

Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2

Domino Tilings and Products of Fibonacci and Pell Numbers

James A. Sellers

Department of Mathematics The Pennsylvania State University 107 Whitmore Lab University Park, PA 16802

sellersj@math.psu.edu

Abstract

In this brief note, we prove a result which was "accidentally" found thanks to Neil Sloane's Online Encyclopedia of Integer Sequences. Namely, we prove via elementary techniques that the number of domino tilings of the graph $W_4 \times P_{n-1}$ equals $f_n p_n$, the product of the n^{th} Fibonacci number and the n^{th} Pell number.

1 Introduction

Recently I received an electronic mail message [1] in which I was notified that a pair of duplicate sequences existed in Neil Sloane's Online Encyclopedia of Integer Sequences [3]. This involved sequence A001582 and the former sequence A003763. One of these sequences was described as the product of Fibonacci and Pell numbers, while the other was the number of domino tilings of the graph $W_4 \times P_{n-1}$.

I soon notified Neil Sloane of this fact and he promptly combined the two sequence entries into one entry, <u>A001582</u>. Upon combining these two entries, he also noted that it was not officially a theorem (that the product of the Fibonacci and Pell numbers was always equal to the number of domino tilings of $W_4 \times P_{n-1}$), but that is was "certainly true." The primary goal of this short note is to prove this result so that its status is indeed a theorem. We close the paper by noting two other results relating domino tiling sequences in [2] with Fibonacci numbers.

Before proving the main result, we supply some definitions and notation for the sake of completeness. First, we note that the graph W_4 is $K_4 - e$. Moreover, the graph P_n is the path graph on n vertices. The Fibonacci numbers <u>A000045</u> are defined as the sequence of integers

$$f_1 = 1, f_2 = 1, \text{ and } f_{n+2} = f_{n+1} + f_n \text{ for all } n \ge 0.$$
 (1)

The Pell numbers $\underline{A000129}$ are defined as the sequence of integers

$$p_1 = 1, p_2 = 2, \text{ and } p_{n+2} = 2p_{n+1} + p_n \text{ for all } n \ge 0.$$
 (2)

2 The Results

Theorem 2.1. The number of domino tilings of $W_4 \times P_{n-1}$ equals $f_n p_n$ for all $n \ge 2$.

Proof. Thanks to an article of Faase [2, page 146], we know that the number of domino tilings of $W_4 \times P_{n-1}$, which we will denote by c_n , satisfies $c_2 = 2$, $c_3 = 10$, $c_4 = 36$, $c_5 = 145$ and

$$c_{n+4} - 2c_{n+3} - 7c_{n+2} - 2c_{n+1} + c_n = 0$$
(3)

for all $n \ge 2$. (This is slightly different than the notation used in Faase, where he defines a function C(n) wherein $c_n = C(n-1)$ and then does all work in terms of C(n) rather than c_n .)

It is easy to check that $f_n p_n$ satisfies the initial conditions above. Hence, we focus on checking that $f_n p_n$ satisfies (3).

Repeated applications of (1) and (2) yield

$$f_{n+2} = f_n + f_{n+1}, \ f_{n+3} = f_n + 2f_{n+1}, \ \text{and} \ f_{n+4} = 2f_n + 3f_{n+1}$$
 (4)

while

$$p_{n+2} = p_n + 2p_{n+1}, \ p_{n+3} = 2p_n + 5p_{n+1}, \ \text{and} \ p_{n+4} = 5p_n + 12p_{n+1}.$$
 (5)

We now substitute the findings in (4) and (5) into the left-hand side of (3) and simplify:

$$\begin{aligned} &f_{n+4}p_{n+4} - 2f_{n+3}p_{n+3} - 7f_{n+2}p_{n+2} - 2f_{n+1}p_{n+1} + f_np_n \\ &= (2f_n + 3f_{n+1})(5p_n + 12p_{n+1}) - 2(f_n + 2f_{n+1})(2p_n + 5p_{n+1}) - 7(f_n + f_{n+1})(p_n + 2p_{n+1}) \\ &- 2f_{n+1}p_{n+1} + f_np_n \\ &= f_np_n(10 - 4 - 7 + 1) + f_{n+1}p_n(15 - 8 - 7) + f_np_{n+1}(24 - 10 - 14) + f_{n+1}p_{n+1}(36 - 20 - 14 - 16) \\ &= 0 \end{aligned}$$

Thus, $c_n = f_n p_n$ for all $n \ge 2$ and the proof is complete.

2)

We note that at least two other domino tiling sequences that appear in [2] are also closely related to Fibonacci numbers.

We first consider sequence <u>A003775</u> which appears in [2, p. 147] in relationship to the number of domino tilings of $P_5 \times P_{2n}$. Based on this sequence, we define $d_1 = 1, d_2 = 8, d_3 = 95, d_4 = 1183$ and

$$d_{n+4} - 15d_{n+3} + 32d_{n+2} - 15d_{n+1} + d_n = 0 \tag{6}$$

for all $n \ge 1$. Computational experimentation indicates that $f_{2n-1} | d_n$ for several values of n. This leads to the following theorem:

Theorem 2.2. For all $n \ge 1$, $d_n = g_n h_n$ where g_n is the n^{th} term in the sequence <u>A004253</u> and $h_n = f_{2n-1}$ for all $n \ge 1$.

Remark: Note that <u>A004253</u> is related to the number of domino tilings in $K_3 \times P_{2n}$ and $S_4 \times P_{2n}$ as noted by Faase in [2, pp. 146-147]. Moreover, <u>A004253</u> is quite similar to <u>A028475</u>.

Proof. The proof here follows a similar line of argument to that of Theorem 2.1. From the information given in A004253, we know that

$$g_1 = 1, g_2 = 4, \text{ and } g_{n+2} = 5g_{n+1} - g_n.$$
 (7)

Moreover, we have

$$h_1 = 1, h_2 = 2, \text{ and } h_{n+2} = 3h_{n+1} - h_n.$$
 (8)

It is easy to check that $d_n = g_n h_n$ for $1 \le n \le 4$, so we focus our attention on the recurrence (6). We know from (7) that

$$g_{n+2} = 5g_{n+1} - g_n, \ g_{n+3} = 24g_{n+1} - 5g_n, \ \text{and} \ g_{n+4} = 115g_{n+1} - 24g_n$$
 (9)

while (8) yields

$$h_{n+2} = 3h_{n+1} - h_n, \ h_{n+3} = 8h_{n+1} - 3h_n, \ \text{and} \ h_{n+4} = 21h_{n+1} - 8h_n.$$
 (10)

We now substitute the information from (9) and (10) into the left-hand side of (6) and obtain the following:

$$g_{n+4}h_{n+4} - 15g_{n+3}h_{n+3} + 32g_{n+2}h_{n+2} - 15g_{n+1}h_{n+1} + g_nh_n$$

$$= (115g_{n+1} - 24g_n)(21h_{n+1} - 8h_n) - 15(24g_{n+1} - 5g_n)(8h_{n+1} - 3h_n) + 32(5g_{n+1} - g_n)(3h_{n+1} - h_n)$$

$$- 15g_{n+1}h_{n+1} + g_nh_n$$

$$= g_nh_n(192 - 225 + 32 + 1) + g_{n+1}h_n(-920 + 1080 - 160)$$

$$+ g_nh_{n+1}(-504 + 600 - 96) + g_{n+1}h_{n+1}(2415 - 2880 + 480 - 15)$$

$$= 0$$

This completes the proof.

Finally, we consider the last sequence of values in [2], which is related to the number of domino tilings of $P_8 \times P_n$ and appears as <u>A028470</u> in [3]. The first 32 values of the sequence are as follows:

n	C_n
1	1
2	34
3	153
4	2245
5	14824
6	167089
7	1292697
8	12988816
9	108435745
10	1031151241
11	8940739824
12	82741005829
13	731164253833
14	6675498237130
15	59554200469113
16	540061286536921
17	4841110033666048
18	43752732573098281
19	393139145126822985
20	3547073578562247994
21	31910388243436817641
22	287665106926232833093
23	2589464895903294456096
24	23333526083922816720025
25	210103825878043857266833
26	1892830605678515060701072
27	17046328120997609883612969
28	153554399246902845860302369
29	1382974514097522648618420280
30	12457255314954679645007780869
31	112199448394764215277422176953
32	1010618564986361239515088848178

The recurrence relation satisfied by the values of C_n is given by

$$C_{n+32} = 153C_{n+30} - 7480C_{n+28} + 151623C_{n+26} - 1552087C_{n+24} + 8933976C_{n+22} - 30536233C_{n+20} + 63544113C_{n+18} - 81114784C_{n+16} + 63544113C_{n+14} - 30536233C_{n+12} + 8933976C_{n+10} - 1552087C_{n+8} + 151623C_{n+6} - 7480C_{n+4} + 153C_{n+2} - C_n$$

for all $n \ge 1$.

We note that $f_{n+1} | C_n$ for several values of n.

n	C_n/f_{n+1}
1	1
2	17
$\frac{3}{4}$	51 449
$\frac{4}{5}$	$449 \\1853$
6	1333 12853
$\frac{0}{7}$	61557
8	382024
9	1971559
10	11585969
11	62088471
12	355111613
13	1939427729
14	10943439733
15	60338602299
16 17	$338172377293 \\1873494595072$
$11 \\ 18$	1873494595072 10464657396101
$10 \\ 19$	58113694771149
$\frac{10}{20}$	324052035315389
$\frac{20}{21}$	1801727076022631
22	10038214290617749
23	55845947547948897
24	311010011115265801
25	1730773816266538081
26	9636747170211055304
27	53636683818362516979
$ 28 \\ 29 $	$\frac{298610928685279993661}{1662149072277201394907}$
$\frac{29}{30}$	9253169548548380483401
$31 \\ 31$	51507590702129135617317
32	286734628936105610236201
33	1596133084485272225826727
34	8885301696820653301727657
35	49461269578409945493024768
36	275337533349256635378114713
37	1532712030034359905504838377
38	8532165290411528453455489081
39	47495826004154548026644356683
40	264395102236750242015097270393

This leads to the conjecture that $f_{n+1} | C_n$ for all $n \ge 1$. We leave the proof of this (assuming it is true) to the reader, as the calculations involved herein would be straightforward but tedious.

3 Acknowledgements

The author gratefully acknowledges Frank Ellerman for bringing this problem to his attention and Per Hakan Lundow for valuable e-conversations. The author also thanks the referees for their helpful insights.

References

- Personal communication from Frank Ellerman, frank.ellermann@t-online.de, February 9, 2002.
- [2] F. J. Faase, On the number of specific spanning subgraphs of the graphs $G \times P_n$, Ars Combinatoria, **49** (1998), 129-154.
- [3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.research.att.com/~njas/sequences/.

2000 Mathematics Subject Classification: 11B37, 11B39 Keywords: domino tilings, Fibonacci numbers, Pell numbers

(Concerned with sequences <u>A000045</u>, <u>A000129</u>, <u>A001582</u>, <u>A003775</u>, <u>A004253</u>, <u>A028470</u> and <u>A028475</u>.)

Received March 20, 2002; revised version received May 1, 2002. Published in Journal of Integer Sequences May 6, 2002.

Return to Journal of Integer Sequences home page.