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Abstract

Recently, Farhi showed that every natural number N 6≡ 2 (mod 24) can be written

as the sum of three numbers of the form
⌊

n2

3

⌋

(n ∈ N). He conjectured that this

result remains true even if N ≡ 2 (mod 24). In this note, we prove this statement.

1 Introduction

Throughout this note, we let N and Z, respectively, denote the set of the non-negative integers
and the set of the integers. We let ⌊·⌋ and 〈·〉 denote the integer-part and the fractional-part
functions. Let X be a set. We denote the cardinality of X by #X. We also recall that

(

·
·

)

is the Jacobi symbol.
Recently, Farhi [1] showed that every natural number N 6≡ 2 (mod 24) can be written

as the sum of three numbers of the form
⌊

n2

3

⌋

(n ∈ N). He conjectured that this result

remains true even if N ≡ 2 (mod 24). We recall his conjecture.

Conjecture 1. Every natural number can be written as the sum of three numbers of the

form
⌊

n2

3

⌋

(n ∈ N).

In fact, he proposed a more general conjecture.
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Conjecture 2. Let k ≥ 2 be an integer. There then exists a positive integer a(k) that
satisfies the following property: every natural number can be written as the sum of k + 1

numbers of the form
⌊

nk

a(k)

⌋

(n ∈ N).

In this note, we prove Conjecture 1.

2 Proof of Conjecture 1

We recall Legendre’s theorem [3, pp. 331–339], which is a necessary tool for our proof:

Theorem 3. Every natural number not of the form 4h(8k + 7)(h, k ∈ N) can be represented

as the sum of three squares of natural numbers.

We note that since 4h(8k + 7) is congruent to 0, 4 or 7 modulo 8, every natural number
not congruent to 0, 4 or 7 modulo 8 can be represented as the sum of three squares of natural
numbers. We will use this result later.

Let r3(n) be the number of representations of the positive integer n as the sum of three
squares of integers. The following theorem provides an interesting formula for r3(n), which
can be proven using the theory of modular functions.

Theorem 4 (see [2]). For any positive integer n, we have

r3(n) =
16

π

√
nχ2(n)K(−4n)

∏

p2|n

(

1 +
1

p
+ · · ·+ 1

pb−1
+

1

pb

(

1−
(−p−2bn

p

)

1

p

)−1
)

,

where b = b(p) is the largest integer such that p2b | n,

K(−4n) =
∞
∑

m=1

(−4n

m

)

1

m
,

and if 4a is the highest power of 4 dividing n, then

χ2(n) =











0, if 4−an ≡ 7 (mod 8);
1
2a
, if 4−an ≡ 3 (mod 8);
3

2a+1 , if 4−an ≡ 1, 2, 5, 6 (mod 8).

✷

We will require the following technical lemma.

Lemma 5. For any positive integer n ≡ 1 (mod 8), we have

r3(9n) >
3

2
r3(n).
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Proof. We have

r3(9n) =
16

π

√
9nχ2(9n)K(−36n)×

∏

p2|9n

(

1 +
1

p
+ · · ·+ 1

pb
′
−1

+
1

pb
′

(

1−
(

−9 p−2b
′

n

p

)

1

p

)−1


 ,

where b
′

= b
′

(p) denotes the largest integer for which p2b
′

| 9n. Since n ≡ 1 (mod 8), it
follows that 40 = 1 is the highest power of 4 dividing n. This result implies that χ2(n) =

3
2
.

Similarly, we have 9n ≡ 1 (mod 8). Thus, 40 = 1 is the highest power of 4 dividing 9n, which
gives χ2(9n) = χ2(n) =

3
2
. Conversely, it follows from [2, p. 84] that

K(−36n) = K(−4× 32 × n) =

(

1−
(−4n

3

)

1

3

)

K(−4n).

Since n ≡ 1 (mod 8), it follows from Legendre’s theorem that n can be represented as
the sum of three squares of natural numbers. Thus, r3(n) 6= 0. Dividing through by r3(n)
then yields an identity equivalent to

r3(9n)

r3(n)
=

3
(

1−
(

−4n
3

)

1
3

)−1 ×

∏

p2|9n

(

1 + 1
p
+ · · ·+ 1

pb
′
−1

+ 1

pb
′

(

1−
(

−9 p−2b
′

n

p

)

1
p

)−1
)

∏

p2|n

(

1 + 1
p
+ · · ·+ 1

pb−1 +
1
pb

(

1−
(

−p−2bn

p

)

1
p

)−1
) ·

Let p 6= 3 with p2 | n. Thus, b
′

= b
′

(p) is the largest integer for which p2b
′

| n. Therefore,
one obtains b

′

= b
′

(p) = b(p) = b. Furthermore, we have
(

−9 p−2b
′

n

p

)

=

(

32

p

)

(

−p−2b
′

n

p

)

=

(

−p−2b
′

n

p

)

=

(−p−2bn

p

)

·

For every p 6= 3 with p2 | n, we then have 1 + 1
p
+ · · ·+ 1

pb
′
−1

+ 1

pb
′

(

1−
(

−9 p−2b
′

n

p

)

1
p

)−1

=

1 + 1
p
+ · · ·+ 1

pb−1 +
1
pb

(

1−
(

−p−2bn

p

)

1
p

)−1

. Thus, two cases are evident: if 32 | n, then

r3(9n)

r3(n)
=

3
(

1−
(

−4n
3

)

1
3

)−1 ×
1 + 1

3
+ · · ·+ 1

3b
′
−1

+ 1

3b
′

(

1−
(

−9×3−2b
′

n
3

)

1
3

)−1

1 + 1
3
+ · · ·+ 1

3b−1 +
1
3b

(

1−
(

−3−2bn
3

)

1
3

)−1 ,

Otherwise, 32 does not divide n, so

r3(9n)

r3(n)
=

3
(

1−
(

−4n
3

)

1
3

)−1 ×



1 + · · ·+ 1

3b
′
−1

+
1

3b
′

(

1−
(

−9× 3−2b
′

n

3

)

1

3

)−1


.
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We now show that in all cases, r3(9n) >
3
2
r3(n).

• If 32 does not divide n, b
′

= b
′

(3) = 1 is implied to be the largest integer for which

32b
′

| 9n. One obtains

r3(9n)

r3(n)
=

3
(

1−
(

−4n
3

)

1
3

)−1 ×
(

1 +
1

3

(

1−
(−n

3

)

1

3

)−1
)

.

We have
(

1−
(

−4n
3

)

1
3

)

= 1, 2
3
or 4

3
and so 3

(1−(−4n
3 ) 1

3)
−1 > 3

2
, which gives the result

r3(9n) >
3
2
r3(n).

• If 32 | n, then b (respectively b
′

) is the largest integer for which 32b | n (respectively

32b
′

| 9n). Hence,

r3(9n)

r3(n)
=

3
(

1−
(

−4n
3

)

1
3

)−1 ×
1 + 1

3
+ · · ·+ 1

3b
+ 1

3b+1

(

1−
(

−9×3−2(b+1)n
3

)

1
3

)−1

1 + 1
3
+ · · ·+ 1

3b−1 +
1
3b

(

1−
(

−3−2bn
3

)

1
3

)−1

=
3

(

1−
(

−4n
3

)

1
3

)−1 ×
1 + 1

3
+ · · ·+ 1

3b
+ 1

3b+1

(

1−
(

−3−2bn
3

)

1
3

)−1

1 + 1
3
+ · · ·+ 1

3b−1 +
1
3b

(

1−
(

−3−2bn
3

)

1
3

)−1 ·

We have
(

1−
(

−3−2bn
3

)

1
3

)

= 1, 2
3
or 4

3
. One obtains the following in all cases:

1

3b
+

1

3b+1

(

1−
(−3−2bn

3

)

1

3

)−1

≥ 1

3b

(

1−
(−3−2bn

3

)

1

3

)−1

.

This result implies 1 + 1
3
+ · · · + 1

3b
+ 1

3b+1

(

1−
(

−3−2bn
3

)

1
3

)−1

≥ 1 + 1
3
+ · · · + 1

3b−1 +

1
3b

(

1−
(

−3−2bn
3

)

1
3

)−1

. Conversely, 3

(1−(−4n
3 ) 1

3)
−1 > 3

2
. Thus, we obtain the desired

result, r3(9n) >
3
2
r3(n).

Theorem 6. Every natural number N ≡ 2 (mod 24) can be written as the sum of three

numbers of the form
⌊

n2

3

⌋

(n ∈ N).

Proof. We may write N = 2 + 24k with k ∈ N. Thus, 3N + 3 = 9(1 + 8k). We now define
two sets S1 and S2 as follows:

S1 =
{

(a, b, c) ∈ Z
3 : a2 + b2 + c2 = 1 + 8k

}

,

S2 =
{

(a, b, c) ∈ Z
3 : a2 + b2 + c2 = 9(1 + 8k)

}

.
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By the definition of r3, we have #S2 = r3(9(1 + 8k)) and #S1 = r3(1 + 8k). Since
1 + 8k ≡ 1 (mod 8), we apply Lemma 5 to obtain r3(9(1 + 8k)) > 3

2
r3(1 + 8k) ≥ r3(1 + 8k).

One obtains r3(9(1 + 8k)) > r3(1 + 8k), which is equivalent to #S2 > #S1. We note that
this last result is the key to the proof. Let us define the map

f : S1 −→ S2

(a, b, c) 7−→ (3a, 3b, 3c).

We see easily that f is well defined and injective. Since #S2 > #S1, we can find (a, b, c) ∈ S2

such that (a, b, c) /∈ f(S1). Furthermore, we have a2 + b2 + c2 = 9(1 + 8k) ≡ 0 (mod 3),
then either a2 ≡ b2 ≡ c2 ≡ 1 (mod 3) or a2 ≡ b2 ≡ c2 ≡ 0 (mod 3). The last case cannot
hold because one of the elements, a, b and c, is not divisible by 3 ((a, b, c) /∈ f(S1)). Thus,
a2 ≡ b2 ≡ c2 ≡ 1 (mod 3) and we have

N + 1 = 3(1 + 8k)

=
a2

3
+

b2

3
+

c2

3

=

⌊

a2

3

⌋

+

⌊

b2

3

⌋

+

⌊

c2

3

⌋

+

〈

a2

3

〉

+

〈

b2

3

〉

+

〈

c2

3

〉

.

Since a2 ≡ b2 ≡ c2 ≡ 1 (mod 3), then

〈

a2

3

〉

+

〈

b2

3

〉

+

〈

c2

3

〉

=
1

3
+

1

3
+

1

3
= 1, which gives

N =

⌊

a2

3

⌋

+

⌊

b2

3

⌋

+

⌊

c2

3

⌋

. We replace (a, b, c) ∈ Z
3 by (|a|, |b|, |c|) ∈ N

3 to obtain the

desired solution. The conjecture is proven.
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