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Abstract

We introduce a generalization of the Conway-Hofstadter $10,000 sequence. The

sequences introduced, called k-sequences, preserve the Conway-Hofstadter-Fibonacci-

like structure of forming terms in the sequence by adding together two previous terms,

equidistant from the start and end of the sequence. We examine some particular

k-sequences, investigate relationships to known integer sequences, establish some prop-

erties which hold for all k, and show how to solve many of the defining nonlinear

recursions by examining related underlying sequences termed clock sequences.

1 Introduction

In a talk at AT&T Bell Labs [1] in 1988, J.H. Conway introduced the sequence (A004001 in
the On-Line Encyclopedia of Integer Sequences)

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, . . .

defined by the recursion

c(n) = c(c(n− 1)) + c(n− c(n− 1)), (1)

with initial conditions c(1) = c(2) = 1. Conway had proven that c(n)/n → 1/2, but was
unable to establish the rate of convergence. Somewhat overestimating the difficulty of the
question he offered a prize of $10,000 to the first person who could. The challenge was
answered by C.L. Mallows [2] shortly thereafter. Mallows not only established the rate
of convergence, but uncovered additional structure in the sequence as well. The exchange
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caught the attention of the popular press inspiring an entertaining article in the New York

Times [3]. The popularization of A004001 generated by this exchange also led to the study of
Kubo and Vakil [4] where much of the combinatorial structure of the sequence was unveiled.
The use of a compression operation to characterize the sequence allowed for simple proofs
of many of A004001’s interesting properties. We also note that unbeknownst to Conway
and Mallows the sequence had previously been introduced by Hofstadter [5] and had also
appeared in the problems section of the American Mathematical Monthly [6]. Today A004001
is known either as the “Conway-Hofstadter $10,000 sequence” or as the “Conway-Newman”
sequence. We will refer to it as the “Conway-Hofstadter” sequence.
Many of the properties that inspired interest in (1) are nicely enumerated by Kubo and

Vakil [4]. For convenience of the reader we list those relevant to this paper here:

1. c(n) ≤ n.

2. c(n)− c(n− 1) = 0 or 1, for all n ≥ 1.

3. c(n) ≥ n/2, with equality iff n is a power of 2 and n 6= 1.

4. c(n)/n −→ 1/2 as n −→∞.

5. c(2n) ≤ 2c(n) for all n.

In this paper we generalize the Conway-Hofstadter sequence. Our generalized class of
sequences shows much of the structure of (1), but also exhibits interesting new behavior. The
generalization leads to new representations of old sequences and to new solvable nonlinear
recursions.

2 The Generalization: k-Sequences

In reading the work of Mallows [2] or Kubo and Vakil [4] one is immediately struck by
the statements following the presentation of the first property listed above of the Conway-
Hofstadter sequence. Both authors note that c(n) ≤ n and then go on to say “so that
c(n) is well-defined by the recurrence.” To understand this comment and to appreciate the
motivation for our generalization it is worth visualizing how terms in the Conway-Hofstadter
sequence are formed. Consider the first five terms of the Conway-Hofstadter sequence:

1, 1, 2, 2, 3.

To form the sixth term, we note that the fifth term is equal to 3, count forward from the
beginning of the sequence three terms, backwards from the end of the sequence three terms,
and add the results to find c(6) = 2 + 2 = 4. This procedure generates all terms in the
sequence. Note that there is a beautiful symmetry in this construction process; in forming
the nth term, one term from the first half of the sequence is added to a term from the
second half of the sequence. These terms are always equidistant from the start and end of
the sequence. The observation of Mallows or Kubo and Vakil is equivalent to noting that
c(n) ≤ n assures that we never count past the end (or the beginning) of the sequence. Of
course, if we consider clock or modular arithmetic, counting beyond the start or end of the
sequence is no longer a problem. This immediately suggests our generalization.
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Definition 1. We say that {ck(n)} is a Conway-Hofstadter-like sequence of order k when

defined by the recursion

ck(n) = ck(kck(n− 1) mod (n− 1)) + ck(n− kck(n− 1) mod (n− 1)) (2)

with ck(1) = ck(2) = 1. We also call such sequences, k-sequences, and denote them ck.

Note that this generalization preserves the symmetry of the Conway-Hofstadter sequence.
That is, the only modifications to the construction process above are that the last term in
the sequence in multiplied by k, and the count from the start and end of the sequence is
done using modular arithmetic. However, in forming the nth term, one term from the first
half of the sequence is still added to one term from the second half of the sequence; these
terms are again equidistant from the start and end of the sequence. Throughout this paper,
we observe the convention that a zero in modular arithmetic mod n is replaced by n.

2.1 A Glance at Some k-Sequences

Computing the first few terms of k-sequences for various k reveals some familiar sequences
hiding among the k’s as well as some new surprises. The observed behavior of the first fifteen
k-sequences is summarized in the following table:

k-sequence First twenty terms

c1 1,1,2,2,3,4,4,4,5,6,7,7,8,8,8,8,9,10,11,12 . . .
c2 1,1,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11 . . .
c3 1,1,2,3,4,4,5,6,6,7,8,8,9,10,10,11,12,12,13,14 . . .
c4 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10 . . .
c5 1,1,2,3,3,4,4,5,6,6,7,7,8,9,9,10,10,11,12,12 . . .
c6 1,1,2,3,3,4,5,5,6,7,7,8,9,9,10,11,11,12,13,13 . . .
c7 1,1,2,2,3,4,4,5,6,6,7,7,8,8,9,10,11,12,11,12 . . .
c8 1,1,2,3,4,4,5,6,7,7,8,9,10,10,11,12,13,13,14,15 . . .
c9 1,1,2,3,3,4,5,5,6,7,7,8,9,9,10,11,11,12,13,13 . . .
c10 1,1,2,2,3,4,4,5,5,6,7,7,8,8,9,10,10,11,11,12 . . .
c11 1,1,2,3,4,4,5,5,6,7,8,9,9,9,10,12,12,13,13,14 . . .
c12 1,1,2,3,4,4,5,6,7,7,8,9,10,10,11,12,13,13,14,15 . . .
c13 1,1,2,2,3,3,4,5,6,5,6,7,7,8,9,9,10,10,11,10 . . .
c14 1,1,2,3,3,4,4,5,6,6,7,7,8,9,10,10,10,12,12,13 . . .
c15 1,1,2,3,4,5,5,6,6,7,9,8,9,10,11,12,12,13,14,15 . . .

The sequence c1 is, of course, the Conway-Hofstadter sequence. Other familiar sequences
are lurking in this list. The sequence c4 is the nice sequence b(n+ 1)/2c which is equivalent
to A004526. Both c6 and c9 appear to follow the pattern “one even followed by two odd”
and hence appear equivalent to A004396. The sequences c8 and c12 appear equivalent to
A037915, or more simply b(3n + 4)/4c. These suggested equivalences require proof. We do
not present such proof at this point. Rather, we will first establish some general results about
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the ck’s, then, demonstrate a method for uncovering the hidden structure of many ck’s, and
finally show how to prove an equivalence suggested by the table above. We do at this point
note that direct computation of various k-sequences highlights interesting similarities and
differences between c1 and other ck’s. Properties (1) and (3) of c1 appear to be satisfied for
all k. Property (2) however is violated for most ck’s. This is seen both through failure of
monotonicity and in the “skipping” of integers in sequences such as c11 and c13. Of course, the
other striking feature of the ck is the apparent new representation of some familiar sequences
such as A004526 or A004396.

3 Properties of the ck

Observations suggest that all ck satisfy upper and lower bounds on growth similar to the
bounds on c1. This is indeed true and we have

Proposition 1. ck(n) ≤ n for all n ≥ 1, k ≥ 1.

Proof. For any fixed k, we proceed by induction on n. Note that ck(1) = ck(2) = 1 and
ck(3) = 2 and hence ck(n) ≤ n for 1 ≤ n ≤ 3. Now, assume ck(j) ≤ j for all j satisfying
1 ≤ j ≤ n and consider ck(n+ 1). We have

ck(n+ 1) = ck(kck(n) mod n) + ck(n+ 1− kck(n) mod n).

Let j = kck(n) mod n and observe that 1 ≤ j ≤ n. Hence

ck(n+ 1) = ck(j) + ck(n+ 1− j) ≤ j + n+ 1− j = n+ 1

and

ck(n+ 1) ≤ n+ 1

as desired.

A similar argument yields the lower bound

Proposition 2. ck(n) ≥ n/2 for all n ≥ 1, k ≥ 1.

A key difference between c1 and a general ck is that property (2) need not hold. This
allows a particular ck to be non-monotone and to “skip” integers. For example, c7(19) −
c7(18) = −1 demonstrating the non-monotone property while c11 does not contain the num-
ber 11, as we shall soon see. The bounds above immediately provide a means to prove that
integers can indeed be skipped. We have

Proposition 3. Let m > 0 and suppose m does not appear in the first N terms of ck(n)
where N > 2m, then m never appears in ck(n).

Proof. ck(N) ≥
N
2

> m.
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Notice that this proposition, along with computation of the first 23 terms of c11 estab-
lishes that c11 is indeed “missing” 11. We can also easily bound the maximum number of
occurrences of a particular integer in the sequence ck.

Proposition 4. Let fk(m) denote the total number of occurrences of m in the sequence ck.

Then, fk(m) ≤ m+ 1 for all k and m.

Proof. By our lower bound on ck we have ck(2m) ≥ m. By our upper bound we have
ck(m) ≤ m. Hence m can only appear amongst the m+ 1 terms cm, cm+1, . . . c2m.

Another natural question is whether or not ck and cj can be “equivalent.” We consider
two notions of equivalence.

Definition 2. We say that ck and cj are numerically equivalent to order N iff ck(n) = cj(n)
for all n satisfying 1 ≤ n ≤ N . We say that ck and cj are structurally equivalent to order N
iff kck(n) mod n = jcj(n) mod n for all n satisfying 3 ≤ n ≤ N .

Structural equivalence tracks the process of forming a k-sequence. It decides whether or
not two k-sequences were formed by adding together terms located at the same point in each
sequence. Structural equivalence clearly implies numerical equivalence. The converse is not
true. It is possible for two sequences to be numerically equivalent, but not structurally equiv-
alent. Of the two types of equivalence, we consider structural equivalence to be fundamental.
We can compute the set of all k-sequences structurally equivalent to a given sequence, cj, by
solving a system of linear congruences. For example, consider c2, which begins {1, 1}. Since
2 ≡ 0 (mod 2) we may find all k-sequences structurally equivalent to order 2 by solving the
congruence k ≡ 0 (mod 2). The set of even integers satisfies this congruence. At the next
step, c2 is {1, 1, 2}, and since 4 ≡ 1 (mod 3) we must solve the congruence 2k ≡ 1 (mod
3). The solutions to this are numbers in the arithmetic progression 2, 5, 8, . . .. Hence the
k-sequences structurally equivalent to c2 at order 3 are those in the progression with steps of
length 2 × 3, i.e., k = 2, 8, 14, . . .. Replacing 2 with j and generalizing the argument above
we may show

Proposition 5. Given any k,N , there exists a j 6= k, such that ck and cj are structurally

equivalent to order N . Further, if j is the smallest such integer, j →∞ as N →∞.

Notice that this proposition implies that no two k-sequences are structurally equiva-
lent of infinite order. In this sense, the k-sequences are distinct. As mentioned above,
two k-sequences may be numerically equivalent, but not structurally equivalent. Numerical
investigation suggests that numerical equivalence is infrequent.

4 The Beat of the ck’s

The structure implicit in the notion of structural equivalence can also shed light on the
behavior of particular k-sequences. The underlying structure of a given k-sequence, that is
the sequence of terms used to create ck, is tracked by the associated clock sequence.
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Definition 3. Associated with each k-sequence, ck, we define a clock sequence, denoted tk,

as the sequence satisfying

tk(n) = min(kck(n− 1) mod (n− 1), n− kck(n− 1) mod (n− 1))

for n ≥ 3 with tk(1) = tk(2) = 1.

Note that the clock, tk(n), starting at n = 3, tracks the term from the lower half of the
sequence of length n − 1 that is used to compute the nth term. In terms of its clock, a
k-sequence can be written

ck(n) = ck(tk(n− 1)) + ck(n− tk(n− 1)),

again where n ≥ 3. A clock sequence becomes particularly useful when it become periodic.
For example, consider the growth of c2. We circle the terms at level n− 1 used to create the
new term at level n:

©1 , ©1
©1 ,1,©2
1,©1 ,©2 ,3
©1 ,1,2,3,©3
1,©1 ,2,3,©3 ,4
©1 ,1,2,3,3,4,©4
1,©1 ,2,3,3,4,©4 ,5

The regular visual pattern translates into periodic behavior of t2. In particular, t2 =
1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, . . .. If we conjecture that this pattern continues, we may extract
from t2 the simpler set of linear recursions satisfied by c2

c2(2n) = 1 + c2(2n− 1), (3)

c2(2n+ 1) = 1 + c2(2n− 1), (4)

from which the description of c2 in our table and properties such as (4) and (5) of c1 may
easily be established. One might conjecture (wishfully) that a clock sequence that repeats
itself continues to do so. Unfortunately, the clock of c7 already furnishes a counterexam-
ple, repeating a portion of itself, and then wandering off into apparent aperiodic behavior.
However, when a ck does behavior in a regular, if perhaps complicated, fashion, clock se-
quences allow us to uncover this hidden structure. To search for this structure in a given
ck, we can plot the phase portrait of the associated clock sequence. Some sequences can
yield visually appealing lengthy periodic behavior. The phase portraits showing the “beat”
(the clock) of c16, c260, and c138 appear in Figures 1-3. Each of these phase portraits was
drawn by computing the first ten thousand terms of the sequence and the associated clock
sequence. Then, the next ten thousand terms of the associated clock sequence were plotted
as points (tk(n), tk(n + 1)). If the clock has become periodic by this point, revealing the
underlying structure of the sequence, the phase portrait then reveals a closed orbit such as
those in Figures 1-3. On the other hand, if the “beat” is still irregular, no apparent order is
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Figure 1: The ‘beat’ of c16.

discernable in the phase portrait. Once the underlying structure is revealed, we may make
conjectures concerning equivalences with known sequences or conjectures about the behavior
of unknown sequences. These conjectures are then often easily proved (although when the
period is long, the proof is tedious). As an easy example we have

Proposition 6. c4(n) = b
n+1

2
c.

Proof. It is sufficient to prove that

c4(n) = b
n+ 1

2
c.

We may easily verify that this is true for n = 1 to n = 6. Now, assume it is true for
k = 1 . . . n. Consider c4(n+ 1). We must show

c4(n+ 1) = b
n+ 2

2
c.

But,

c4(n+ 1) = c4(4c4(n) mod n) + c4(n+ 1− 4c4(n) mod n).

By hypothesis

c4(n) = b
n+ 1

2
c,

and hence

c4(n+ 1) = c4(4b
n+ 1

2
c mod n) + c4(n+ 1− 4b

n+ 1

2
c mod n).
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Figure 2: The ‘beat’ of c260.

But, 4bn+1

2
c mod n is 0 if n is even and 2 if n is odd. So,

c4(n+ 1) = c4(1) + c4(n) = 1 + b
n+ 1

2
c,

for n even and

c4(n+ 1) = c4(2) + c4(n− 1) = 1 + b
n

2
c,

for n odd. From which it follows directly that

c4(n+ 1) = b
n+ 2

2
c

as desired.

Note that we implicitly used the clock sequence in this proof. In fact, the result can be
restated as a result on the periodicity of t4.
Randomly searching for k-sequences with the nice behavior of c2, c4 or c260, we develop

the feeling that many k-sequences are in fact irregular. To get a broader picture, we compute
a “bifurcation diagram” for the ck. For each k, we compute the first 5000 terms, of both ck

and tk. Then, we compute the density of tk in the interval [0, 2500]. Finally, we plot the
negative log of this density versus k. Those sequences with highly ordered clocks, and hence a
clear underlying structure, appear as peaks in this plot. Those with an irregular “beat” map
roughly to zero. The bifurcation diagram for k ranging from one to one-thousand appears in
Figure 4. Order appears to decrease with increasing k. Also the frequency of highly-ordered
sequences appears to decrease with increasing k.
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Figure 3: The ‘beat’ of c138.

5 Open Questions and More Generalizations

We have just scratched the surface of k-sequences. Many open questions and further gener-
alizations remain. One particularly intriguing puzzle concerns irregular sequences such as c7

and c13. Do the clocks of sequences such as c7 or c13 ever become periodic or do they always
beat irregularly? Does ck(n)/n tend to a limit for these sequences? Another question con-
cerns sequences with “missing” numbers such as c11. Computation reveals that c11 misses
11, 29, 33, 37, and 39. Does c11 miss infinitely many integers? What is the sequence of
integers missed? Yet another less precise question concerns order. Is there a k-sequence that
becomes irregular after a long period of regularity? (The reader may wish to examine c204

which exhibits the opposite behavior.) We may also ask: What other known sequences are
lurking among the k’s? Finally, we note that several authors have generalized the Conway-
Hofstadter sequence in directions other than the one presented here. The generalization
presented here however can be applied to those offered by Mallows [2], Newman [6], or Pinn
[7]. For example, Mallows [2], introduces the sequence

c(n) = c(c(n− 2)) + c(n− c(n− 2)) (5)

as a generalization of the Conway-Hofstadter sequence. This generalization bases the next
term of the sequence on the second to last term of the sequence. Multiplying the c(n − 2)
terms by k and computing modulo n − 1, is a natural generalization in the spirit of the k-
sequences introduced here. We hope the reader will be intrigued by the preliminary results
presented in this paper and will be inspired to uncover new facts about the ck’s or generalize
the work of Mallows, Newman, and Pinn, in the direction suggested here.
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Figure 4: The bifurcation diagram for the ck’s. Those ck’s whose order is apparent by
examining tk appear as peaks.
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