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Abstract

The purpose of this paper is to study the Parker vectors (in fact, sequences) of
several known classes of oligomorphic groups. The Parker sequence of a group G is
the sequence that counts the number of G-orbits on cycles appearing in elements of
G. This work was inspired by Cameron’s paper on the sequences realized by counting
orbits on k-sets and k-tuples.

1 Introduction

In a recent paper [6], P. J. Cameron describes several “classical” sequences (in the sense of
appearing in the Encyclopedia of Integer Sequences [12]) obtainable as U- or L-sequences of
oligomorphic groups, that is as sequences of numbers counting the orbits of such groups on
k-subsets and on ordered k-tuples, respectively.

Oligomorphic permutation groups [5] constitute a class of infinite groups to which it is
meaningful to extend the concept of Parker vector, originally defined for finite groups (see
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[8]). So it is natural to study which integer sequences are obtained as Parker sequence, that
is, by counting orbits on k-cycles.

Recall that the Parker sequence, or Parker vector, of an oligomorphic permutation group
G is the sequence p(G) = (p1, p2, p3, . . . ), where pk is the number of orbits of G on the set
of k-cycles appearing in elements of G, with G acting by conjugation. For instance, for the
symmetric group S acting on a countable set, the Parker sequence is just (1, 1, 1, . . . ). A less
trivial example is the group C preserving a circular order on a countable set; for the Parker
sequence one has pk = ϕ(k)

Let us fix the notation for some sequences needed in this paper: ϕ(k) is the Euler
(totient) function (A000010 in Sloane’s Encyclopedia [12]), d(k) is the number of divisors of
k (A000005), and σ(k) is the sum of the divisors of k (A000203).

2 Operators on sequences

Cameron [6] describes how obtaining “new groups from old” (mainly by taking direct and
wreath product, and by taking the stabilizer) corresponds to operators on and transforms of
their U- and L-sequences (in the sense of Sloane [13]).

Analogously, it is possible to study how the Parker sequences of “new” groups are related
to those of “old” ones. The general effect on Parker sequences of taking direct and wreath
products of groups is studied in the authors’ papers [7] and [8].

Let G and H be permutation groups acting on the sets X and Y , respectively. Recall
that, if we consider the direct product G × H acting on the disjoint union of X and Y ,
the U-sequence for G × H is obtained as CONV of the U-sequences of the factors (we are
multiplying the ordinary generating functions of the sequences); on the other hand, the L-
sequence of the direct product is obtained as EXPCONV (here one considers the exponential
generating functions).

For the Parker sequences the corresponding operation is simply the sum (element by
element):

pk(G×H) = pk(G) + pk(H).

Forming the direct product of G with the countable symmetric group S gives, as U-
sequence, PSUM of the L-sequence of G; as L-sequence, BINOMIAL of its L-sequence. For
the Parker sequence, it simply yields

pk(G× S) = pk(G) + 1.

One may also consider the product action of G×H on the cartesian product X×Y . For
this action one has:

pk(G×H) =
∑

i,j
lcm(i,j)=k

pi(G)pj(H).

What happens for wreath products is more interesting. Recall [7, 8] that for the Parker
sequences of the wreath product of G and H the following holds:

pk(G oH) =
∑

d|k

pd(G)pk/d(G).
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This is the Dirichlet convolution, which in the terminology of Sloane [13] is the DIRICHLET
transform of the two sequences.

We may now study, for a given oligomorphic group H, the operator mapping the Parker
sequence of any group G to that of G oH. For U-sequences, this procedure gives rise to the
operators EULER, INVERT, and CIK, respectively for H = S, H = A, and H = C. For
Parker sequences we get, for H = S, the MOBIUSi operator

pk(G o S) =
∑

d|k

pd(G);

and, for H = A, the identity operator

pk(G o A) = pk(G).

For H = C we get

pk(G o C) =
∑

d|k

pd(G)ϕ(k/d);

in particular note that for square-free k’s (that is, the values of k such that µ(k) 6= 0) one
has pk(G o C) = ϕ(k)

∑

d|k pd(G)/ϕ(d).
Notice that, while in general G o H and H o G may be different groups, they have the

same Parker sequence; so these operators are also those mapping p(G) to p(H oG).

3 Parker sequences and circulant relational structures

Recall [8] that, if we are dealing with a group G defined as the automorphism group of the
limit of a Fräıssé class F of relational structures, the Parker sequence of G has an alternative
interpretation as the sequence enumerating the finite circulant structures in that class. More
precisely, the kth component of the Parker sequence counts the relational structures in
(the age of) F on the set {1, 2, . . . , k} admitting as an automorphism the permutation
(1 2 . . . k) (note that this is different than just requesting that the structure admits a
circular symmetry). In what follows we shall use “circulant [structure]” to mean “circulant
[structure] on the set {1, 2, . . . , k} admitting the automorphism (1 2 . . . k)”. All of the
Parker sequences listed in the “Fräıssé class” table were obtained by counting these circulant
structures.

This mirrors what happens with the L-sequence (Fk) of the same group, which is defined
as the number of orbits on k-tuples of distinct elements, and is equal to the number of
labelled structures on k points. The same holds for the U-sequence fk of the number of
orbits on k-sets, giving the number of unlabelled structures. The theory behind this can be
found in Cameron’s book [5].

In order to give an idea of the techniques involved in deriving Parker sequences, let us
first briefly recall [8] what happens for graphs.

To describe a circulant graph Γ on the vertex set {0, 1, 2, . . . , k−1}, it is sufficient to give
the neighbours of a fixed vertex (say 0); this subset, which has the property that it contains
a vertex i if and only if it contains k− i, is called symbol of Γ. On the other hand any subset
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S of {1, 2, . . . , k − 1} such that i ∈ S implies k − i ∈ S is a possible symbol for a graph. So
the kth entry of the Parker sequence of the automorphism group of the limit of the Fräıssé
class of graphs (that is the well-known random, or Erdős-Rényi, or Rado, graph) is 2bk/2c.

Several variations to this method yield the Parker sequences for other relational struc-
tures.

For instance, if we consider the symbol for a digraph (a structure with a relation → in
which for each pair of distinct vertices a, b, any of a → b, b → a, both, or none may hold)
we choose whether or not to join, by putting a directed edge, 0 with any other vertex. So
we get pk = 4(k−1)/2 = 2k−1. Similarly, if we do not allow a double orientation on an edge,
we get the class of oriented graphs, for which pk = 3bk/2c.

Of course, this kind of argument holds also for the class of n-ary relations, for n ≥ 2.
The symbol for a circulant n-relation on k points can be any possible set of (n − 1)-tuples
(admitting repetitions) of the points. For instance, for a ternary relation, we may have (0, 0)
(meaning that (0, 0, 0) holds), (0, 1), (1, 0), (1, 1), . . . So we have kn−1 such (n − 1)-tuples,
and 2kn−1

possible symbols (sets of such tuples).
More examples in same vein appear in the tables.
The same techniques can be applied to the class of two-graphs; this case, however, requires

some care.
Recall that a two-graph is defined as a pair (X,T ), where X is a set of points, and T a

set of 3-subsets of X with the property that any 4-subset of X contains an even number of
members of T .

Two-graphs on k vertices are in bijection with switching classes of graphs on k vertices.
Recall that switching a graph Γ = (V,E) with respect to S ⊆ V gives a graph (V,E ′) such
that {v, w} ∈ E ′ if and only if either v and w are both in S or both in V \S and {v, w} ∈ E,
or one is in S and the other is in V \ S, and {v, w} 6∈ E (see [11], also for the description of
the correspondence between two-graphs and switching classes).

Note that a two-graph (X,T ) is circulant if and only if at least one graph in the cor-
responding switching class is. In fact, assume that α is a permutation of X inducing an
automorphism of (X,T ); then α induces an automorphism of at least one graph in the
corresponding switching class (as proved by Mallows and Sloane [10]; see also Cameron [2]).

The following result relates circulant two-graphs to circulant graphs.

Theorem 3.1 Let Γ be a circulant k-vertex graph. If k is odd, then Γ is the only circulant
graph in its switching class; if k is even, there are exactly two circulant graphs in its switching
class.

In order to prove this, let us first show in some detail what happens switching circulant
and regular graphs.

Proposition 3.2 For k odd, in each switching class of graphs on k vertices there is at most
one regular graph.

Proof. Let Γ be a regular graph of valency r on k vertices. Let us switch it with respect
to the set S ⊆ V (Γ), 0 < |S| = m < k. Then, for each t 6∈ S, call nt the number of
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neighbours of t included in S (before switching). Then the valency of t in the switched
graph is r − nt + (m − nt). Analogously, if s ∈ S and ns is the number of neighbours of s
not in S, the valency of s in the switched graph is r − ns + (k −m− ns).

Therefore, if the switched graph is regular, given two vertices s and t as above, their new
valencies must be equal:

r − nt + (m− nt) = r − ns + (k −m− ns),

or,
k = 2(m− nt + ns).

That is, the number of vertices must be even for a non-trivial switching equivalence to hold
between Γ and another regular graph. ♦

We have now the first part of the theorem (because any circulant graph must be, a
fortiori, regular). For the second part, the following proposition describes explicitely when
switching a circulant graph yields another circulant graph.

Proposition 3.3 If Γ is a circulant graph on the vertices {1, 2, . . . , k}, k even, the only
non-trivial switching yielding a circulant graph is with respect to the set of vertices S =
{1, 3, 5, . . . , k − 1} (or its complement).

Proof. For Γ to be circulant, it must be possible to decompose it in cycles (i, i + l, i +
2l, . . . , i − l) (all additions modulo k). In each such cycle the vertices either have all the
same parity, or an odd and an even vertex alternate. So, switching with respect to S either
preserves the whole cycle, or causes all its edges to vanish. In either case, the graph remains
circulant.

On the other hand, if switching is performed with respect to any other non-trivial set S ′,
this set or its complement must include two consecutive vertices i, i+1 (mod k) and of course
there exists j such that j ∈ S ′, j + 1 6∈ S ′. In a circulant graph either 1 ∼ 2 ∼ · · · ∼ k ∼ 1
or 1 6∼ 2 6∼ · · · 6∼ k 6∼ 1; assume, up to complementing, the former. Then in the switched
graph i ∼ i+ 1 while j 6∼ j + 1; so the new graph is not circulant. ♦

A variation of the previous argument shows that the same holds for oriented two-graphs.

4 Groups and their sequences

In this section we consider the tables included in Cameron’s paper [6] and add, as far as
possible, the data concerning Parker sequences.

For the five closed highly homogeneous groups of Cameron’s theorem (i.e., the groups
admitting only one orbit on k-sets for all k; see [1]) the Parker sequences are readily obtained.
Recall that S is the infinite symmetric group, A (or ∂C) is the subgroup of S of the permu-
tations preserving the ordering on the rational numbers, B (or ∂C∗) of those preserving or
reversing it, C of those preserving a cyclic order on a countable set (say, the complex roots
of unity), and D (or C∗) of those preserving or reversing such a cyclic order.
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The Parker sequence for S is clearly the all-1 sequence; while in the finite case this
property characterises (with a single exception) the symmetric groups, in the infinite case
this sequence is shared by other, not highly transitive groups. An instance of this fact is the
group of the Fräıssé class of trees with the action on edges.

The Parker sequence for A is unremarkable, but for its being the neutral element for the
Dirichlet convolution. So, for each group G, p(A oG) = p(G o A) = p(G).

The sequences for C and D can be obtained by noting that these groups induce on k-sets
the groups Ck and Dk (dihedral of degree k), respectively; see also [8].

Highly Homogeneous Groups

Group Parker sequence EIS entry Notes

S 1, 1, 1, . . . A000012
A 1, 0, 0, . . . A000007
B 1, 1, 0, 0, . . . A019590
C ϕ(k) A000010
D 1, 1, 1, ϕ(k)/2 ∼A023022

Direct Products

Group Parker sequence EIS entry Notes

S × S 2, 2, 2, . . . A007395
S ×A 2, 1, 1, . . . A054977
A×A 2, 0, 0, . . . A000038
S3 3, 3, 3, . . . A010701
Sk k, k, k, . . .

In the following table, Sn denotes the (finite) symmetric group of degree n, and E is the
trivial group acting on two points.

Note also that A00005 = MOBIUSi(A000012), A007425 = MOBIUSi(A000005).

Wreath Products

Group Parker sequence EIS entry Notes

S o S d(k) A000005
A o S 1, 1, 1, . . . A000012
C o S k (=

∑

d|k ϕ(d)) A000027

(C o S) o S
∑

d|k d = σ(k) A000203

S oA 1, 1, 1, . . . A000012
S o S2, S2 o S 1, 2, 1, 2, . . . A000034
S o S3, S3 o S 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, . . . A083039 See S o Sn

S o S4, S4 o S 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, . . . A083040 See S o Sn

S o Sn, Sn o S pk = |{d : d|k, d ≤ n}| See remark 1
S o S o S

∑

d0|k
d(d0) = 1, 3, 3, 6, 3, 9, 3, 10, 6, 9, 3, . . . A007425

A oA 1, 0, 0, . . . A000007
Sk oA 1, . . . (k times) . . . , 1, 0, 0, . . .
E o S 2, 2, 2, . . . A007395
E oA 2, 0, 0, . . . A000038
Son

∑

d0|k

∑

d1|d0

∑

d2|d1
· · ·

∑

dn−3|dn−4
d(dn−3) MOBIUSin(A000005) See remark 2

C o C
∑

d|k ϕ(d)ϕ(k/d) = 1, 2, 4, 5, 8, 8, 12, 12, 16, 16, . . . A029935 See remark 3
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Remark 1 The sequence is periodic of period lcm(1, . . . , n).

Remark 2 The sequence associated with S on (i.e., the iterated wreath product of S with
itself with n factors) can be expressed as follows. Let δ0(k) := 1 for each k, and for i > 0 let

δi(k) :=
∑

d|k

δi−1(d),

that is, δi is the Dirichlet convolution δi−1 ∗ δ0. Thus, δi(k) = pk(S
oi+1).

All the functions δi are multiplicative, because δ0 is, and the Dirichlet convolution pre-
serves multiplicativity. Thus, it suffices to compute the value of δi on prime powers.

We claim that

δi(p
j) =

(

i+ j
i

)

.

To obtain a different description of the δis, note that δ1(k) gives the number of divisors
of k, including 1 and k; so it is equal to d(k). Next, δ2(k) is the sum over the divisors of k of
the number of their divisors; in other words, it gives the number of pairs (h, d) with h|d and
d|k (observe that h and d may well coincide). In general, we see that δi(k) gives the number
of i-ples (d1, d2, . . . , di) with d1|d2, . . . , di−1|di, di|k. We call such a sequence a generalised
gozinta chain, recalling that a gozinta (“goes into”) chain for k is a sequence of divisors of
k each of which strictly divides the next one.

When k = pj, a sequence of divisors of k each of which divides the next one corresponds to
a nondecreasing sequence of exponents of p, that is to a nondecreasing sequence of numbers
in [j] = {0, 1, . . . , j}, which in turn can be seen as a multiset of elements of [j].

So, it is enough to enumerate the multisubsets of {0, 1, . . . , j} of size i. It is well known

(see for instance [14]) that their number is given by

(

i+ j
i

)

, as claimed.

Remark 3 If k is square-free, pk is equal to
∑

d|k ϕ(k) = d(k)ϕ(k).

* * *

The following groups arise as automorphism groups of Fräıssé classes (see section 3).
The calculation of Parker sequences for “treelike objects” and related structures is carried

out in detail in the forthcoming paper [9].
The letters R and L mean “shifted right” and “shifted left” respectively.
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Automorphism Groups of Homogeneous Structures

Fräıssé class Parker sequence EIS entry Notes

Graphs 2bk/2c A016116 See [8]
Graphs up to complement p1 = 1, pk = 2bk/2c−1 for k > 1 A016116RR See rem. 4
K3-free graphs 1,2,1,3,3,4,4,8,4,14,11,14,. . . A083041 See rem. 5
Graphs with bipartite block 2,2,2,. . . A007395 See rem. 6
Graphs with loops 2bk/2c+1 A016116LL See rem. 7
Digraphs 2k−1(= 4(k−1)/2) A000079R
Digraphs with loops (or binary
relations)

2k A000079

Oriented graphs 3bk/2c [missing]
Topologies d(k) A000005 See rem. 8
Posets 1,1,1,. . . A000012 See rem. 9
Tournaments k odd: 2bk/2c, k even: 0 [missing] See [8]
Local orders k odd: ϕ(k), k even: 0 [missing] See [9]
Two-graphs 2dk/2e A016116L See Thm. 3.1
Oriented two-graphs 2dk/2e A016116L See Thm. 3.1
Total orders with subset 2,0,0,. . . A000038
Total orders with 2-partition 1,0,0,. . . A000007
C-structures with subset 2ϕ(k) [missing] See rem. 10
D-structures with subset ϕ(k) A000010 See rem. 10
2 total orders (distinguished) 1,0,0,. . . A000007
2 total orders (not distinguished) 1,1,0,0,. . . A019590
2 betweennesses (not distin-
guished)

1,1,0,0,. . . A019590

Boron trees (leaves) (or T3) characteristic fn. of {3a2b}a∈{0,1},b≥0 [missing] See [9]
HI trees (leaves) (or T ) nr. of ordered factorisations of k A002033R See [9]
R(Boron trees (leaves)) (or ∂T3) characteristic fn. of powers of 2 A036987 See [9]
R(HI trees (leaves)) (or ∂T ) nr. of ordered factorisations of k A002033R See [9]
Trees (edges) 1,1,1,. . . A000012 See [9]
Covington structures (or ∂T3(2)) p2i = 2i, 0 otherwise A048298 See [9]
Binary trees (or ∂PT3) 1,0,0,0,. . . A000007 See [9]
Binary trees up to reflection (or
∂P ∗T3)

1,1,0,0,. . . A019590 See [9]

Plane trees (or PT )† ϕ(k) A000010 See [9]
Plane trees up to reflection (or
P ∗T )†

∼ ϕ(k)/2 A023022 See [9]

Plane boron trees (or PT3) 1,1,2,0,0,. . . [missing] See [9]
Plane boron trees up to reflection
(or P ∗T3)

1,1,1,0,0,. . . [missing] See [9]

3-hypergraphs 2f(k,3), where f(k, 3) =
0, 0, 1, 1, 4, 4, 5, 7, 10, 12, 15, 19, . . .

[missing] See [8]

t-hypergraphs† 2f(k,t) See [8]

Ternary relations 2k2

A002416

Quaternary relations 2k3

[missing]

† Not in [6].
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Remark 4 Each (symbol for a) circulant graph represents also its complement, so (for
k > 1) each term is one half of the corresponding term for graphs. For instance, p2 = 1
because the graphs K2 and N2 are now identified.

Remark 5 This is the number of symmetric sum-free subsets of Z/(k)∗ (see [3]): if the
symbol contains a and b, it cannot contain a+ b, and (as for generic graphs) if it contains a,
it must contain k − a.

Remark 6 We cannot exchange “black” and “white” vertices, so a circulant structure is
an all-black or all-white null graph.

Remark 7 Reason as in section 3, but take in addition to “basic” circulant graphs (those
with symbol of the form {i, k− i}) also that with k vertices, each with a loop attached, and
no other edges. In other words, in the symbol (set of “neighbours” of 0) for a circulant graph
with loops, also 0 may appear.

Remark 8 The “basic” graphs do not work as they are; the request for the relation to be
transitive forces any k-gon to “become” a complete directed graph (that is, Kk where all
edges are bidirected): by transitivity, connect vertices at distance 2, then at distance 3 and
so on. The superposition of d copies of Kk/d and l copies of Kk/l becomes by transitivity the
superposition of GCD(d, l) copies of Klcm(k/d,k/l). So the lattice of divisors of k describes all
the possible circulant transitive digraphs, that is topologies.

In other words, a topology is the transitive closure of a union of cyclic graphs; its incidence
matrix can be seen as the kth power of the incidence matrix of the starting graph with, as
its entries, boolean variables 0 and 1 (so that 1 + 1 = 1).

Remark 9 By acyclicity, for each n the only circulant poset is the one with n incomparable
elements.

Remark 10 The only possible distinguished sets are the empty and the full ones.

One Last Example

Group Parker sequence EIS entry Notes

S2 (product action) d(k2) A048691 See rem. 11

Remark 11 The result follows from Section 2, keeping in mind that d(k2) is equal to the
number of pairs (i, j) such that lcm(i, j) = k.
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