}\right)^{-1}\right)} .
$$

Let $p \neq 3$ with $p^{2} \mid n$. Thus, $b^{\prime}=b^{\prime}(p)$ is the largest integer for which $p^{2 b^{\prime}} \mid n$. Therefore, one obtains $b^{\prime}=b^{\prime}(p)=b(p)=b$. Furthermore, we have

$$
\left(\frac{-9 p^{-2 b^{\prime}} n}{p}\right)=\left(\frac{3^{2}}{p}\right)\left(\frac{-p^{-2 b^{\prime}} n}{p}\right)=\left(\frac{-p^{-2 b^{\prime}} n}{p}\right)=\left(\frac{-p^{-2 b} n}{p}\right) .
$$

For every $p \neq 3$ with $p^{2} \mid n$, we then have $1+\frac{1}{p}+\cdots+\frac{1}{p^{b^{\prime}-1}}+\frac{1}{p^{b^{\prime}}}\left(1-\left(\frac{-9 p^{-2 b^{\prime}}{ }_{n}}{p}\right)^{\frac{1}{p}}\right)^{-1}=$ $1+\frac{1}{p}+\cdots+\frac{1}{p^{b-1}}+\frac{1}{p^{b}}\left(1-\left(\frac{-p^{-2 b} n}{p}\right) \frac{1}{p}\right)^{-1}$. Thus, two cases are evident: if $3^{2} \mid n$, then

$$
\frac{r_{3}(9 n)}{r_{3}(n)}=\frac{3}{\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right)^{-1}} \times \frac{1+\frac{1}{3}+\cdots+\frac{1}{3^{b^{\prime}-1}}+\frac{1}{3^{b^{\prime}}}\left(1-\left(\frac{-9 \times 3^{-2 b^{\prime}} n}{3}\right) \frac{1}{3}\right)^{-1}}{1+\frac{1}{3}+\cdots+\frac{1}{3^{b-1}}+\frac{1}{3^{b}}\left(1-\left(\frac{-3^{-2 b_{n}}}{3}\right) \frac{1}{3}\right)^{-1}},
$$

Otherwise, 3^{2} does not divide n, so

$$
\frac{r_{3}(9 n)}{r_{3}(n)}=\frac{3}{\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right)^{-1}} \times\left(1+\cdots+\frac{1}{3^{b^{\prime}-1}}+\frac{1}{3^{b^{\prime}}}\left(1-\left(\frac{-9 \times 3^{-2 b^{\prime}} n}{3}\right) \frac{1}{3}\right)^{-1}\right)
$$

We now show that in all cases, $r_{3}(9 n)>\frac{3}{2} r_{3}(n)$.

- If 3^{2} does not divide $n, b^{\prime}=b^{\prime}(3)=1$ is implied to be the largest integer for which $3^{2 b^{\prime}} \mid 9 n$. One obtains

$$
\frac{r_{3}(9 n)}{r_{3}(n)}=\frac{3}{\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right)^{-1}} \times\left(1+\frac{1}{3}\left(1-\left(\frac{-n}{3}\right) \frac{1}{3}\right)^{-1}\right)
$$

We have $\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right)=1, \frac{2}{3}$ or $\frac{4}{3}$ and so $\frac{3}{\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right)^{-1}}>\frac{3}{2}$, which gives the result $r_{3}(9 n)>\frac{3}{2} r_{3}(n)$.

- If $3^{2} \mid n$, then b (respectively b^{\prime}) is the largest integer for which $3^{2 b} \mid n$ (respectively $3^{2 b^{\prime}} \mid 9 n$). Hence,

$$
\begin{aligned}
\frac{r_{3}(9 n)}{r_{3}(n)} & =\frac{3}{\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right)^{-1}} \times \frac{1+\frac{1}{3}+\cdots+\frac{1}{3^{b}}+\frac{1}{3^{b+1}}\left(1-\left(\frac{-9 \times 3^{-2(b+1)} n}{3}\right) \frac{1}{3}\right)^{-1}}{1+\frac{1}{3}+\cdots+\frac{1}{3^{b-1}}+\frac{1}{3^{b}}\left(1-\left(\frac{-3^{-2 b_{n}}}{3}\right) \frac{1}{3}\right)^{-1}} \\
& =\frac{3}{\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right)^{-1}} \times \frac{1+\frac{1}{3}+\cdots+\frac{1}{3^{b}}+\frac{1}{3^{b+1}}\left(1-\left(\frac{-3^{-2 b_{n}}}{3}\right) \frac{1}{3}\right)^{-1}}{1+\frac{1}{3}+\cdots+\frac{1}{3^{b-1}}+\frac{1}{3^{b}}\left(1-\left(\frac{-3^{-2 b_{n}}}{3}\right) \frac{1}{3}\right)^{-1}} .
\end{aligned}
$$

We have $\left(1-\left(\frac{-3^{-2 b} n}{3}\right) \frac{1}{3}\right)=1, \frac{2}{3}$ or $\frac{4}{3}$. One obtains the following in all cases:

$$
\frac{1}{3^{b}}+\frac{1}{3^{b+1}}\left(1-\left(\frac{-3^{-2 b} n}{3}\right) \frac{1}{3}\right)^{-1} \geq \frac{1}{3^{b}}\left(1-\left(\frac{-3^{-2 b} n}{3}\right) \frac{1}{3}\right)^{-1}
$$

This result implies $1+\frac{1}{3}+\cdots+\frac{1}{3^{b}}+\frac{1}{3^{b+1}}\left(1-\left(\frac{-3^{-2 b} n}{3}\right) \frac{1}{3}\right)^{-1} \geq 1+\frac{1}{3}+\cdots+\frac{1}{3^{b-1}}+$ $\frac{1}{3^{b}}\left(1-\left(\frac{-3^{-2 b_{n}}}{3}\right) \frac{1}{3}\right)^{-1}$. Conversely, $\frac{3}{\left(1-\left(\frac{-4 n}{3}\right) \frac{1}{3}\right)^{-1}}>\frac{3}{2}$. Thus, we obtain the desired result, $r_{3}(9 n)>\frac{3}{2} r_{3}(n)$.

Theorem 6. Every natural number $N \equiv 2(\bmod 24)$ can be written as the sum of three numbers of the form $\left\lfloor\frac{n^{2}}{3}\right\rfloor(n \in \mathbb{N})$.

Proof. We may write $N=2+24 k$ with $k \in \mathbb{N}$. Thus, $3 N+3=9(1+8 k)$. We now define two sets S_{1} and S_{2} as follows:

$$
\begin{aligned}
& S_{1}=\left\{(a, b, c) \in \mathbb{Z}^{3}: a^{2}+b^{2}+c^{2}=1+8 k\right\} \\
& S_{2}=\left\{(a, b, c) \in \mathbb{Z}^{3}: a^{2}+b^{2}+c^{2}=9(1+8 k)\right\} .
\end{aligned}
$$

By the definition of r_{3}, we have $\# S_{2}=r_{3}(9(1+8 k))$ and $\# S_{1}=r_{3}(1+8 k)$. Since $1+8 k \equiv 1(\bmod 8)$, we apply Lemma 5 to obtain $r_{3}(9(1+8 k))>\frac{3}{2} r_{3}(1+8 k) \geq r_{3}(1+8 k)$. One obtains $r_{3}(9(1+8 k))>r_{3}(1+8 k)$, which is equivalent to $\# S_{2}>\# S_{1}$. We note that this last result is the key to the proof. Let us define the map

$$
\begin{aligned}
f: & S_{1} \\
(a, b, c) & \longmapsto S_{2} \\
& \longmapsto(3 a, 3 b, 3 c) .
\end{aligned}
$$

We see easily that f is well defined and injective. Since $\# S_{2}>\# S_{1}$, we can find $(a, b, c) \in S_{2}$ such that $(a, b, c) \notin f\left(S_{1}\right)$. Furthermore, we have $a^{2}+b^{2}+c^{2}=9(1+8 k) \equiv 0(\bmod 3)$, then either $a^{2} \equiv b^{2} \equiv c^{2} \equiv 1(\bmod 3)$ or $a^{2} \equiv b^{2} \equiv c^{2} \equiv 0(\bmod 3)$. The last case cannot hold because one of the elements, a, b and c, is not divisible by $3\left((a, b, c) \notin f\left(S_{1}\right)\right)$. Thus, $a^{2} \equiv b^{2} \equiv c^{2} \equiv 1(\bmod 3)$ and we have

$$
\begin{aligned}
N+1 & =3(1+8 k) \\
& =\frac{a^{2}}{3}+\frac{b^{2}}{3}+\frac{c^{2}}{3} \\
& =\left\lfloor\frac{a^{2}}{3}\right\rfloor+\left\lfloor\frac{b^{2}}{3}\right\rfloor+\left\lfloor\frac{c^{2}}{3}\right\rfloor+\left\langle\frac{a^{2}}{3}\right\rangle+\left\langle\frac{b^{2}}{3}\right\rangle+\left\langle\frac{c^{2}}{3}\right\rangle
\end{aligned}
$$

Since $a^{2} \equiv b^{2} \equiv c^{2} \equiv 1(\bmod 3)$, then $\left\langle\frac{a^{2}}{3}\right\rangle+\left\langle\frac{b^{2}}{3}\right\rangle+\left\langle\frac{c^{2}}{3}\right\rangle=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$, which gives $N=\left\lfloor\frac{a^{2}}{3}\right\rfloor+\left\lfloor\frac{b^{2}}{3}\right\rfloor+\left\lfloor\frac{c^{2}}{3}\right\rfloor$. We replace $(a, b, c) \in \mathbb{Z}^{3}$ by $(|a|,|b|,|c|) \in \mathbb{N}^{3}$ to obtain the desired solution. The conjecture is proven.

3 Acknowledgments

The authors would like to thank the editor and the anonymous reader for their invaluable comments.

This work was supported by Académie Hassan 2 under the project "Mathématiques et Applications: cryptographie" and URAC6-CNRST.

References

[1] B. Farhi, On the representation of the natural numbers as the sum of three terms of the sequence $\left\lfloor\frac{n^{2}}{a}\right\rfloor$, J. Integer Seq. 16 (2013), Article 13.6.4.
[2] P. T. Bateman, On the representation of a number as the sum of three squares, Trans. Amer. Math. Soc. 71 (1951), 70-101.
[3] A. M. Legendre, Théorie des Nombres, 3rd ed., Vol. 2, 1830.

2010 Mathematics Subject Classification: Primary 11B13.
Keywords: additive base, Legendre's theorem, representation of an integer as the sum of three squares.

Received July 25 2013; revised versions received July 31 2013; November 22 2013; December 30 2013. Published in Journal of Integer Sequences, December 30 2013. Revision, January 32014.

Return to Journal of Integer Sequences home page.

