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Abstract

Let (bn)n≥0 be the binomial transform of (an)n≥0. We show how a binomial trans-
formation identity of Chen proves a symmetrical Bernoulli number identity attributed
to Carlitz. We then modify Chen’s identity to prove a new binomial transformation
identity.

Carlitz [1] posed as a problem the remarkable symmetric Bernoulli number identity
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valid for arbitrary m,n ≥ 0. The published solution by Shannon [2] used mathematical
induction on m and n. The identity was rediscovered recently by Vassilev and Vassilev-
Missana [10], but stated in the form
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valid for arbitrary positive integers m and n. Identity (2) is equivalent to Identity (1) since
[(−1)m − (−1)n]Bm+n = 0. Their proof used the symmetry of a function fk(x, y) involving
Bernoulli numbers introduced in a separate paper [9]. They give no reference to Carlitz’s or
to Shannon’s proof.

An alternative proof of Equation (1) is derived through an application of a binomial
transformation identity discovered by Chen [3]. Let (an) be any sequence of numbers, and
define the binomial transform of (an) to be the sequence (bn), where bn =
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corollary of [3, Thm. 2.1] is
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The Bernoulli numbers satisfy the recurrence
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Bk = (−1)nBn for n ≥ 0. Setting
ak = Bk, we then have bn = (−1)nBn, so that Equation (3) becomes
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which is precisely Identity (1) of Carlitz.
Chen’s proof of Equation (3) relies on certain properties of Seidel matrices. We present

a direct proof which relies on the hypergeometric identity
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see [6, Identity 3.47, p. 27]. In Equation (4) we require that m and r be nonnegative integers
and x be a complex number.

Since the binomial transform inverts to give an =
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A careful analysis of this preceding proof yields a short proof of [3, Thm. 3.2], where Chen
relies on lengthy induction arguments. We will instead use Equation (4).
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Theorem 1. [3, Thm. 3.2] Let bn be the binomial transform of an. Then
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for arbitrary nonnegative m,n, and s.
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where the fourth equality follows by Equation (4).

Equation (5) allows us to establish a generalization of the curious formula
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discovered by Simons [8]. A quick proof of this was given by Gould [7] using elementary
properties of Legendre polynomials. Instead, choose an = xn for all n ≥ 0. Then bn = (1+x)n

and Identity (5) tells us that
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Letting m = s = n recovers Identity (6).
Through an induction argument Chen proves

Theorem 2. [3, Thm. 3.1] Let bn be the binomial transform of an. Then
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where m, n, and s are nonnegative integers.
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If we use Equation (4) and the following hypergeometric identity attributed to Frisch [4],
[5, p. 337],
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[6, Identity 4.2, p. 46], we are able to prove the following new binomial transformation
identity.

Theorem 3. Let bn be the binomial transform of an. Let m, n, and s be nonnegative integers.
Then
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The fourth line follows from Equation (4) while the seventh follows from Equation (8).
In summary, we have shown that
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If we compare Identity (7) to Identity (10), we conclude that
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Equation (11) can be furthered simplified by applying Equation (8). In particular,
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These calculations show that Equation (11) is equivalent to
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Set s → s+ 1 to obtain
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is equivalent to Equation (9).
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