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Abstract

In this paper, we study a family of take-away games called α-tag, parametrized by

a real number α ≥ 1. We show that for any given α, there is a half-open interval Iα
containing α such that the set of losing positions for α-tag is the same as the set of

losing positions for β-tag if and only if β ∈ Iα. We then end with some results and

conjectures on the nature of these intervals.

1 Introduction

In this paper, we study the losing positions of a certain family of games, known as take-away
games. In our study, the games are indexed by a single parameter α, which is a real number
greater than or equal to 1. It is also possible to study more general families of take-away
games, as has been done by Zieve [14].

Here are the rules for the games we study. Let α ≥ 1 be a real number. We define α-tag
(short for α-take-away game) to be the two-player game played with following rules:

1. The game begins with n stones in one pile, for some nonnegative integer n. A move in
this game consists of removing at least one stone from the pile.
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2. The two players alternate making moves.

3. The first player may take up to n− 1 stones.

4. After the first turn, a player can take up to α times the number of stones taken by the
previous player on the last turn.

The winner of this game is the player who removes the last stone, or, more precisely, the
loser is the player who is not able to remove a stone. (For instance, if n = 0 or n = 1, then
the first player is not able to remove a stone, but the winner did not necessarily remove the
last stone.)

Example 1. Below is an example of play in 3-tag. Red positions and arrows denote the
first player’s moves, whereas blue positions and arrows denote the second player’s moves. As
we shall see, the first player plays correctly in this game.

38→37→36→35→32→29→23→21→18→15→11→0

Since the game is symmetric in the two players, there are only two possible outcomes for
α-tag, assuming optimal play: either the first player has a winning strategy, or the second
player has a winning strategy. In accordance with standard combinatorial game theory
parlance, we call a position in which the first player has a winning strategy an N position,
and a position in which the second player has a winning strategy a P position.

There is a useful recursive way of determining which positions are N positions and which
are P positions, thanks to the following lemma:

Lemma 2 ([1, Theorem 2.13]). A position is an N position iff there exists a move to a P
position. A position is a P position iff all moves lead to N positions.

Studying any impartial combinatorial game like α-tag means determining which posi-
tions are the P positions and which are the N positions. Since in a typical game most
positions are N positions, it is customary to focus on determining the smaller set of P po-
sitions. Formally, a position in α-tag consists of two pieces of information: the pile size
(i.e., the number of stones remaining), and the move dynamic (i.e., the maximum number of
stones that may be removed on the next turn). However, in the current work, we are solely
interested in determining the outcome class (N or P) of the initial position, so we will be
able to simplify our analysis by working only with the pile size, with a bit of care.

Definition 3. Let T (α) be the sequence of pile sizes n such that the only move a player can
make to win α-tag in a pile of size n with optimal play is to remove all remaining stones.

We note, of course, that during game play, it may not be possible to remove all the stones
from a pile of size n; whether that move is allowable or not depends on the last move played.
We also note that T (α) consists of exactly those n such that the initial position of α-tag
with n stones is a P position.
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Example 4. For α = 2, we have 3 ∈ T (2), since if the first player tries removing only 1 or 2
stones, the next player wins by removing the remaining stones. The only winning strategy
for the first player would be to remove all the stones. If we consider the game of 4 stones,
the first player could remove 1 stone leaving the second player with 3 stones. As noted
previously, the only way to win a game of 3 stones is to remove all 3, and the second player
is restricted to removing at most 2. Therefore, we see that 4 6∈ T (2) since the first player
can win with optimal play by playing some move other than removing all the stones.

Schwenk [8] showed that the sequence T (α) can be enumerated by a sequence which even-
tually satisfies a simple recurrence of the form Pn = Pn−1 + Pn−k for some k, for sufficiently
large values of n; see Theorem 12.

The main result in this paper is Theorem 23, which says that the sequences T (α) change
in discrete intervals based on α. For instance, if 1 ≤ α < 2, then T (α) = (0, 1, 2, 4, 8, 16, . . .)
consists of 0 together with the powers of 2. Similarly, when 2 ≤ α < 5

2
, then T (α) =

(0, 1, 2, 3, 5, 8, 13, 21, . . .) consists of the Fibonacci numbers. We think of this as a stability
theorem for take-away games: even though the rules and allowable moves in the game differ
whenever we change α even slightly (for sufficiently large n), these extra options do not
change the optimal outcomes of the game. Most of the paper is devoted to proving this
theorem, and then we end with some further results and questions about the nature of these
stable intervals.

2 History

One commonly studied game, first introduced by Whinihan [12], is the α = 2 version of
the game described above, or better known as Fibonacci Nim. The T (α) positions for
this game are the Fibonacci numbers. Fibonacci Nim is interesting because its winning
strategy relies on the following theorem:

Theorem 5 (Zeckendorf, [6, 13]). Every positive integer can be uniquely expressed as the
sum of pairwise nonconsecutive Fibonacci numbers.

Zeckendorf’s theorem together with the following lemma provides us with a winning
strategy for Fibonacci Nim.

Lemma 6. For i ≥ 2, we have Fi+1 ≤ 2Fi < Fi+2.

One can construct a winning strategy for any positive non-Fibonacci integer by combining
Zeckendorf’s theorem with Lemma 6. Suppose that there are n stones. We look at the
Zeckendorf representation of n, say

n = Fik + Fik−1
+ · · ·+ Fi1 ,

where for each j with 1 ≤ j ≤ k− 1 we have ij+1 − ij ≥ 2. If k ≥ 2, then a winning strategy
for the first player is to remove the smallest part of the Zeckendorf representation, i.e., Fi1 .
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Due to Lemma 6, the second player will not be able to remove the entire next Zeckendorf
part. Since all Fibonacci numbers are T (α) positions, the second player is forced to play
essentially in the next term Fi2 , and lose in that part. We will see this line of reasoning
again when we study the T (α) positions of the general α-tag.

Example 7. We illustrate an example of Player 1 executing the winning strategy with 12
stones. The Zeckendorf decomposition of 12 stones is

12 = 8 + 3 + 1.

Therefore, the winning play looks like the following

12→11→9→8→· · ·

Note that the first player removes the smallest Zeckendort part, therefore forcing the second
player to play (and lose) the game of 3 stones, the next smallest Zeckendorf part. This forces
the second player to begin the game of 8 stones which is another T (α) position.

The nature of our results are similar to those of Fraenkel [4] on Wythoff’s game. Fraenkel
also characterized the P positions of a parameter-based variant of Wythoff’s game with a
recurrence and with an algebraic formula. More generally, the questions we answer here
are reminiscent of those asked by Duchêne, Fraenkel, Nowakowski, Rigo, and Ho [3, 5]. The
authors of those two papers study the modifications that can be made to the set of Wythoff’s
game rules to keep the set of P positions constant.

3 P Positions of α-tag

In the previous section, we computed the sequence T (2) and showed that it is the sequence
of Fibonacci numbers. Next, we consider the sequence T (α) for an arbitrary real number
α ≥ 1. The computation of the sequence T (α) relies on a generalization of Zeckendorf’s
theorem, first introduced by Schwenk [8]. Following Schwenk [8], we generate a sequence Pα

as follows. Let the first two terms of Pα be Pα
0 = 0, Pα

1 = 1. Then define

Pα
k+1 = Pα

k + Pα
j ,

where j is the the unique index such that

α · Pα
j ≥ Pα

k > α · Pα
j−1.

Example 8. The sequence P 2 is the Fibonacci sequence, as is P 2.4. On the other hand, P 2.5

is the sequence
1, 2, 3, 5, 7, 10, 15, 22, . . .

There is a generalization of Zeckendorf’s theorem based on the sequence Pα.
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Theorem 9 (Generalized Zeckendorf theorem, [8]). Any positive integer n can be uniquely
expressed as a sum of terms of the sequence P with the following condition

n = Pα
ik
+ Pα

ik−1
+ · · ·+ Pα

i1
where α · Pα

ij
< Pα

ij+1
for all j < k.

The proof is very similar to that of the classical Zeckendorf theorem.

Theorem 10 ([8]). For any α ≥ 1, the sequence T (α) is equal to the sequence (Pα
i ).

The details of the proof can be found in Schwenk’s paper. The intuition, as described
earlier, is that the winning strategy for α-tag is to remove the smallest generalized Zeck-
endorf part. From now on, we will refer to Pα

i instead of T (α) for this sequence. When α is
fixed or clear from context, we shall simply write Pi instead of Pα

i .

Definition 11. The window Wα(P
α
i ) of a term Pα

i is

Wα(P
α
i ) = {Pα

j ∈ T (α) : α · Pα
i−1 < Pα

j ≤ α · Pα
i }.

For some P = Pα
i ∈ T (α), the window Wα(P ) is the set of Q = Qα

j ∈ T (α) such that
P +Q = Qα

j+1 is the next term in T (α). For P occurring early in the sequence T (α), Wα(P )
may contain several elements. However, for sufficiently large values of P ∈ T (α), the Wα(P )
consists of just a single element, and this is what causes the sequence of T (α) positions to
satisfy a simple recurrence:

Theorem 12 ([8]). Fix α ≥ 1. Then there exists an integer k such that, for sufficiently
large values of n, we have Pα

n = Pα
n−1 + Pα

n−k.

Corollary 13. For n sufficiently large, Wα(P
α
n ) is a set of size 1.

4 Lemmas about linear recurrences

In this section, we present some general lemmas about linear recurrences, as well as some
about the specific family that are relevant to α-tag; we provide references to the literature
when we were able to find other sources for them.

Definition 14. Let c0, c1, . . . , ck−1 ∈ C. We say that a sequence of complex numbers
a0, a1, . . . satisfies the eventual linear recurrence relation an+k = ck−1an+k−1 + ck−2an+k−2 +
· · ·+ c0an if the relation holds for all sufficiently large n.

Lemma 15. Let k be a positive integer, and let a0, a1, . . . be a sequence of complex numbers
satisfying the eventual linear recurrence relation an+k = ck−1an+k−1+ ck−2an+k−2+ · · ·+ c0an
for all sufficiently large n. Let χ(x) = xk−ck−1x

k−1−ck−2x
k−2−· · ·−c0 be the characteristic

polynomial of the eventual recurrence, and let r1, . . . , rk be its complex zeros, repeated with
multiplicity. If all the ri’s are distinct, then there exist β1, . . . , βk ∈ C such that

an = β1r
n
1 + β2r

n
2 + · · ·+ βkr

n
k

for all sufficiently large n.
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See [11, Theorem 4.1.1] for a proof.
From now on, we shall arrange the ri’s in decreasing order of magnitude: |r1| ≥ |r2| ≥

· · · ≥ |rk|.

Lemma 16. With the notation of Lemma 15, suppose that all the ri’s are distinct. Suppose
furthermore that all the βi’s are nonzero. If an > 0 for all sufficiently large n, then r1 is
positive and real, r1 > |r2|, and β1 > 0. We call r1 the positive dominant root.

See [2, Theorem 1] for a proof.

Lemma 17. With the notation of Lemma 15, suppose that all the ri’s are distinct. Suppose
also that the ai’s are all integers. Suppose that χ(x) factors over Q as

χ(x) = χ1(x)χ2(x) · · ·χj(x),

where each χi(x) is irreducible over Q. If ri1 , . . . , rid are the zeros of χ1(x), then either
βi1 = βi2 = · · · = βid = 0, or else all of βi1 , . . . , βid are nonzero.

Proof. By [11, Proposition 4.2.2], the generating function for an has the form

∞∑

n=0

anx
n = R(x) +

βi1
1− ri1x

+ · · ·+
βik

1− rikx
,

where R(x) ∈ Q(x). Let K be the Galois closure of Q(βi1 , . . . , βik , ri1 , . . . , rik)(x) over Q(x),
and let σ ∈ Gal(K/Q(x)) be an arbitrary element. Then σ permutes ri1 , . . . , rid , and since∑

∞

n=0 anx
n is fixed by σ, we must have

σ

(
βi1

1− ri1x

)
=

βij
1− rijx

for some j with 1 ≤ j ≤ d. Furthermore, Gal(K/Q(x)) acts transitively on the terms
βij

1−rijx
,

so for each j with 1 ≤ j ≤ d, there is some σ ∈ Gal(K/Q(x)) that sends
βi1

1−ri1x
to

βij
1−rijx

.

Thus if βi1 6= 0, then βik 6= 0 for 1 ≤ j ≤ d, and vice versa.

Lemma 18. For all k ≥ 2, k 6≡ 5 (mod 6) the polynomial xk − xk−1 − 1 is irreducible over
Q. When k ≡ 5 (mod 6), then xk−xk−1−1 factors as x2−x+1 times an irreducible factor.

Remark 19. Note that x2 − x + 1 = Φ6(x) is the sixth cyclotomic polynomial, so its zeros
are the primitive sixth roots of unity.

Proof. Selmer [9] shows that the polynomial f(x) = xk−x−1 is irreducible for all k ≥ 2, and
that g(x) = xk+x+1 is irreducible when k 6≡ 2 (mod 3), and factors as x2+x+1 times an
irreducible factor when k ≡ 2 (mod 3). When k is even, we have xk−xk−1−1 = −xkf(− 1

x
),

so it is irreducible. When k is odd, we have xk−xk−1−1 = xkg(− 1
x
), so it is irreducible when

k 6≡ 5 (mod 6) and factors as x2−x+1 times an irreducible factor when k ≡ 5 (mod 6).
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Lemma 20. If k ≥ 2, then the polynomial xk − xk−1 − 1 contains at most two zeros of any
given absolute value.

Proof. Selmer [9] shows that on any circle |x| = r in the complex plane, the polynomials
xk ± (x+ 1) have only at most two zeros. Since the zeros of xk − xk−1 − 1 are the negative
reciprocals of the zeros of xk ± (x + 1) (depending on the parity of k), it follows that these
polynomials also have at most two zeros on any given circle |x| = r.

Lemma 21. Let k ≥ 6. With notation as in Lemma 15, if an = an−1+an−k for all sufficiently
large n, then |r2| > 1, and r2 is nonreal.

Proof. First, note that r1 > 1, because the product of the zeros is equal to ±1, so some zero
(and in particular the largest in absolute value) must have absolute value at least 1. Now
suppose for some k ≥ 6, we have that |r2| ≤ 1. We consider two cases: |r2| = 1 and |r2| < 1.
Suppose first that |r2| < 1. Then r1 is a Pisot number, i.e., a real algebraic integer greater
than 1, all of whose Galois conjugates have absolute value less than 1. As shown in [10], the
smallest Pisot number is the positive zero of x3 − x − 1, or 1.3247 . . .. However, for every
k ≥ 6, 1.3k − 1.3k−1 − 1 > 0 whereas 1k − 1k−1 − 1 = −1 < 0, so 1 < r1 < 1.3. Thus r1
cannot be a Pisot number.

Suppose now that |r2| = 1. If k ≡ 5 (mod 6), then Lemmas 18 and 20 imply that r2
and r3 are the primitive sixth roots of unity, and that |r4| < 1. This means that r1 is
again a Pisot number. However, this cannot be the case for the same reason as before, as
r1 is smaller than the smallest Pisot number. On the other hand, if k 6≡ 5 (mod 6) and
|r2| = 1, then r2 is a Galois conjugate of r1, so r1 is a Salem number, i.e., an algebraic
integer greater than 1 all of whose conjugates have absolute values at most 1, with at least
one of the conjugates having an absolute value equal to 1. As shown in [7, §6], the minimal
polynomial of any Salem number is a reciprocal polynomial, i.e., a polynomial p(x) such that
p(x) = xdeg(p)p( 1

x
). Since xk − xk−1 − 1 is not a reciprocal polynomial, r1 cannot be a Salem

number. Thus |r2| > 1 for all k ≥ 6.
Finally, we must show that r2 is nonreal. When k is odd, r1 is the only real zero of

xk − xk−1 − 1, so clearly r2 is nonreal. When k is even, xk − xk−1 − 1 has two real zeros: the
positive zero r1 and a negative zero. However, the negative zero lies between −1 and 0 and
is thus not r2 for k ≥ 6, since |r2| > 1.

Lemma 22. Let k ≥ 6. If a0, a1, a2, . . . is a sequence of positive integers satisfying an =
an−1+an−k for all sufficiently large n, then, with notation as in Lemma 15, r1 is real, β1 > 1,
|r1| > |r2| = |r3| > |r4|, and β2, β3 6= 0. Furthermore, β3 = β̄2, where the bar denotes complex
conjugation.

Proof. By Lemma 16 and the assumption that an is positive and satisfies the recurrence
an = an−1 + an−k for all sufficiently large n, it follows immediately r1 is real, β1 > 1, and
|r1| > |r2|. Furthermore, r2 is nonreal by Lemma 21. Since nonreal zeros of polynomials
with real coefficients come in complex conjugate pairs, it follows that the complex conjugate
r̄2 of r2 is also a zero of xk − xk−1 − 1. Thus |r2| = |r3|. By Lemma 20, |r2| > |r4|.
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To see that β2, β3 6= 0, note that all the zeros of χ(x), except possibly the two sixth roots
of unity satisfying x2 − x + 1, have the same minimal polynomial over Q by Lemma 18.
Since |r2| > 1, r2 is not one of those roots of unity. Thus r1, r2, r3 are all zeros of the same
irreducible factor of χ, and since β1 6= 0, Lemma 17 implies that β2, β3 6= 0 as well.

To see that β3 = β̄2, note that since Gal(C(x)/R(x)) = {1, z 7→ z̄} acts on the βi
1−rix

’s in

the partial fraction decomposition of
∑

∞

n=0 anx
n and complex conjugation sends r2 to r3, it

must send β2
1−r2x

to β3
1−r3x

. Thus β̄2 = β3.

5 Stability

We now come to the main result of the paper.

Theorem 23. For any α ≥ 1, there exists a half-open interval Iα = [α0, α1) containing α
such that for any β ∈ Iα, the sequence P

β
i is the same as the sequence Pα

i , and for all β 6∈ Iα,
the two sequences are not the same, in that there is some integer i for which Pα

i 6= P β
i .

Before we prove Theorem 23, let us take a look at why it ought to be true, by means of
a typical example. Let us suppose that α = 3 and look at the sequence P 3

n . This sequence
begins

P 3
n : 0, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, . . . ,

with P 3
n = P 3

n−1 + P 3
n−4 for sufficiently large n. For example, P 3

8 = 15. To compute P 3
9 , we

must add to P 3
8 = 15 the unique P 3

i for which

3P 3
i−1 < P 3

8 ≤ 3P 3
i , (1)

which is 6. Thus P 3
9 = 15 + 6 = 21. If we were to increase 3 to 15

4
and all the previous

P-positions in 15
4
-tag agreed with those of 3-tag, then the left inequality in (1) with 3

replaced with 15
4
, namely

15

4
P

15

4

i−1 < P
15

4

8 ,

would fail since P
15

4

i−1 = 4. Note that if we replace 3 with 15
4
− ε for any ε > 0 in the left

inequality of (1), the inequality would still hold. Thus if all the P-positions of 3-tag and
15
4
-tag agree up to 15, then the next term is definitely different.
We can perform analogous calculations starting from any term of the sequence P 3

n . If
α > 3, the only way that the sequence Pα

n could differ from P 3
n is if α is greater than the

analogous ratio, starting with some term of P 3
n . In fact, one of these ratios is 21

6
= 7

2
, so the

P-positions of α-tag are only equal to those of 3-tag when 3 ≤ α < 7
2
.

The proof of Theorem 23 is now reduced to showing that, for any α, the infimum of the
sequence of such ratios is achieved. In particular, since all the ratios are greater than α, it
follows that this infimum is strictly greater than α.
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To this end, we introduce some notation for these ratios. Fix an α, and define a sequence
Qk = Qα

k by setting

Qα
k =

P̂α
k

Pα
k

,

where
P̂α
k = min{Pα

i ∈ T (α) : Pα
i > max(Wα(P

α
k ))}

is the smallest term in the sequence Pα
i greater than all the elements of the window of Pα

k .

Alternatively, P̂α
k = Pα

j+1, where P
α
j = max(Wα(Pk)). As discussed above, the next β > α

for which there exists an i such that P β
i 6= Pα

i is infk{Q
α
k}.

The following lemma will be key to proving Theorem 23.

Lemma 24. Let α ≥ 2 be a real number. The sequence Qn = Qα
n converges to some real

number r1 > 1, and Q oscillates around the point of its convergence, in the sense that there
are arbitrarily large integers n such that Qn > r1, as well as arbitrarily large integers n such
that Qn < r1.

Proof. There is some positive integer k ≥ 2 such that the sequence Pα satisfies the linear
recurrence of Pn = Pn−1+Pn−k for all sufficiently large k. When k ≤ 5, the remainder of the
proof requires minor modifications since we cannot quite use Lemma 22, but most of it still
works in that case as well. The cases k ≤ 5 can also be checked by hand if desired. When
k = 2, r2 is real, so a slightly different argument must be made, but again, most of the proof
still works. From now on, we will assume that k ≥ 6.

Since we are interested in the limiting or tail behavior of the sequence Qn, we may ignore
the initial terms, where Pn does not satisfy the eventual recurrence Pn = Pn−1 + Pn−k. Let
us consider the characteristic polynomial of the recurrence

χ(x) = xk − xk−1 − 1,

and let the zeros of χ be r1, r2, r3, . . . , rk, where |r1| > |r2| ≥ · · · ≥ |rk|. By Lemma 15, we
know that there exist β1, . . . , βk ∈ C such that

Pn = β1r
n
1 + β2r

n
2 + β3r

n
3 + · · ·+ βkr

n
k

for all sufficiently large values of n. The sequence of ratios eventually converges to rk1 . We
want to know if the sequence of ratios oscillate below and above rk1 . Thus, we study the
sequence

Pn+k
Pn

− rk1 .

We have

Pn+k
Pn

− rk1 =
rn+k1 + β2

β1
rn+k2 + β3

β1
rn+k3 + · · ·+ βk

β1
rn+kk

rn1 + β2
β1
rn2 + β3

β1
rn3 + · · ·+ βk

β1
rnk

− rk1

=
β2r

n
2 (r

k
2 − rk1) + β3r

n
3 (r

k
3 − rk1) + · · ·+ βkr

n
k (r

k
k − rk1)

β1rn1 + β2rn2 + β3rn3 + · · ·+ βkrnk
.
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The denominator is positive since it is just equal to Pn. We must show that the numerator
is positive for infinitely many n and negative for infinitely many n. Note that βi, (r

k
i − rk1)

are all constants; only rn2 , r
n
3 , . . . , r

n
k change as a function of n.

At this point, we are trying to determine if

β2r
n
2 (r

k
2 − rk1) + β3r

n
3 (r

k
3 − rk1) + · · ·+ βkr

n
k (r

k
k − rk1) (2)

displays oscillatory behavior as a function of n. By Lemma 22, β2, β3 6= 0 and |r3| > |r4|,
so for sufficiently large values of n, rn2 and rn3 will dominate the rest of the terms, so for
sufficiently large values of n, the sign of (2) will be the same as the sign of β2r

n
2 (r

k
2 − rk1) +

β3r
n
3 (r

k
3−r

k
1). Note that the behavior of terms r2 and r3, the next zeros of largest magnitude,

are what really determine the behavior of the entire sequence for sufficiently large n. Let us
write

rk2 − rk1 = ρeiφ, rk3 − rk1 = ρe−iφ

and
r2 = reiθ, r3 = re−iθ.

Then we have
rn2 = rneinθ, rn3 = rne−inθ.

Thus we have

β2r
n
2 (r

k
2 − rk1) + β3r

n
3 (r

k
3 − rk1) = β2r

neinθρeiφ + β3r
ne−inθρe−iφ.

Since β̄2 = β3 by Lemma 22, we may also write

β2 = seiψ, β3 = se−iψ,

so that we have

β2r
n
2 (r

k
2 − rk1) + β3r

n
3 (r

k
3 − rk1) = 2srnρ cos(ψ + nθ + φ).

Since φ, ψ, and θ are fixed and θ 6≡ 0 (mod π), we know that cos(ψ + nθ + φ) is positive
for infinitely many values of n and negative for infinitely many values of n. Thus there are
infinitely many values of n for which Qn > r1, and infinitely many values of n for which
Qn < r1, as desired.

Using Lemma 24, we can now prove Theorem 23.

Proof of Theorem 23. Define Qα
i by

Qα
i =

Pα
j+1

Pα
i
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where Pj = max(Wα(Pi)). We established in Lemma 24 that Qα has a minimum. Say we
have some α < β < min(Qα). We will show that P β = Pα. Say P β 6= Pα. A sequence of
T (α) positions is determined by

Pi+1 = Pi + Pj if Pj ∈ Wα(Pi).

If P β 6= Pα, this implies there is a first occurrence of i such that Wβ(P
β
i ) 6= Wα(P

α
i ). Since

β > α, this means that max(Wβ(P
β
i )) > max(Wα(P

α
i )). Say Pj = max(Wα(P

α
i )). Then

max(Wβ(P
β
i )) ≥ Pj+1, which means

Pj+1 ≤ β · Pi,

or

Qi =
Pj+1

Pi
≤ β,

contrary to our assumption. Next, we show that if P β = Pα, then β < min(Qα). Say
β ≥ min(Qα). Let the index at which Qα reaches its minimum be k. The sequence T (α) is
determined by

Pi+1 = Pi + Pj if Pj ∈ Wα(Pi).

We will show that max(Wβ(P
β
k )) > max(Wα(P

α
k )). Let max(Wα(P

α
k )) = Px. Thus, min(Qα) =

Px+1

Pk
. Note that

αPk−1 < Px ≤ α · Pk

and
Px < Px+1 ≤ β · Pk.

Therefore, max(Wβ(P
β
k )) ≥ Px+1 > Px = max(Wα(P

α
k )). But since Wβ(P

β
k ) 6= Wα(P

α
k ),

P β 6= Pα, which is a contradiction.

In short, the T (α) positions remain the same in certain intervals as α changes. Table 1
shows the first several stable intervals. Note that the same eventual recurrence can describe
more than one set of T (α) positions, as seen with the recurrence Pn = Pn−1 + Pn−5. This
is because it takes longer for the recurrence to start holding when 7

2
≤ α < 11

3
than it does

when 11
3
≤ α < 43

11
.

6 Cutoffs

Definition 25. A cutoff is some number α ≥ 1 such that, for any β < α, the sequences Pα
n

and P β
n are not identical.

In other words, the cutoffs are the endpoints of the stable intervals of Theorem 23. The
first few cutoffs are 1, 2, 5

2
, 3, 7

2
, 11

3
, 43
11
, 4, 13

3
.

11



Range Eventual recurrence Initial conditions
1 ≤ α < 2 Pn = Pn−1 + Pn−1 0,1
2 ≤ α < 5

2
Pn = Pn−1 + Pn−2 0,1,2

5
2
≤ α < 3 Pn = Pn−1 + Pn−3 0,1,2,3,5

3 ≤ α < 7
2

Pn = Pn−1 + Pn−4 0,1,2,3,4,6
7
2
≤ α < 11

3
Pn = Pn−1 + Pn−5 0,1,2,3,4,6,8,11,15,21

11
3
≤ α < 43

11
Pn = Pn−1 + Pn−5 0,1,2,3,4,6,8,11

43
11

≤ α < 4 Pn = Pn−1 + Pn−6 0,1,2,3,4,6,8,11,14,18,24,32,43
4 ≤ α < 13

3
Pn = Pn−1 + Pn−6 0,1,2,3,4,5,7,9,12

13
3
≤ α < 31

7
Pn = Pn−1 + Pn−7 0,1,2,3,4,5,7,9,12,15,19,24,31,40,52

31
7
≤ α < 9

2
Pn = Pn−1 + Pn−7 0,1,2,3,4,5,7,9,12,15,19,24,31

9
2
≤ α < 14

3
Pn = Pn−1 + Pn−7 0,1,2,3,4,5,7,9,11,14,18

Table 1: Stable intervals for α-tag

Remark 26. Before proving Theorem 23, it might be more natural to define a cutoff to be
a number α ≥ 1 such that for any β < α and any γ > α, the sequences P β

n and P γ
n are not

identical. Theorem 23 implies that these two definitions coincide, but later in this section
we will see that it is possible to prove parts of the Theorem 23 in a simpler way but that
does not guarantee that the two definitions match.

Corollary 27. All cutoffs are rational numbers.

Proof. The cutoffs are infima of sequences of rational numbers, and these infima are always
achieved and hence rational.

In order to investigate the cutoffs more thoroughly, we consider a new sequence generated
from the sequence Pα

i .

Definition 28. The sequence of indices of recurrence Sαi is defined by

Sαi = max{j : Pα
i + Pα

i+j−1 = Pα
i+j}.

Example 29. Let α = 7
2
. Then we have the following initial values of Pi and Si:

Pi 1 2 3 4 6 8 11 15 21 27 35 46 61
Si 3 4 4 4 5 5 5 5 5 5 5 5 5

Lemma 30 ([8]). For some α-tag, with T (α) positions Pt, if α · Pi−1 < Pj ≤ α · Pi, then
α · Pi+1 ≥ Pj+1.

Lemma 31. For every i, we have Sαi ≤ Sαi+1.

12



Proof. Recall that the window Wα(P
α
i ) of P

α
i ∈ T (α) is

Wα(P
α
i ) = {Pα

j ∈ T (α) : Pα
i + Pα

j = Pα
j+1 ∈ T (α)}.

We proved previously that

Wα(P
α
i ) = {Pj ∈ T (α) : α · Pi−1 < Pj ≤ α · Pi}.

Say Pj = max{Wα(P
α
i )}. Since

α · Pi−1 < Pj ≤ α · Pi,

Lemma 30 implies that Pj+1 ≤ α · Pi+1. Next, we prove that α · Pi < Pj+1. We prove this
with contradiction. Assume Pj+1 ≤ α · Pi. This would imply

α · Pi−1 < Pj < Pj+1 ≤ α · Pi.

This means Pj+1 ∈ Wα(P
α
i ). However, we said Pj = max{Wα(P

α
i )} so this is a contradiction.

Therefore, we have shown that

α · Pi < Pj+1 ≤ α · Pi+1.

So, from assumption, Pj = max{Wα(P
α
i )}, and Lemma 30 implies Pj+1 ∈ Wα(P

α
i+1). Thus

Sαi = j − i− 1 and Sαi+1 ≥ j +1− (i+ 1)− 1 = j − i− 1. Therefore, Lemma 30 implies that
Sα is a monotonically increasing sequence.

Lemma 32 ([8]). Suppose there exists a j such that

Pj+i+1 = Pj+i + Pj+i−k (3)

for all i ∈ {0, 1, . . . , k + 1}. Then (3) holds for every nonnegative integer i.

Lemma 33. The number of cutoffs in any closed interval [a, b] is finite.

Proof. We first prove that the number of eventual recurrences in the interval is finite. There
are at least two ways of doing this. One way would be to prove that the degree k of the
eventual recurrence increases with α; this is true, but we have not proven it. An alternative
approach is to use a result of Zieve [14]. Zieve proves that

log(α− 1)

log(α)− log(α− 1)
≤ k ≤

log(α)

log(α + 1)− log(α)
.

It follows that for all α ∈ [a, b], we have

log(a− 1)

log a− log (a− 1)
≤ k ≤

log(b)

log (b+ 1)− log b
.

13



Since k is an integer, there are only finitely many eventual recurrences in a closed interval.
Thus it remains to show that there are only finitely many sequences with the eventual
recurrence Pn = Pn−1+Pn−k. From Lemma 31, we know that Sα is an increasing sequence.
By Lemma 32, any positive integer m ≤ k can appear at most m+ 1 times in the sequence
Sα. Thus there are only finitely many possible initial strings of the sequence Sα before the
sequence stabilizes at k. It follows that there are only finitely many cutoffs in any closed
interval [a, b].

Remark 34. Lemma 33 almost gives us another proof of Theorem 23: it shows that the
T (α) positions remain constant on intervals, except for a discrete set of exceptional points.
However, we were not able to see how to use Lemma 33 to show that there are no exceptional
points. Note that Definition 28 through Lemma 33 do not rely on the proof of Theorem 23.

Theorem 35. Every integer n ≥ 2 is a cutoff.

Proof. Let n ≥ 2 be an integer, let α be the last cutoff before n. The largest element of
Wα(1) is ⌊α⌋ < n. Consider the sequence T (n) and Wn(1). The largest element of Wn(1) is
n. Therefore, Wn(1) 6= Wα(1). We assumed α to be the last cutoff before n. Thus, n is the
next cutoff.

We can also prove a generalization of this theorem.

Theorem 36. Let x ≡ 0 (mod n!) and x > 0. Then x+ 1
n
is a cutoff.

Before we prove Theorem 36, let us explain the intuitive reason behind it, which we make
precise using windows. Let α be the largest cutoff before x+ 1

n
. Since all integers are cutoffs,

we have α ≥ x. The sequence T (α) begins as an arithmetic progression with difference 1,
then becomes an arithmetic progression with difference 2, then by 3, and so forth until it
becomes an arithmetic progression with difference n:

0, 1, . . . , x, x+ 1, x+ 3, x+ 5, . . . , 2x+ 1, 2x+ 4, . . . , 3x+ 1, 3x+ 5, . . . , nx+ 1, nx+ n+ 2.

Recall that the next cutoff after α can be thought of as the minimum of Qα
i . One of the

elements of Qα
i (which therefore upper bounds the next cutoff after α) is Qn = nx+1

n
.

Proof of Theorem 36. We proceed by induction on n, proving the given statement together
with an auxiliary result that aids in the inductive step. The auxiliary result is that if α is
the largest cutoff less than x+ 1

n
, then max(Wα(n)) = nx−n+1. For the original statement,

the base case, n = 1, is simply Theorem 35. For the auxiliary statement, the largest cutoff
less than x + 1 is simply x because the sequence T (α) begins 0, 1, 2, . . . , x + 1. The next
term is x+ 3. Thus max(Wα(1)) = x, as claimed.

Now suppose that the result is true for n, and we will prove it for n + 1. Let x ≡ 0
(mod (n+ 1)!), and let α be the last cutoff before x+ 1

n+1
. We consider the sequence T (α).

Since x ≡ 0 (mod (n + 1)!), we also have x ≡ 0 (mod n!), so max(Wα(n)) = nx − n + 1.
Since n + 1 ∈ T (α), the next term in T (α) after nx − n + 1 is in Wα(n + 1), and that

14



n 2.5 3 3.5 4 4.5 5 5.5 6 10 20 30 40 75
γ(n) 3 4 5 8 11 14 18 21 74 424 1144 2100 9084

Table 2: Number of Cutoffs from 1 to n

next term is max(Wα(n)) + n = nx + 1. Let us now compute Wα(n + 1). It begins with
nx + 1, and it is an arithmetic progression with common difference n + 1, so its elements
are of the form nx + 1 + k(n + 1), where nx + 1 + k(n + 1) ∈ Wα(n + 1) if and only if
nx+1+k(n+1) ≤ α(n+1). Since x ≤ α < x+ 1

n+1
, we have nx+1+k(n+1) ∈ Wα(n+1)

if and only if k < x
n+1

, so

max(Wα(n+ 1)) = nx+ 1 +

(
x

n+ 1
− 1

)
(n+ 1) = (n+ 1)x− (n+ 1) + 1,

completing the induction.

Theorem 36 show that for all integers d, there exists a cutoff whose denominator in
lowest terms is d. In fact, it is quite common for rational numbers with small denominators
to appear as cutoffs, even when they are not guaranteed by Theorem 36. For instance, all
half-integers from 5

2
to 29

2
are cutoffs, but 31

2
is not. The next few half-integers that are not

cutoffs are 43
2
, 75

2
, 79

2
, and 95

2
. It would be interesting to investigate the nature of the cutoffs

with a given denominator. For example, for those arithmetic progressions of rational numbers
such that Theorem 36 does not guarantee that all are cutoffs, is it true that infinitely many
are cutoffs and infinitely many are not cutoffs? Or are there other arithmetic progressions
containing only cutoffs or only noncutoffs (or all but finitely many cutoffs or noncutoffs)?

We have written a number of computer programs to aid the calculations of the sequences
T (α) and the generation of cutoffs1. Based on the data displayed in Table 2 and Figure 1,
we make the following conjecture:

Conjecture 37. Let γ(n) be the number of cutoffs up to n. Then limn→∞

γ(n)
n2 exists and is

nonzero.
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