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Abstract

Since 2 is a primitive root of 3m for each positive integer m, the set of points
{(n, 2n mod 3m) : n > 0}, viewed as a subset of Z>0×Z>0 is bi-periodic, with minimal
periods ϕ(3m) (horizontally) and 3m (vertically). We show that if one considers the
classes of n modulo 6, one obtains a finer structural classification. This result is
presented within the context of the question of strong normality of Stoneham numbers.

1 Introduction

If m is a positive integer, it is quite clear that the set

Tm := {(n, 2n mod 3m) : n > 0},

viewed as a subset of Z>0 × Z>0 is bi-periodic. Indeed, since 2 is coprime to 3m for any
positive integer m, for any integers x, y > 0, we have

Tm ⊆ Tm − (ϕ(3m)x, 3my), (1)

where ϕ(·) denotes the standard Euler totient function.
The periodic structure given in (1) generalizes for all powers modulo any other power.

What is so surprising about this result is that this simple observation is one of the few
existing structural results concerning the modular distribution of the powers of a primitive
root.
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In this short note, we present a small improvement on this observation. We prove that for
m a positive integer, the set Tm is the union of six “smaller” bi-periodic subsets of Z>0×Z>0.

In particular, we prove the following result.

Proposition 1. For each positive integer m and each k ∈ {0, 1, 2, 3, 4, 5}, the set

L = Lm,k :=
{

(6n + k, 26n+k mod 3m) : n > 0
}

is non-trivially bi-periodic. That is, for each m and each k there exist distinct pairs of non-

trivial vectors u := um,k and v := vm,k with det(u,v) 6= 0 such that for any point P ∈ L the

points P + u and are P + v are also in L.

Note that the condition det(u,v) (the determinant of the matrix with rows u and v) is
nonzero ensures that the vectors u and v are not multiples of each other.

Before going on to the proof of Proposition 1, we give an example, in the form of figures,
which illustrate our proposition as well as some context for our result.

To this end, note that set Tm has a fundamental region; the finite set

{(n, 2n mod 3m)}06n<ϕ(3m),

where we identify only the residue 2n mod 3m in the interval [1, 3m], is the ‘repeating part’
of Tm. For m = 7, this fundamental region is the large plot in Figure 1. Proposition 1 gives
that this fundamental region of Tm can be separated into six pieces each having a ‘smaller’
fundamental region, but which union to give Tm. This is illustrated in Figure 1, where we
have placed the large fundamental region next to the six smaller ones.

We now provide some context for Proposition 1. In fact, we stumbled upon this structure
while studying the statistical properties of the binary expansion of a certain real number,
which is considered quite ‘random’. Classifying randomness in base expansions goes back at
least to Borel [7] who defined the concept of normality.

A real number ξ is called normal to the base b (or b–normal) if, for any positive integer
n, each of the bn blocks of length n on the alphabet {0, 1, . . . , b − 1} occurs in the base-b
expansion of ξ with equal frequency 1/bn. The canonical example of a normal number was
given by Champernowne [8], who showed that the number

C10 := 0.12345678910111213 · · · ,

obtained by concatenating the natural numbers, is normal to the base 10. Of course, Cham-
pernowne’s number is by no means random and should fail any true test of randomness. Thus
normality, while a necessary property of a random number, is not sufficient. A stronger ver-
sion of normality was recently introduced by Belshaw and P. Borwein [6].

Write (ξ)b := 0.a0a1a2a3 · · · , and set mk(n) := #{i : ai = k, i 6 n}. If the digits of
ξ are chosen at random in the base b, the asymptotic frequency mk(n)/n of each 1-string
approaches 1/b with probability 1. However, the discrepancy mk(n)−n/b does not approach
any limit, but fluctuates. Using the law of the iterated logarithm, Belshaw and P. Borwein [6]
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Figure 1: The large plot is the fundamental region of T7 and the smaller plots from left to
right, in the top and bottom row, are the points (n, 2n mod 37) for n ≡ 0, 1, 2 (mod 6) and
n ≡ 3, 4, 5 (mod 6), respectively.

define the real number ξ to be simply strongly normal to the base b if for each 0 6 k 6 b− 1,
one has

lim inf
n→∞

mk(n) − n/b√
2n log log n

= −
√
b− 1

b
and lim sup

n→∞

mk(n) − n/b√
2n log log n

=

√
b− 1

b
.

We say that the real number ξ is strongly normal to the base b, if it is simply strongly
normal to the base bj for each integer j > 1. Using this definition, Belshaw and P. Bor-
wein [6] showed that Champernowne’s number is not simply strongly normal. Belshaw and
P. Borwein also showed that almost all numbers are simply strongly normal, in terms of
Lesbegue measure, though no (reasonable) number has been proven to satisfy the definition.
Considering potential examples, Aragón Artacho et al. [1] conjectured that the Stoneham
number α2,3 :=

∑

n>1
1

3n23
n is strongly normal to the base 2. Proposition 1 is an outcome of

our attack on this conjecture.
Stoneham numbers have a rich history. Stoneham [10] proved that if b is a primitive root

of c2 for c an odd prime, then the number

αb,c =
∑

n>1

1

cnbcn
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is normal to the base b; the 2-normality of α2,3 follows from Stoneham’s result since 2 is a
primitive root of 9. A much simpler proof of the 2-normality of α2,3 was given by Bailey and
Misiurewicz [5]. Bailey and Crandall [4] generalized Stoneham’s result by showing that αb,c

is b-normal for coprime integers b, c > 2.
Instead of α2,3, we considered the closely related concatenated binary number

w := 0.w1w2w3 · · ·wm · · ·

with each word, wm, defined as the minimal periodic part of (1/3m)2 (the binary expansion
of 1/3m) for integers m > 1. Coons [9] explains the similarity between w and α2,3. Coons [9]
also provides a division algorithm to compute wm in the desired form, and it is in the
application of this algorithm that we find the orbit of the powers of 2 modulo 3m. If one
had enough information about this orbit, one could answer the question of strong normality
surrounding both w and α2,3. Proposition 1 is a step toward this goal.

Remark 2. It is worth noting that strong normality is different from absolute normality.
A real number is absolutely normal provided it is b-normal for all integers b > 2. The
Stoneham number α2,3, while conjectured strongly normal to the base 2, is not absolutely
normal. Bailey and J. Borwein [3] proved that α2,3 is not normal to the base 6. In fact, their
result is much more general than this; they showed that for coprime integers b, c > 2, the
number αb,c is not bc-normal. Bailey and J. Borwein [2] later generalized this by showing
that αb,c is not B-normal for infinitely many distinct integers B.

Remark 3. Our computations suggest that w (and so also α2,3) is unlikely to be strongly
normal to the base 2. In fact, it seems to be ‘too good’ in some sense, but the evidence is
not strong enough to be conclusive. We had hoped the results given here would provide the
tools to settle this, however, Proposition 1 does not provide enough structure to make any
real progress on this difficult question.

2 Proof of Proposition 1

Proof of Proposition 1. We will show that the fundamental regions of L = Lm,k are invariant
when shifted in two different directions; that is there are small vectors (or points if you like) u
and v (dependent on m and k), such that for any point P ∈ L, we have also P +u, P +v ∈ L.
In other words, the fundamental region of each L exists and is smaller than that of Tm. In
the course of our proof, we provide an explicit description of the vectors u and v.

We find it convenient to consider both periods as the horizontal component increases
(i.e., moving to the right) and also to split the repeated lengths into two cases that will be
assessed separately, small and large—inspiring the u-v distinction.

Case 1: the small vectors u.

First take m > 4 and r = r(k) ∈ {1, 2, 3}. Then the small period requires the addition of
the vector u = (2r3m−3, ε3m−2) , where ε takes the value +1 for k ∈ {0, 1, 2} and the value
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−1 for k ∈ {3, 4, 5}. We write

P + u =
(

6n + k + 2r3m−3, 26n+k + ε3m−2 mod 3m
)

and look at the horizontal component

6n + k + 2r3m−3 = 6
(

n + 2r−13m−4
)

+ k = 6ℓ + k.

We show that this ℓ gives the required form in the vertical component.
Of course, this reduces to the task of confirming that there is some T ∈ Z such that the

following rearrangement

26n+k + ε3m−2 mod 3m = 26ℓ+k mod 3m = 26(n+2r−13m−4)+k − 3mT

can always be done. Some rearrangement gives

26n2k
(

22r3m−3 − 1
)

3m−2
− ε = 32T.

We note that this is equivalent to a statement modulo 32, and since 26 ≡ 1 (mod 32), the
factor 26n will not effect the solubility; we may thus ignore it completely. We now have an
equation whose solubility can proved using induction on m > 4, namely

2k
(

22r3m−3 − 1
)

3m−2
= 32T + ε. (2)

It is straightforward to check that the base case m = 4 follows under the following parameters
depending on k:

k 0 1 2 3 4 5

r 3 2 1 3 2 1
ε +1 +1 +1 −1 −1 −1
T 207126 101 3 1657009 809 25.

Now assume that (2) has a solution for a given m and note that

22r3(m+1)−3

=
(

22r3m−3
)3

=

(

3m−2 (32T + ε)

2k
+ 1

)3

.

Then, expanding out the cube, we have

2k
(

22r3m−2 − 1
)

3m−1
=

2k

3m−1

(

(32T + ε)
3

33m−6

23k
+

(32T + ε)
2

32m−3

22k
+

(32T + ε) 3m−1

2k

)

=
(32T + ε)

3
32m−5

22k
+

(32T + ε)
2

3m−2

2k
+ 32T + ε.
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From the induction hypothesis, we have (32T+ε)3m−2 = 2k(22r3m−3
−1), and so for some d ∈ Z,

we have 32T + ε = d · 2k. Thus (32T + ε)3 = d323k = A · 22k and (32T + ε)2 = d222k = B · 2k,
for some A,B ∈ Z, so that

2k
(

22r3m−2 − 1
)

3m−1
= A · 32m−5 + B · 3m−2 + 32T + ε = 32

(

A · 32m−7 + B · 3m−4 + T
)

+ ε

is an integer of the desired form. Thus P + u ∈ L, which establishes the small vector case.

Case 2: the large vectors v.

For this case, we require two subcases, each following in the same spirit as the first case.

Case 2a: when k ∈ {1, 2, 4, 5}. We begin with m > 2 and take v = (2r3m−2, ε3m−1) where
the ε takes the value +1 or −1 depending on the value of k (to be described later). As in
Case 1, we look at the horizontal component of

P + v =
(

6n + k + 2r3m−2, 26n+k + ε3m−1 mod 3m
)

,

which, as before, defines the quantity ℓ as

6
(

n + 3m−3
)

+ k = 6ℓ + k.

Again as before, we show that this ℓ gives the required form of the vertical component.
As previously, this reduces to the task of confirming that there is some T ∈ Z such that

the rearrangement

26n+k + ε3m−1 ≡ 26(n+3m−3)+k (mod 3m) = 26(n+3m−3)+k + 3mT,

can always be made. Rearranging, we have

26n2k
(

22r3m−2 − 1
)

3m−1
= 3T + ε,

so that, omitting the 26n as before, this becomes

2k
(

22r3m−2 − 1
)

3m−1
= 3T + ε. (3)

We prove induction to show solubility. Again, it is straightforward to check that the base
case m = 2 follows using the following parameters depending on k in (3);

k 1 2 4 5

r 1 2 1 2
ε −1 −1 +1 +1
T 1 7 5 53
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Now assuming (3) has a solution for a given m, and noting that

22r3m−1

=
(

22r3m−2
)3

=

(

(3T + ε) 3m−1

2k
+ 1

)3

,

we have

2k
(

22r3m−1 − 1
)

3m
=

2k

3m

(

(3T + ε)3 33m−3

23k
+ 3

(3T + ε)2 32m−2

22k
+ 3

(3T + ε) 3m−1

2k

)

=
(3T + ε)3 32m−3

22k
+

(3T + ε)2 3m−1

2k
+ 3T + ε.

The induction hypothesis gives that 2k | (3T + ε), which allows us to write (3T + ε)3 32m−3 =
C · 22k32m−3 and (3T + ε)2 3m−1 = D · 2k3m−1 for some C,D ∈ Z. Thus

2k
(

22r3m−1 − 1
)

3m
= 3

(

C · 32m−4 + D · 3m−2 + T
)

+ ε

is an integer of the desired form and so P + v ∈ L.

Case 2b: when k ∈ {0, 3}. We now take m > 4 and v = (2 · 3m−3, ε · 2 · 3m−2), where the
ε takes the value +1 or −1 depending on the value of k. Then we have

P + v =
(

6
(

n + 3m−4
)

+ k, 26n+k + ε · 2 · 3m−2 mod 3m
)

,

where we now wish to express the vertical component as

26n+k + ε · 2 · 3m−2 ≡ 26(n+3m−4)+k (mod 3m).

Since gcd(2, 3) = 1, we can divide both sides by 2 and then rearrange to give

26n+k−1
(

22·3m−3 − 1
)

3m−2
= 32T + ε.

Now we can remove a 26(n−1) by the same method as in Case 1, and so we have only to prove
that

2k+5
(

22·3m−3 − 1
)

3m−2
= 32T + ε

is true for all m > 4. But this is exactly what we proved in the first case (with k = 2, 5),
and so we can have P + v ∈ L.

A straightforward comparison of the r values for the various u-v pairs shows that
det(u,v) 6= 0, which completes our proof.
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