Journal of Integer Sequences, Vol. 17 (2014), Article 14.3.1

Complementary Bell Numbers and p-adic Series

Deepak Subedi
Faculty of Science and Technology
ICFAI University Himachal Pradesh
Kalujhinda, Solan, HP-174103
India
deepak12321@gmail.com

Abstract

In this article, we generalize a result of Murty on the non-vanishing of complementary Bell numbers and irrationality of a p-adic series. This generalization leads to a sequence of polynomials. We partially answer the question of existence of an integral zero of those polynomials.

1 Introduction

Murty and Sumner [5] have shown that there is a sequence of integers a_{k}, b_{k} such that the following equality

$$
\begin{equation*}
\sum_{n=0}^{\infty} n^{k} n!=a_{k} \sum_{n=0}^{\infty} n!+b_{k} \tag{1}
\end{equation*}
$$

holds in \mathbb{Q}_{p}. Alexander [6] has shown that a_{k} vanishes at most twice. In Proposition 1, we generalize Eq. (1) to show that for non-negative integers k, j there exist two sequences of integers $a_{k}(j), b_{k}(j)$ such that the following equality

$$
\begin{equation*}
\sum_{n=0}^{\infty} n^{k}(n+j)!=a_{k}(j) \alpha+b_{k}(j) \tag{2}
\end{equation*}
$$

holds in \mathbb{Q}_{p}, α being the p-adic sum $\sum_{n=0}^{\infty} n!$.

It is obvious that we would like to identify non-negative integers k and j such that

$$
a_{k}(j)=0 .
$$

This would mean that the infinite sum on left-hand side of Eq. (2) is just an integer $b_{k}(j)$. In fact by Proposition 1 it would follow that

$$
a_{1}(0)=0, a_{2}(1)=0
$$

and

$$
b_{1}(0)=-1, b_{2}(1)=2 .
$$

Again by Proposition 1, it follows that

$$
\sum_{n=0}^{\infty} n \cdot n!=-1
$$

and

$$
\sum_{n=0}^{\infty} n^{2}(n+1)!=2
$$

On the other hand, Dragovich [2] has shown that if the series

$$
\sum_{n=0}^{\infty} n!
$$

converges to a rational number in \mathbb{Q}_{p} for every prime p, then the series cannot converge to the same rational number. Furthermore, the fact $a_{2}(j)>0$ for every integer $j \geq 2$ leads us to conclude that for a fixed integer $j \geq 2$ if the series

$$
\sum_{n=0}^{\infty} n^{2}(n+j)!
$$

converges to a rational number in \mathbb{Q}_{p}, then it cannot converge to a fixed rational number in \mathbb{Q}_{p} for every prime p. In order to show that $a_{k}(j)$ is non-zero for selected values of k, j we need certain identities for $a_{k}(j)$. We derive a few of those identities in the next section.

2 Recurrence for the polynomial

We begin this section by considering the series $\sum_{n=0}^{\infty}(n+j)$! for a fixed non-negative integer j. Observe that

$$
\sum_{n=0}^{\infty}(n+j)!=\sum_{n=0}^{\infty} n!-(0!+1!+2!+\cdots+(j-1)!)
$$

Kurepa's left factorial, $K(m)$ for a non-negative integer m is given by

$$
K(m)= \begin{cases}0, & \text { if } m=0 \\ 0!+1!+2!+\cdots+(m-1)!, & \text { if } m \text { is a positive integer. }\end{cases}
$$

It then follows that

$$
\sum_{n=0}^{\infty}(n+j)!=\alpha-K(j) .
$$

For reasons which will be clear in a moment, we define

$$
\begin{aligned}
a_{0}(x) & =1 \\
b_{0}(j) & =-K(j)
\end{aligned}
$$

Therefore, it follows that

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+j)!=a_{0}(j) \alpha+b_{0}(j) \tag{3}
\end{equation*}
$$

We hereby present the main result of this section.
Proposition 1. Let $k \geq 0$ and $j \geq 0$ be fixed integers. Then there is a polynomial $a_{k}(x)$ and an integer $b_{k}(j)$ such that

$$
\sum_{n=0}^{\infty} n^{k}(n+j)!=a_{k}(j) \alpha+b_{k}(j)
$$

where $a_{k}(x)$ and $b_{k}(j)$ are defined inductively on k as follows:

$$
\begin{gathered}
a_{k}(x)=a_{k-1}(x+1)-(x+1) a_{k-1}(x), k \geq 1 \\
b_{k}(j)=b_{k-1}(j+1)-(j+1) b_{k-1}(j), k \geq 1
\end{gathered}
$$

and

$$
\begin{aligned}
a_{0}(x) & =1 \\
b_{0}(j) & =-K(j) .
\end{aligned}
$$

Proof. The proof is by induction on k. The case $k=0$ has already been worked out. So we may assume $k \geq 0$ and that the proposition holds for k.

Observe that

$$
\sum_{n=0}^{\infty} n^{k}(n+j+1)!=\sum_{n=0}^{\infty} n^{k+1}(n+j)!+(j+1) \sum_{n=0}^{\infty} n^{k}(n+j)!.
$$

Thus using $\sum_{n=0}^{\infty} n^{k}(n+j)!=a_{k}(j) \alpha+b_{k}(j)$ and then comparing the coefficient of α, term without α, we have

$$
\begin{equation*}
a_{k}(j+1)-(j+1) a_{k}(j)=a_{k+1}(j) \tag{4}
\end{equation*}
$$

and

$$
b_{k}(j+1)-(j+1) b_{k}(j)=b_{k+1}(j) .
$$

Corollary 2. The series $\sum_{n=0}^{\infty} n^{k}(n+j)$! converges to an integer whenever $a_{k}(j)$ vanishes. Corollary 3.

$$
a_{k}(0)=a_{k+1}(-1)
$$

The next proposition may remind us about a similar kind of property exhibited by Bernoulli polynomials.

Proposition 4. The derivative of $a_{k}(x)$ is given by

$$
\frac{d}{d x} a_{k}(x)=-k a_{k-1}(x), \quad k \geq 1
$$

Proof. The proposition is easily seen to be true for $k=1$ and we prove the proposition by induction on k. We differentiate the expression

$$
a_{K}(x+1)-(x+1) a_{K}(x)=a_{K+1}(x)
$$

given in Proposition 1 to obtain

$$
a_{K}^{\prime}(x+1)-a_{K}(x)-a_{K}^{\prime}(x)(x+1)=a_{K+1}^{\prime}(x) .
$$

We assume the proposition holds for $k=K$ to obtain

$$
-K a_{K-1}(x+1)-a_{K}(x)+K a_{K-1}(x)(x+1)=a_{K+1}^{\prime}(x) .
$$

Again we consider Proposition 1 to obtain the desired result.

Proposition 5. If $c_{i, k}$ denotes the coefficients of x^{i} in $a_{k}(x)$ then

$$
-k c_{i, k-1}=(i+1) c_{i+1, k}
$$

for non-negative integers i, k and $i \leq k-1$.
Proof. The proof follows by comparing constant term and the coefficient of powers of x in Proposition 4.

We note that if k is a prime then for $i \leq k-2$

$$
\operatorname{gcd}(i+1, k)=1
$$

Hence $i+1$ must divide $c_{i, k-1}$ and k must divide $c_{i+1, k}$ but $a_{k}(0)=a_{k}$ and so we can write

$$
a_{p}(x) \equiv a_{p}-x^{p} \quad(\bmod p)
$$

We proceed for a few more congruences for $a_{k}(x)$. We start with a proposition that states $a_{k}(x)$ can be determined using a_{k} and the binomial coefficients.

Proposition 6. The polynomial $a_{k}(x)$ is given by

$$
a_{k}(x)=\sum_{i=0}^{k}{ }^{k} C_{i} a_{i}(-1)^{k-i} x^{k-i} .
$$

Proof. Applying induction on Proposition 4, it follows that

$$
\frac{d^{i}}{d x^{i}} a_{k}(x)=(-1)^{i} k(k-1)(k-2) \cdots(k-i+1) a_{k-i}(x) .
$$

We write $a_{k}(x)$ as

$$
a_{k}(x)=\sum_{i=0}^{k} b_{i} x^{i}
$$

Then $\frac{d^{i}}{d x^{i}} a_{k}(x)$ at x equal to 0 must be $b_{i} i$!. Hence b_{i} must be

$$
(-1)^{i k} C_{i} a_{k-i}(0)
$$

Using the fact that $a_{k-i}(0)=a_{k-i}$ the result follows.

Now, we include a table containing first few polynomials $a_{k}(x)$.

k	$a_{k}(x)$
0	1
1	$-x$
2	$-1+x^{2}$
3	$1+3 x-x^{3}$
4	$+2-4 x-6 x^{2}+x^{4}$
5	$-9-10 x+10 x^{2}+10 x^{3}-x^{5}$
6	$9+54 x+30 x^{2}-20 x^{3}-15 x^{4}+x^{6}$
7	$50-63 x-189 x^{2}-70 x^{3}+35 x^{4}+21 x^{5}-x^{7}$
8	$-267-400 x+252 x^{2}+504 x^{3}+140 x^{4}-56 x^{5}-28 x^{6}+x^{8}$
9	$413+2403 x+1800 x^{2}-756 x^{3}-1134 x^{4}-252 x^{5}+84 x^{6}$
	$+36 x^{7}-x^{9}$
10	$2180-4130 x-12015 x^{2}-6000 x^{3}+1890 x^{4}+2268 x^{5}+$
	$420 x^{6}-120 x^{7}-45 x^{8}+x^{10}$

It is easy to see from the table that

$$
a_{1}(0)=0, a_{2}(1)=0
$$

and so we would like to identify integers k and j such that $a_{k}(j)$ is zero/nonzero. We partially identify such k and j in the next section.

3 On non-vanishing of the polynomials

The next proposition helps us in concluding non-vanishing of $a_{k}(x)$ whenever k is a prime.
Proposition 7. If p is a prime then $a_{p}(j)$ does not vanish for every j in \mathbb{Z} with j incongruent to 1 modulo p.

Proof. The proposition can be easily verified for $p=2$. For $p \geq 3$, Proposition 6 and the congruence

$$
\binom{p}{i} \equiv 0 \quad(\bmod p) \text { for } 1 \leq i \leq p-1
$$

leads us to

$$
a_{p}(j) \equiv a_{p}-j^{p} \quad(\bmod p) .
$$

Murty [5] has shown that

$$
a_{p} \equiv 1 \quad(\bmod p)
$$

Considering Fermat's theorem the proposition follows.

Observe that $a_{1}(x)=-x>0$ for $x<0$. More generally, we have the following proposition.

Proposition 8. $a_{k}(x)>(k-1)$! for $k \geq 1$ and $x \leq-k$.
Proof. We prove this proposition by induction on k.
Assume $a_{k}(x)>(k-1)$! for $x \leq-k$ holds for some fixed $k \geq 1$ then the recurrence relation

$$
a_{k+1}(x)=a_{k}(x+1)-(x+1) a_{k}(x)
$$

for $a_{k}(x)$ gives us

$$
a_{k+1}(x)>(k-1)!+(k-1)(k-1)!
$$

for $x \leq-k-1$.
Hence the proposition follows.

With this proposition it is clear that $a_{k}(x)$ does not vanish for $k \geq 1$ and $x \leq-k$.
To analyse $a_{k}(x)$ further, we start with the following result.
Proposition 9. For a non-negative integer m and an integer j

$$
a_{p+m}(j) \equiv a_{m+1}(j)+a_{m}(j) \quad(\bmod p) .
$$

Proof. For an integer j, by Proposition 6 it follows that

$$
a_{p}(j) \equiv 1-j \quad(\bmod p)
$$

Applying the recurrence given in Proposition 1 and the fact

$$
a_{2}(j)+a_{1}(j)=j^{2}-j-1,
$$

it follows that

$$
a_{p+1}(j) \equiv a_{2}(j)+a_{1}(j) \quad(\bmod p)
$$

Again, applying the recurrence in Proposition 1 repeatedly we obtain the desired result.

Proposition 10. For a prime p such that

$$
p \equiv 2,3 \quad(\bmod 5)
$$

$a_{p+1}(j)$ does not vanish for any integer j.
Proof. By previous proposition

$$
a_{p+1}(j) \equiv j^{2}-j-1 \quad(\bmod p) .
$$

However, for a prime $p \neq 2,5$ considering

$$
4\left(j^{2}-j-1\right)=(2 j-1)^{2}-5
$$

it is clear that $a_{p+1}(j)$ is not congruent to 0 modulo p whenever the Legendre symbol

$$
\binom{5}{p}=-1 .
$$

Now, $\binom{5}{p}=-1$ if and only if

$$
p \equiv 2,3 \quad(\bmod 5)
$$

Hence the proposition follows.
Corollary 11. $a_{8}(j), a_{14}(j), a_{18}(j)$ and $a_{24}(j)$ does not vanish for any integer j.
Proposition 12. For a prime $p \equiv 2,5,6,7,8,11(\bmod 13)$ and an integer j not divisible by $p, a_{p+2}(j)$ does not vanish.

Proof. By Proposition 9, for $m=2$, one has

$$
a_{p+2}(j) \equiv-j\left(j^{2}-j-3\right) \quad(\bmod p)
$$

Hence the proposition follows.
Proposition 13. If $a_{p}(1)$ is not divisible by p^{2}, then $a_{p}(x)$ is an irreducible polynomial over \mathbb{Q}.

Proof. By Proposition 6 we have

$$
a_{p}(x+1) \equiv a_{p}-(x+1)^{p} \quad(\bmod p) .
$$

Considering the congruence for a_{p} given by Murty [5] again it follows that

$$
a_{p}(x+1) \equiv-x^{p} \quad(\bmod p)
$$

Hence by Eisenstein's criterion, the result follows.

As a consequence of Proposition 13 it is clear that if $a_{p}(1)$ is not divisible by p^{2}, then there does not exist an integer j such that $a_{p}(j)=0$. The next proposition gives us a conditional statement for deciding whether $a_{p}(j)$ is different from 1 .

Proposition 14. For an odd prime p, if $a_{p}-1$ is not divisible by p^{2}, then $a_{p}(x)-1$ is an irreducible polynomial.

Proof. Following the steps of Proposition 13 we have

$$
a_{p}(x)-1 \equiv-x^{p} \quad(\bmod p)
$$

Hence by Eisenstein's criterion for the irreducibility of a polynomial, the result follows.

Proposition 15. For non-negative integers m, t and an integer j the following congruence holds

$$
\begin{equation*}
a_{t p+m}(j) \equiv \sum_{i=o}^{t}{ }^{t} C_{i} a_{m+i}(j) \quad(\bmod p) \tag{5}
\end{equation*}
$$

Proof. The case $t=0$ is obviously true. As our induction hypothesis we assume that the congruence in Eq. (5) is true for some $t \geq 0$ and by Proposition 9 it follows that

$$
\begin{equation*}
a_{(t+1) p+m}(j) \equiv a_{t p+m+1}(j)+a_{t p+m}(j) \quad(\bmod p) \tag{6}
\end{equation*}
$$

Hence by our induction hypothesis

$$
\begin{align*}
a_{(t+1) p+m}(j) & \equiv \sum_{i=o}^{t}{ }^{t} C_{i} a_{m+1+i}(j)+\sum_{i=o}^{t}{ }^{t} C_{i} a_{m+i}(j) \quad(\bmod p) \tag{7}\\
& \equiv \sum_{i=o}^{t+1}{ }^{t+1} C_{i} a_{m+i}(j) \quad(\bmod p) \tag{8}
\end{align*}
$$

Hence the result follows by induction.
Proposition 16. For non-negative integers m, i and an integer j the following congruence holds

$$
a_{p^{i}+m}(j) \equiv a_{m+1}(j)+i a_{m}(j) \quad(\bmod p) .
$$

Proof. The case $i=0$ is a trivial case and the case $i=1$ follows from Proposition 9. So we assume $i \geq 2$.

For $1 \leq j \leq p^{i-1}-1$, considering the congruence

$$
\binom{p^{i-1}}{j} \equiv 0 \quad(\bmod p)
$$

and $t=p^{i-1}$ in the above proposition it follows that

$$
a_{p^{i}+m}(j) \equiv a_{m}(j)+a_{p^{i-1}+m}(j) \quad(\bmod p) .
$$

Repeating the previous step r number of times where $r \leq i-1$ we have

$$
a_{p^{i}+m}(j) \equiv r a_{m}(j)+a_{p^{i-r}+m}(j) \quad(\bmod p) .
$$

Choosing $r=i-1$ we have

$$
a_{p^{i}+m}(j) \equiv(i-1) a_{m}(j)+a_{p+m}(j) \quad(\bmod p) .
$$

The result follows from the above congruence and Proposition 9.
Corollary 17. For a positive integer i,

$$
a_{p^{i}} \equiv i \quad(\bmod p) .
$$

Proof. Choosing m, j equal to 0 the corollary follows.
Proposition 18. $a_{p^{z p}}(j)$ does not vanish for any integer j not divisible by p.
Proof. We consider $i=z p$ for some non-negative integer z in the previous proposition to obtain

$$
a_{p^{z p}+m}(j) \equiv a_{m+1}(j) \quad(\bmod p) .
$$

Choosing $m=0$, the result follows.
Proposition 19. For a non-negative integer t and an integer j

$$
a_{3 t}(j) \neq 0
$$

Proof. Considering $i=2, p=2$ in Proposition 16, it follows that

$$
a_{4+m}(j) \equiv a_{1+m}(j) \quad(\bmod 2)
$$

Choosing $m=2,5,8, \cdots$ it is easy to see that for a positive integer t

$$
a_{3 t} \equiv a_{3}(j) \quad(\bmod 2) .
$$

The fact

$$
a_{3}(j) \not \equiv 0 \quad(\bmod 2)
$$

leads to the desired result.

Proposition 20. For a non-negative integer t

$$
a_{p t} \equiv a_{t-1} \quad(\bmod p)
$$

Proof. Through Proposition 6 it is easy to see that

$$
a_{k}(-1)=\sum_{i=0}^{k}{ }^{k} C_{i} a_{i}
$$

However, by the recurrence 1

$$
a_{k}(-1)=a_{k-1}(0)
$$

By congruence (5)

$$
a_{p t+m}(j) \equiv \sum_{i=0}^{t}{ }^{t} C_{i} a_{m+i}(j) \quad(\bmod p)
$$

For $m=0, j=0$ above congruence reduces to

$$
a_{p t}(0) \equiv \sum_{i=0}^{t}{ }^{t} C_{i} a_{i}(0) \quad(\bmod p)
$$

and so

$$
a_{p t}(0) \equiv a_{t-1} \quad(\bmod p)
$$

Proposition 21. For a positive integer i and an integer j if

$$
j \not \equiv i \quad(\bmod p)
$$

then

$$
a_{p^{i}}(j) \neq 0 .
$$

Proof. Choosing $m=0$ in Proposition 16 we have

$$
a_{p^{i}}(j) \equiv a_{1}(j)+i a_{0}(j) \quad(\bmod p)
$$

The result follows.

The next result gives us a much stronger congruence of $a_{k}(j)$.
Theorem 22. For non-negative integers t, m, a positive integer n, an odd prime p and an integer j such that

$$
j \equiv 0,1,2 \quad(\bmod p)
$$

the following congruence

$$
a_{\frac{p^{p}-1}{p-1} \cdot p^{n-1} 1_{t+m}}(j) \equiv a_{m}(j) \quad\left(\bmod p^{n}\right)
$$

holds.

Proof. We consider three cases: $j \equiv 0(\bmod p), j \equiv 1(\bmod p)$ and $j \equiv 2(\bmod p)$ Case 1. For an integer $j \equiv 0(\bmod p)$ and a positive integer r, it is easy to see that

$$
\binom{\frac{p^{p}-1}{p-1} \cdot p^{n-1}}{r}(-j)^{r}=\frac{\frac{p^{p}-1}{p-1}(-j)^{r} \cdot p^{n-1}}{r}\binom{\frac{p^{p}-1}{p-1} \cdot p^{n-1}-1}{r-1} \equiv 0 \quad\left(\bmod p^{n}\right)
$$

For an odd prime p, following a slightly different notation, Alexander [6] has proved that

$$
a_{\frac{p^{p}-1}{p-1} \cdot p^{n-1} t+m} \equiv a_{m} \quad\left(\bmod p^{n}\right), t, m \text { being non-negative integers. }
$$

Hence by Proposition (6), it follows that for an integer $j \equiv 0(\bmod p)$

$$
\begin{equation*}
a_{\frac{p^{p}-1}{p-1}}(j) \equiv 1 \quad\left(\bmod p^{n}\right) . \tag{9}
\end{equation*}
$$

For simplicity we denote $\frac{p^{p}-1}{p-1} \cdot p^{n-1}$ by k.
Case 2. In this case we are expressing $a_{k}(j)$ in terms of $a_{k+1}(j-1)$ and $a_{k}(j-1)$ and then deriving the required congruence.

Replacing j by $j-1$, Eq. (4) can be written as

$$
\begin{equation*}
a_{k}(j)=a_{k+1}(j-1)+j a_{k}(j-1) . \tag{10}
\end{equation*}
$$

For an integer $j \equiv 1(\bmod p)$ and $k=\frac{p^{p}-1}{p-1} \cdot p^{n-1}, n \geq 1$

$$
a_{k+1}(j-1) \equiv a_{k+1}-(j-1)(k+1) a_{k} \quad\left(\bmod p^{n}\right)
$$

Again using the result of Alexander [6], it follows that

$$
a_{k+1}(j-1) \equiv-(j-1) \equiv a_{1}(j-1) \quad\left(\bmod p^{n}\right)
$$

Hence, it follows that

$$
\begin{equation*}
a_{k}(j) \equiv 1 \quad\left(\bmod p^{n}\right) \text { for } j \equiv 1 \quad(\bmod p) \tag{11}
\end{equation*}
$$

Case 3. In this case, we express $a_{k}(j)$ in term of $a_{k+2}(j-2)$ and other similar terms. Replacing k by $k+1$ and j by $j-1$, Eq. (10) can be written as

$$
\begin{equation*}
a_{k+1}(j-1)=a_{k+2}(j-2)+(j-1) a_{k+1}(j-2) \text { and } \tag{12}
\end{equation*}
$$

replacing j by $j-1$, Eq. (10) can be written as

$$
\begin{equation*}
a_{k}(j-1)=a_{k+1}(j-2)+(j-1) a_{k}(j-2) \tag{13}
\end{equation*}
$$

Eliminating $a_{k}(j-1), a_{k+1}(j-1)$ from Eqs. (10), (12), and (13), it follows that

$$
\begin{equation*}
a_{k}(j)=a_{k+2}(j-2)+(j-1) a_{k+1}(j-2)+j\left\{a_{k+1}(j-2)+(j-1) a_{k}(j-2)\right\} . \tag{14}
\end{equation*}
$$

But for an integer $j \equiv 2(\bmod p)$, by Proposition 6 it is easy to see that

$$
a_{k+2}(j-2) \equiv a_{k+2}+(k+2)(2-j) a_{k+1}+\frac{(k+2)(k+1)}{2}(j-2)^{2} a_{k} \quad\left(\bmod p^{n}\right)
$$

Again, considering the result of Alexander it would follow that

$$
\begin{equation*}
a_{k+2}(j-2) \equiv-1+(j-2)^{2} \equiv a_{2}(j-2) \quad\left(\bmod p^{n}\right) \tag{15}
\end{equation*}
$$

Also it is easy to obtain that

$$
\begin{equation*}
a_{k+1}(j-2) \equiv a_{0}(j-2) \quad\left(\bmod p^{n}\right) \tag{16}
\end{equation*}
$$

Applying Eqs. (14),(15),(16) it would follow that for an integer $j \equiv 2(\bmod p)$,

$$
\begin{equation*}
a_{k}(j) \equiv 1 \quad\left(\bmod p^{n}\right) \tag{17}
\end{equation*}
$$

Therefore, using Eq. (4) the result follows.
Corollary 23. For non-negative integers t, m and a positive integer n, the following congruence

$$
a_{13 \cdot 3^{n-1} t_{t+m}}(j) \equiv a_{m}(j) \quad\left(\bmod 3^{n}\right)
$$

holds.
Proof. The proof follows by considering $p=3$ in previous proposition.
Remark: The polynomials $a_{k}(x)$ were previously analyzed by Wannemacker [8]. He has verified numerically that $a_{k}(x)$ is irreducible over \mathbb{Z} for all $6 \leq k \leq 200$. He conjectured that $a_{k}(x)$ is irreducible over \mathbb{Z} for all $k \geq 6$.

References

[1] B. Dragovich, On some p-adic series with factorials, in p-adic Functional Analysis, Lect. Notes Pure Appl. Math., Vol. 192, Dekker, 1997, pp. 95-105.
[2] B. Dragovich, On p-adic power series, preprint, http://arxiv.org/abs/math-ph/0402051.
[3] B. Dragovich, On some finite sums with factorials, Facta Universitasis (Nis) Ser. Math. Inform. 14 (1999), 1-10.
[4] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Company, 1974.
[5] M. Ram Murty and S. Sumner, On the p-adic series $\sum_{n=1}^{\infty} n^{k} \cdot n$!, in Number Theory, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., 2004, pp. 219-227.
[6] N. C. Alexander, Non-vanishing of Uppuluri-Carpenter numbers, preprint, http://tinyurl.com/oo36das.
[7] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, http://oeis.org.
[8] S. D. Wannemacker, Annihilating polynomials and Stirling numbers of the second kind, Ph. D. thesis, University College Dublin, Ireland, 2006.
[9] Y. Yang, On a multiplicative partition function, Electron. J. Combin. 8 (2001) \#R19.

2001 Mathematics Subject Classification: Primary 11A07; Secondary 40A30.
Keywords: p-adic series, complementary Bell number.
(Concerned with sequence A000587.)

Received June 24 2013; revised version received February 3 2014. Published in Journal of Integer Sequences, February 152014.

Return to Journal of Integer Sequences home page.

