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Abstract

Bodeen et al. recently considered a new combinatorial tiling problem wherein a

“strip” is tiled using triangles of four types and derived various identities for the re-

sulting numbers. Some of the identities were proven combinatorially and others only

algebraically, and the question of finding combinatorial interpretations of all of their

results was posed. In this note, we provide the requested bijective proofs. To do so,

we rephrase the question in an equivalent form in terms of tiling a strip with squares,

trominos, and three types of dominos and form bijections or near bijections where the

cardinality of various size families of sets gives the correct result.

1 Introduction

It is well known that the Fibonacci numbers given by F (n) = F (n − 1) + F (n − 2) if
n ≥ 2 with F (0) = 0 and F (1) = 1 enumerate the tilings of a 2 × (n − 1) rectangular strip
using vertical and horizontal dominos. This interpretation has been used to establish many
interesting properties of the Fibonacci numbers (see [2]). The Pell numbers P (n) given by
P (n) = 2P (n − 1) + P (n − 2) if n ≥ 2 with P (0) = 1 and P (1) = 2 enumerate the tilings
of a 2× n strip in which the vertically oriented dominos are allowed to come in two colors.
This interpretation has led to combinatorial proofs of several Pell number identities (see,
e.g., [1]).
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A new problem of tiling a 2×n triangular strip using triangles was considered by Bodeen
et al. [3] and various connections were made with the Fibonacci and Pell sequences. In
particular, let Q(n) denote the number of tilings of a parallelogram having bases of length n

and legs of length 2, where a leg makes an acute angle of 60◦ with a base, using four types
of tiles: equilateral triangles having side length either 1 or 2 and oriented either upwards
or downwards. Upon considering that tilings end in one of five possible different patterns,
it was shown that the numbers Q(n) satisfy a third-order linear recurrence and are given
by sequence A097076 in the On-line Encylopedia of Integer Sequences [4]. A number of
relations for the Q(n) were obtained, among them the fact that Q(n− 1) +Q(n) is the n-th
Pell number.

The following formulas were shown in Bodeen et al. [3] by algebraic methods using Binet
formulas and the question of finding combinatorial proofs was raised.

Proposition 1. [3] The sequence Q(n) can be defined as Q(0) = Q(1) = 1 and for n ≥ 2,

Q(n) = 2Q(n− 1) +Q(n− 2) + (−1)n.

Theorem 2. [3] Let Q(n) count the number of tilings of a 2× n triangular strip. Then for
m ≥ 1,

Q(4m) = (2Q(2m− 1) + 1)(2Q(2m)− 1),

Q(4m+ 1) = (2Q(2m)− 1)2,

Q(4m+ 2) = 2(Q(2m− 1) +Q(2m))(Q(2m) +Q(2m+ 1)),

Q(4m+ 3) = 2(Q(2m) +Q(2m+ 1))2.

It is the purpose of the current note to provide the requested combinatorial proofs of
Proposition 1 and Theorem 2.

2 Combinatorial proofs

In this section, we provide bijective proofs of Proposition 1 and Theorem 2. By [3, Theorem
1], we have that the numbers Q(n) satisfy the recurrence

Q(n) = Q(n− 1) + 3Q(n− 2) +Q(n− 3), n ≥ 3, (1)

with Q(0) = Q(1) = 1 and Q(2) = 4. By the discussion in [2, Section 3.1], the tilings
enumerated by Q(n) are in one-to-one correspondence with tilings of a 1 × n rectangular
strip using squares, dominos, and trominos, where dominos come in one of three types. (By
a square, domino, or tromino, we mean a 1×1, 1×2, or 1×3 rectangular piece, respectively.)

We may then view tilings enumerated by Q(n) as words in the alphabet {s, d1, d2, d3, t},
where s and t denote square and tromino, respectively, and di denotes one of three types of
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dominos. Equivalently, such words may be viewed as compositions in {1, 2, 3} of a positive
integer n, where the 2’s are marked in one of three ways. Note that the five types of letters
in these words correspond to the five types of sections that the tilings enumerated by Q(n)
are divided into by lines parallel to the legs of the parallelogram and not dissecting any of
the pieces used.

We now adapt to the current problem a concept discussed in Benjamin and Quinn [2,
Section 1.2] for rectangular tilings enumerated by the Fibonacci numbers. Let An denote
the set of tilings of a 1× n strip with squares, dominos, and trominos, where dominos come
in one of three types. If 1 ≤ m ≤ n− 1, then we will say that λ ∈ An is breakable at m if it
may be expressed as λ = λ′ + λ′′, where λ′ and λ′′ have respective lengths of m and n−m,
that is, if there is no piece covering the boundary between the m-th and (m + 1)-st cells.
Otherwise, we will say that λ is unbreakable at m. Note that if λ is unbreakable at m, then
either cells m− 1, m, and m + 1 or m, m + 1, and m + 2 are covered by a tromino or cells
m and m+ 1 are covered by one of three kinds of dominos.

2.1 Proof of Proposition 1

We will define a near bijection f between the sets An and R = A
(1)
n−1 ∪ A

(2)
n−1 ∪ An−2, where

A
(i)
n−1, i = 1, 2, denotes two copies of the set An−1. Note that |R| = 2Q(n−1)+Q(n−2). Let

λ ∈ An. We consider cases on the right-most piece of λ that is not a d3. If λ = λ′+ s+(d3)j

for some j ≥ 0, then let

f(λ) =

{

λ′ ∈ A
(1)
n−1, if j = 0;

λ′ + d1 + (d3)j−1 ∈ A
(2)
n−1, if j > 0,

(2)

where “+” denotes concatenation. If λ = λ′ + d1 + (d3)j, then let

f(λ) =

{

λ′ ∈ An−2, if j = 0;

λ′ + t+ (d3)j−1 ∈ A
(2)
n−1, if j > 0.

(3)

For the remaining cases, we let

f(λ) =

{

λ′ + s+ (d3)j ∈ A
(2)
n−1, if λ = λ′ + d2 + (d3)j;

λ′ + d2 + (d3)j ∈ A
(2)
n−1, if λ = λ′ + t+ (d3)j,

(4)

where j ≥ 0. Note that f is one-to-one and its inverse may be obtained by considering
the component of R to which a member of this set belongs, and if it belongs to A

(2)
n−1, the

right-most piece that is not a d3.
If n is even, then the mapping f is not defined for λ = (d3)

n

2 , but its inverse is defined for
all members of R. Thus, |An| = |R|+ 1, which implies the desired formula when n is even.

Similarly, when n is odd, then f is defined on all of An but misses λ′ = (d3)
n−1

2 ∈ A
(2)
n−1,

whence |An| = |R| − 1, which completes the proof of Proposition 1.
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2.2 The n = 4m case of Theorem 2

By the previous proposition, the n = 4m case of Theorem 2 above is equivalent to showing

Q(4m) = (Q(2m)−Q(2m− 2))(Q(2m+ 1)−Q(2m− 1)).

Note that by recurrence (1), we have Q(2m)−Q(2m− 2) = |U|, where

U = A2m−1 ∪ A
(1)
2m−2 ∪ A

(2)
2m−2 ∪ A2m−3,

with A
(i)
2m−2 denoting two identical copies of the set A2m−2. Similarly, we have Q(2m+ 1)−

Q(2m− 1) = |V|, where

V = A2m ∪ A
(1)
2m−1 ∪ A

(2)
2m−1 ∪ A2m−2,

with similar notation for A
(i)
2m−1, i = 1, 2.

To prove Theorem 2 when n = 4m, we first define a partial mapping g between U × V
and A4m. Let γ = (α, β) ∈ U × V . In defining g, we will consider cases on α. First, if
α ∈ A2m−1, then let

g(γ) =



















α + s+ β, if β ∈ A2m;

α + d1 + β, if β ∈ A
(1)
2m−1;

α + d2 + β, if β ∈ A
(2)
2m−1;

α + t+ β, if β ∈ A2m−2,

(5)

where “+” denotes concatenation. Next, if α ∈ A
(1)
2m−2, then let

g(γ) =



















α + d1 + β, if β ∈ A2m;

α + d3 + s+ β, if β ∈ A
(1)
2m−1;

α + t+ β, if β ∈ A
(2)
2m−1;

α + d3 + d1 + β, if β ∈ A2m−2.

(6)

If α ∈ A2m−3, then let

g(γ) =



















α + t+ β, if β ∈ A2m;

α + d1 + d3 + β, if β ∈ A
(1)
2m−1;

α + d2 + d3 + β, if β ∈ A
(2)
2m−1;

β + d3 + t+ α, if β ∈ A2m−2.

(7)

If α ∈ A
(2)
2m−2, then let

g(γ) =











α + d2 + β, if β ∈ A2m;

α + s+ d3 + β, if β ∈ A
(1)
2m−1;

α + d3 + d2 + β, if β ∈ A2m−2.

(8)
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Finally, if γ = (α, β), where α ∈ A
(2)
2m−2 and β ∈ A

(2)
2m−1 starts with a square, then let

g(γ) = α + d3 + d3 + β′,

where β′ is obtained from β by removing the initial square.
The function g is not defined for those ordered pairs (α, β) such that α ∈ A

(2)
2m−2 and

β ∈ A
(2)
2m−1, not starting with a square. Note that (5) covers all cases in which a member of

A4m is breakable at the boundary 2m− 1 except for those tilings in which the piece directly
to the right of this boundary is a d3. Two of the cases for breakable members of A4m at
2m − 1 of this last type are covered in (7) and an additional case is covered in (8). Using
(5)-(8), one may verify that g is one-to-one where it is defined and that g misses exactly
those ρ ∈ A4m of the following form: ρ is breakable at 2m− 1, with the piece directly to the
right of this boundary being d3 and the piece to the left of this boundary being either d3 or
t.

Thus, to complete the proof, it suffices to define a bijection between the sets Cm =
A2m−1 × (A2m−3 ∪ A2m−4) and Dm = A2m−2 × A∗

2m−1, where A∗

2m−1 denotes the subset of
A2m−1 not starting with a square. Let (λ, σ) ∈ Cm. We will construct an ordered pair
(λ′, σ′) belonging to Dm. To do so, let us express λ as the word λ1λ2 · · · in the alphabet
{s, t, d1, d2, d3} such that the i-th letter of the word represents the i-th piece of λ from the
left, and, likewise, we express σ as σ1σ2 · · · . Let i0 denote the smallest index i ≥ 1 such
that one (possibly both) of the following conditions fails to hold: (a) λ2i−1 = λ2i = s, or (b)
σi = d3 or t, with σj = d3 for all 1 ≤ j < i. In condition (b), we also require that σ ∈ A2m−3

or else this condition fai! ls with index one. Since 2m − 3 is odd, note that the index i0
always exists.

Let us first assume i0 = 1 and define a mapping in this instance. To do so, we consider
several cases on λ. First, if λ does not start with s, then let σ′ = λ and λ′ be obtained from
σ by adding either an s or d1 piece to the beginning of σ, depending on whether σ belongs
to A2m−3 or A2m−4, respectively. If λ starts with s, but not with ss or sd1, then we delete
the first square of λ to obtain λ′ and add either d1 or t to the beginning of σ to obtain σ′.
If λ starts with ss and σ ∈ A2m−4, then let λ′ = σ + d2 and σ′ = λ − ss + d2, where the
addition and subtraction of the indicated letters happens now at the beginning of words. If
λ starts with sd1 and σ ∈ A2m−3, then let λ′ = λ− sd1 + d3 and σ′ = σ + d2. If λ starts w!
ith sd1 and σ ∈ A2m−4, then let λ′ = λ− sd1 + d3 and σ′ = σ + d3s. Finally, if λ starts with
ss and σ ∈ A2m−3, then we consider the following three further subcases: σ starts with (i)
s, (ii) d1, or (iii) d2. For (i), we let λ′ = σ − s + d2 and σ′ = λ − ss + d3; for (ii), we let
λ′ = σ− d1+ t and σ′ = λ− ss+ d2; and for (iii), we let λ′ = σ− d2+ t and σ′ = λ− ss+ d3.

The mapping (λ, σ) 7→ (λ′, σ′) is seen to be one-to-one and is defined for all ordered pairs
(λ, σ) for which i0 = 1. We now wish to extend it to all ordered pairs (λ, σ) for which i0 > 1.
Note that if i0 > 1, then λ starts with at least 2(i0 − 1) s pieces and σ ∈ A2m−3 starts with
at least i0 − 2 d3 pieces, with the (i0 − 1)-st piece either a d3 or a t. In this case, we let
(λ′, σ′) be given by

λ′ =
(

λ− (s)2i0−2
)

′

+ (d3)i0−1
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and either

σ′ =
(

σ − (d3)i0−1
)

′

+ (d3)i0−1 or σ′ =
(

σ − (d3)i0−2 − t
)

′

+ (d3)i0−1,

where the prime operation appearing on the right-hand side of the last two equations is as
defined in the case i0 = 1 above (now applied to members of Cm−i0+1 for which the violating
index is one). This defines the ′ mapping for all ordered pairs for which i0 > 1 and hence
for all of Cm. One may verify that it is a bijection. Note that in constructing the inverse
mapping on Dm, one would write λ′ = λ′

1λ
′

2 · · · and σ′ = σ′

1σ
′

2 · · · and consider the smallest
index j ≥ 1 such that one of the following conditions fails to hold: (i) λ′

j = d3, or (ii) σ′

j = d3,
with σ′

j+1 6= s.

2.3 Proof of remaining cases of Theorem 2

The other cases of Theorem 2 can be proved in a similar manner, which we now discuss. By
Proposition 1, the n = 4m+ 1 case of Theorem 2 is equivalent to showing

Q(4m+ 1) = (Q(2m) + 2Q(2m− 1) +Q(2m− 2))2.

For this, we can define an explicit bijection between the set of ordered pairs from A2m ∪
A

(1)
2m−1 ∪ A

(2)
2m−1 ∪ A2m−2 and the set of tilings A4m+1. The construction of the bijection

follows along roughly similar lines to the n = 4m case above, with one needing to define in
the end a bijection between the sets Cm and Dm. The main difference with the n = 4m case
is that it is more convenient to consider cases using the criterion of breakability at 2m rather
than at 2m− 1 with regard to members of A4m+1.

To show the n = 4m+2 case, we define a bijection h between the sets U ×V = (A
(1)
2m−1∪

A
(2)
2m−1∪A

(1)
2m∪A

(2)
2m)× (A2m∪A2m+1) and A4m+2, where A

(i)
j , i = 1, 2, denotes two identical

copies of the set Aj. Let γ = (α, β) ∈ U × V . We first construct some members of A4m+2

that are breakable at 2m+ 1 from ordered pairs (α, β). If β ∈ A2m+1, then let

h(γ) =











α + d1 + β, if α ∈ A
(1)
2m−1;

α + d2 + β, if α ∈ A
(2)
2m−1;

α + s+ β, if α ∈ A
(1)
2m.

(9)

We next construct members of A4m+2 that are not breakable at 2m + 1. If β ∈ A2m, then
let

h(γ) =



















α + t+ β, if α ∈ A
(1)
2m−1;

β + t+ α, if α ∈ A
(2)
2m−1;

α + d1 + β, if α ∈ A
(1)
2m;

α + d2 + β, if α ∈ A
(2)
2m.

(10)

Let S denote the members of A4m+2 that are missed by the mapping h. Note that the
breakable members of S at 2m+1 are those where the piece directly preceding the boundary

6



at 2m+1 is a d3 or t, while the unbreakable members of S at 2m+1 are those where a d3 piece
covers the boundary at 2m+1. Since h is seen to be one-to-one where it is defined, it suffices
to define a bijection between S and the set T consisting of ordered pairs (α, β) ∈ U ×V such

that α ∈ A
(2)
2m and β ∈ A2m+1.

Clearly, one may identify the unbreakable members of S at 2m+1 with those members of
T in which β starts with a square. Thus, we need to define a bijection between the members
of S that are breakable at 2m + 1 and the members of T in which β does not start with a
square. This amounts to defining a bijection between the sets Cm+1 and Dm+1, which has
already been done.

Finally, for the n = 4m+ 3 case, we construct a bijection between the set (A
(1)
2m ∪A

(2)
2m ∪

A
(1)
2m+1∪A

(2)
2m+1)×(A2m∪A2m+1) and A4m+3. The proof follows along roughly similar lines to

the n = 4m+2 case, except that it is more convenient to consider the criterion of breakability
at 2m + 2 rather than at 2m + 1. In the end, it also reduces to finding a bijection between
the sets Cm+1 and Dm+1, which is already done.

References

[1] A. T. Benjamin, S. Plott, and J. A. Sellers, Tiling proofs of recent sum identities involving
Pell numbers, Ann. Comb. 12 (2008), 271–278.

[2] A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial
Proof, Mathematical Association of America, 2003.

[3] J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, Electron.
J. Combin. 21 (2014), #P1.7.

[4] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://oeis.org, 2010.

2010 Mathematics Subject Classification: Primary 05A19; Secondary 05A05.
Keywords: triangular tiling, Fibonacci number, combinatorial proof.

(Concerned with sequences A000045, A000129, and A097076.)

Received January 19 2014; revised version received March 20 2014. Published in Journal of
Integer Sequences, March 24 2014.

Return to Journal of Integer Sequences home page.

7

http://oeis.org
http://oeis.org/A000045
http://oeis.org/A000129
http://oeis.org/A097076
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Combinatorial proofs
	Proof of Proposition 1
	The n=4m case of Theorem 2
	Proof of remaining cases of Theorem 2


