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Abstract

We define a family of meta-Fibonacci sequences. For each sequence in the family,
the order of the of the defining recursion at the nth stage is a variable r(n), and the
nth term is the sum of the previous r(n) terms. Given a sequence of real numbers that
satisfies some conditions on growth, there is a meta-Fibonacci sequence in the family
that grows at the same rate as the given sequence. In particular, the growth rate of
these sequences can be exponential, polynomial, or logarithmic. However, the possible
asymptotic limits of such a sequence are restricted to a class of exponential functions.
We give upper and lower bounds for the terms of any such sequence, which depend
only on r(n). The Narayana-Zidek-Capell sequence is a member of this family. We
show that it converges asymptotically.

1 Introduction

We consider meta-Fibonacci sequences, by which we mean a sequence given by a Fibonacci-
type recursion, where the recursion varies with the index. D. Hofstadter defined the first
meta-Fibonacci sequence [10, p. 137]), which appears as A005185 in Sloane’s Encyclopedia
of Integer Sequences. R. Guy posed some questions about this sequence, which remain
open [9]. J. Conway [14], B. Conolly [4] and S. Tanny [17] proposed similar sequences;
and good results about these sequences have been obtained. We define a new family of
meta-Fibonacci sequences defined by variable order recursions. This family is considerably
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different from previously described families of meta-Fibonacci sequences [5, 12, 2] both in
terms of its definition and behavior.

We define the family of meta-Fibonacci sequences that is the subject of this paper. The
regular Fibonacci numbers are of course constructed by adding the previous two terms of
the sequence: fn = fn−1 + fn−2 (A000045). Adding the previous three terms yields the
Tribonacci numbers : tn = tn−1 + tn−2 + tn−3 (A000073). If we add the previous r terms, we
obtain the r-generalized Fibonacci numbers (“r-bonacci numbers”): fr,n = fr,n−1+· · ·+fr,n−r
(A092921). In our family, we let r vary as a function of n. We call the resulting numbers
variable-r meta-Fibonacci numbers. Let N denote the non-negative integers and Z+ denote
the positive integers.

Definition 1.1. Let r : N → Z+ such that r(0) = 1, and r(n) ≤ n for all n ≥ 1. Define

b(n) =

r(n)
∑

k=1

b(n− k), n ≥ 1,

with initial condition b(0) = 1. We call the sequence b(n) a variable-r meta-Fibonacci
sequence, and say that r(n) generates b(n).

For brevity, we call such a b(n) an r(n)-bonacci sequence. Any such sequence is a non-
decreasing sequence of positive integers. It is easy to show that any r(n)-bonacci sequence
omits infinitely many positive integers. Additionally, distinct sequences, r(n), generate dis-
tinct sequences, b(n). Thus, we have defined an uncountable family of meta-Fibonacci se-
quences, in one-to-one correspondence with sublinear sequences of positive integers.

The focus of this paper is the growth of r(n)-bonacci sequences, b(n). We consider long-
term growth. That is, the order of b(n) in terms of the Landau symbols O, Ω, and Θ. We also
ask about short-term growth. That is, the value of the ratio of successive terms b(n)/b(n−1).
The long-term growth is characterized by a wide range of possible behaviors. The short-term
growth is highly irregular in general.

In this paper, we denote integer-valued sequences by Roman letters, and other sequences
by Greek letters. Given a sequence of real numbers σ(n) that satisfies some mild condi-
tions on growth, there is an r(n)-bonacci sequence b(n), which in the long term grows at
approximately the same rate as σ(n). In particular, b(n) is Θ(σ(n)).

Theorem 1. Let σ(n) be a sequence of real numbers such that for all n sufficiently large,
σ(n) is non-decreasing, σ(n) ≥ 1, and

σ(n+ 1)/2 ≤ σ(n) ≤ 2n−1.

Then there is a variable-r meta-Fibonacci sequence b(n) such that for all n sufficiently large,

σ(n)/2 < b(n) ≤ σ(n).

The conditions on σ(n) are mild enough that it is possible for σ(n) to be exponential,
polynomial, or logarithmic (see Corollary 3.10). In contrast, the Fibonacci sequence (and
the r-bonacci sequences) grow at an exponential rate. The growth rate of many previously
described meta-Fibonacci sequences is linear when it is known [2, 4, 14, 17].
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Consider the growth rate of the ordinary Fibonacci numbers. It is well known that the
short-term growth rate converges to the Golden Section: (1 +

√
5)/2. Hence, the long-term

growth rate is exponential. Simiarly, the short-term growth rate of the r-bonacci numbers
converges. Let αr denote the growth rate of the r-bonacci numbers: fr,n/fr,n−1 → αr [15].
It is well-known that 1 < αr < 2 for all r ≥ 2. For technical reasons, we define α1 = 1.
The short-term growth rate of an r(n)-bonacci sequence does not necessarily converge (see
Example 2.4). When it does converge, the only possible limits are 2 or αr for some r ≥ 1.
Moreover, it converges to αr if and only if r(n) = r for all n sufficiently large. It follows that
the class of sequences σ(n) such that b(n) ∼ σ(n) is restricted.

Theorem 2. Let σ(n) be a sequence of real numbers such that limn→∞ σ(n)/σ(n− 1) exists
and is non-zero. If

lim
n→∞

b(n)

σ(n)
= L

and 0 < L <∞, then

lim
n→∞

σ(n)

σ(n− 1)
= 2, or lim

n→∞

σ(n)

σ(n− 1)
= αr

for some r ≥ 1 and r(n) = r for all n sufficiently large.

Variable-r meta-Fibonacci numbers were originally discovered by the author while study-
ing dynamical systems [7], specifically the dynamics of complex polynomials. One can con-
sider closest return times, most intuitively, the iterates of a given point under some map that
are closer to the point than any previous iterate. Certain generalized closest return times of
polynomials are extended variable-r meta-Fibonacci numbers (see Section 5) [8]. This result
generalizes the fact that there exist complex polynomials whose generalized closest return
times are the ordinary Fibonacci numbers [1, Ex. 12.4].

We begin with a variety of examples of r(n)-bonacci sequences in Section 2. We then
compare and contrast their behavior to the behavior of other families of meta-Fibonacci
sequences.

We study the asymptotics of r(n)-bonacci sequences in Section 3. The growth rate of
any r(n)-bonacci sequence is at most exponential. We give a condition for b(n) to grow
exponentially. We prove Theorems 1 and 2.

We derive estimates for b(n) in terms of r(n) in Section 4. We give an iterative technique
for finding upper and lower bounds for b(n)/b(n− 1). We compute upper and lower bounds
for b(n) that do not depend on the previous terms of the sequence. We observe that the
Narayana-Zidek-Capell numbers (A002083) are r(n)-bonacci numbers. We show that they
converge asymptotically to c2n−3 for some positive real number c.

In Section 5, we define a generalization of the r(n)-bonacci numbers by taking b(n)
as a sequence defined on all integers. This generalization has applications in the field of
polynomial dynamics.
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2 Examples

Variable-r meta-Fibonacci sequences are considerably different from any previously described
meta-Fibonacci sequence. We give several examples of several r(n)-bonacci sequences. Our
goal is that the reader will develop some intuition for the sequences, particularly for how
b(n) depends on r(n). We might hope to find a closed-form expression for a general b(n) or
an expression that depends only on r(1), . . . , r(n). The examples of this section show that
we can find a closed form in some cases, but in general it appears to be a difficult problem.

The main questions we pose in this paper are about the growth rate of b(n), in both the
long term and the short term. The long-term growth is characterized by a wide range of
possible behaviors. The short-term growth is highly irregular in general. In this section, we
give specific examples of these phenomena. In Section 3, we give general results. Finally,
we recall some other meta-Fibonacci sequences, most importantly other families of meta-
Fibonacci sequences. We compare and contrast them with r(n)-bonacci sequences.

The proof of any claim made in the examples below has been left as an exercise.
First, we give the most elementary examples. If r(1) = 1 and r(n) = 2 for all n ≥ 2,

then b(n) = fn+1, where (fn) is the usual Fibonacci sequence (A000045). If r(n) = r ≥ 2
for all n sufficiently large, then up to re-indexing, the tail of b(n) is a generalized r-bonacci
sequence (A092921) for some initial conditions.

If r(n) = 1 for all n, then b(n) = 1 for all n. If r(n) = 1 for all n large, then b(n) is
eventually constant. While this is a fairly trivial example, it demonstrates that the lower
bound for growth in the r(n)-bonacci family is constant. That is, there are r(n)-bonacci
sequences that are Θ(1). Conolly defined a meta-Fibonacci sequence by

K(n) = K(K(n− 1)) +K(K(n− 2)), n > 2,

K(1) = K(2) = 1 [4, p. 127]. He showed that K(n) = 2 for all n > 2. Thus, there is at least
one previously described meta-Fibonacci sequence that is eventually constant. To the best of
the author’s knowledge, this is the only previously described meta-Fibonacci sequence that
does not grow at a polynomial rate. We can also generalize this example by taking r(n) = 1
for many n. This makes the short-term growth of b(n) small, and results in slow long-term
growth (see Example 2.7).

At the other extreme, in the following example we take r(n) as large as allowed. The
result is that b(n) is maximally large (see Proposition 3.4).

Example 2.1. Let r(n) = n for n ≥ 1, then b(n) = 2n−1 for n ≥ 1:

n 0 1 2 3 4 5 6 7 8 9 10
r(n) 1 1 2 3 4 5 6 7 8 9 10
b(n) 1 1 2 4 8 16 32 64 128 256 512

Doubling is a major theme in the behavior of b(n). The following example shows that
b(n) can more than double for infinitely many n. Thus, the short-term growth can be rapid
for infinitely many n. However, in order to make b(n)/b(n− 1) large, we must take r(n− 1)
small. Therefore, the long-term growth is much slower than in the previous example.
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Example 2.2. For n ≥ 1, let r(n) = n if n is even, and r(n) = 1 if n is odd:

n 0 1 2 3 4 5 6 7 8 9 10
r(n) 1 1 2 1 4 1 6 1 8 1 10
b(n) 1 1 2 2 6 6 18 18 54 54 162

It is straightforward to show that b(n) = 3b(n− 1) for n ≥ 4 and even.

The following example shows that b(n)/b(n− 1)→ 2 occurs for non-constant sequences.

Example 2.3. For n ≥ 2, let r(n) = n for n even, and r(n) = n− 1 for n odd:

n 0 1 2 3 4 5 6 7 8 9
r(n) 1 1 2 2 4 4 6 6 8 8
b(n) 1 1 2 3 7 13 27 53 107 213

For n > 2, b(n) = 2b(n − 1) + 1 for n even, and b(n) = 2b(n − 1) − 1 for n odd. Hence,
limn→∞ b(n)/b(n− 1) = 2.

The following example shows that the short-term growth, the sequence (b(n)/b(n− 1)),
need not converge.

Example 2.4. For n ≥ 2, let r(n) = 2 for n even, and r(n) = 3 for n odd:

n 0 1 2 3 4 5 6 7 8 9
r(n) 1 1 2 3 2 3 2 3 2 3
b(n) 1 1 2 4 6 12 18 36 54 108

It follows that b(n)/b(n− 1) = 2 for n > 2 and odd, and b(n)/b(n− 1) = 3/2 for n > 2 and
even.

The following example shows how irregularly b(n) can grow in the short-term. We take
a very irregular function for r(n), and generate a b(n) that grows irregularly.

Example 2.5. Let r(0) = 1, and r(n) = ϕ(n) for n > 0, where ϕ(n) is the Euler totient
function (A000010):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
r(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16
b(n) 1 1 2 3 7 10 24 44 90 168 350 652 1352 2656 5336 10628 21304

From the above examples, we can see that a closed form for b(n) can be found in some
cases. However, finding a closed form in general appears to be a difficult problem. Even
the more modest goal of finding an expression for b(n) that depends only on r(n) seems
difficult. Although, we can find upper and lower bounds for b(n) that depend only on r(n)
(see Theorem 4.6).

The next three sequences are examples of the long-term behavior of b(n). They show
that through careful choice of r(n), we can make b(n) grow at a predetermined rate (see
Theorem 1).
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Example 2.6. Choose r(n) so that
√
3
n
/2 < b(n) ≤

√
3
n
for all n ≥ 0:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
r(n) 1 1 2 3 4 1 2 3 4 1 2 3 4 5
b(n) 1 1 2 4 8 8 16 32 64 64 128 256 512 1024

So b(n) is Θ(
√
3
n
).

By taking r(n) = 1 frequently, we can have linear growth for b(n).

Example 2.7. For n ≥ 2, let r(n) = 2 if n = 2k for some k ∈ N, and r(n) = 1 otherwise:

n 0 1 2 3 4 5 6 7 8 9
r(n) 1 1 2 1 2 1 1 1 2 1
b(n) 1 1 2 2 4 4 4 4 8 8

It is easy to show that n/2 < b(n) ≤ n for n ≥ 1. That is, b(n) is Θ(n).

We can construct b(n) that grows logarithmically. No previously published meta-Fibonacci
sequence grows logarithmically.

Example 2.8. For n ≥ 2, let r(n) = 2 if n = 22k

for some k ∈ N, and r(n) = 1 otherwise:

n 0 1 2 4 16 256
r(n) 1 1 2 2 2 2
b(n) 1 1 2 4 8 16

We have log2 n < b(n) ≤ 2 log2 n for n > 1. Hence, b(n) is Θ(log2 n).

Similarly, we can construct examples that are Θ(log2 log2 n), etc. Thus, b(n) can grow
extremely slowly, even when it is not eventually constant.

We now recall some previously defined meta-Fibonacci sequences. We take Hofstadter’s
Q-sequence (A005185, [10, p. 137]) as a typical example. Let Q(1) = Q(2) = 1 and

Q(n) = Q(n−Q(n− 1)) +Q(n−Q(n− 2)), n > 2.

The first few terms are given below:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Q(n) 1 1 2 3 3 4 5 5 6 6 6 8 8 8 10 9 10 11 11 12

The recursion for Q(n) is “self-referential.” The order of the recursion is fixed. The
terms we add to obtain Q(n) are not necessarily the immediately previous terms. It may
happen that for some n, we add terms that are early in the sequence and thus small, so
Q(n) will be small. In contrast for an r(n)-bonacci sequence b(n), an “external variable,”
r(n), controls the recursion. The order of the recursion is not generally fixed. We always
add the immediately previous r(n) terms, so b(n) is always the sum of the greatest of the
preceding terms. These differences result in Q(n) having much more complicated short-term
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behavior than b(n). The short-term behavior of Q(n) has been described as “chaotic” [10]
(for instance Q(16) < Q(15)). In contrast, b(n) is non-decreasing.

Although the Hofstadter sequence is the oldest meta-Fibonacci sequence, some funda-
mental questions about it remain open. For example, is it well defined? Observe that it
is well-defined if and only if Q(n) ≤ n for all n > 2. From this observation, we see that
the fundamental question about Q(n) is really a question about its growth rate; if it is well
defined, then its maximum possible growth rate is linear. In fact, it appears from numerical
evidence that Q(n)/n→ 1/2 [9]. Therefore, it seems that the long-term behavior of Q(n) is
tame.

This observation illustrates a general property of self-referential sequences, including all
previously published meta-Fibonacci sequences. We can compute an upper bound for the
growth of any self-referential sequence from its recursion. For example, let s(n) be a sequence
satisfying some self-referential recursion of the form

s(n) = s(n+ c− s(n− d)) + (other terms),

for some c, d ∈ Z with initial condition(s) s(0), . . . . It follows that

s(n) ≤ n+ c+ d.

In particular, s(n) must be O(n).
In light of this property, it should not be surprising that most previously described meta-

Fibonacci sequences grow linearly. For instance, the Tanny sequence (A006949, [17]):

T (n) = T (n− 1− T (n− 1)) + T (n− 2− T (n− 2)), n > 2,

T (0) = T (1) = T (2). Our estimate gives T (n) ≤ n. In fact, it is known that T (n)/n→ 1/2
[17, Prop. 2.7].

For an r(n)-bonacci sequence b(n), this argument is not useful. It implies we must have
n − r(n) ≥ 0, which is built in to the definition of r(n). Therefore, we must use other
methods to estimate the growth rate of b(n).

Since the r(n)-bonacci sequences are a family, we compare and contrast the family to
known meta-Fibonacci families. The r-bonacci sequences can be regarded as a family of
meta-Fibonacci sequences parameterized by r ≥ 2 (since r = 1 gives a constant sequence).
It is a proper subfamily of the r(n)-bonacci family. This family is quite well understood.
Every sequence in the family grows exponentially, and a closed form its terms is known [15].

J. Callaghan, J. Chew and S. Tanny studied a family of meta-Fibonacci sequences pa-
rameterized by a > 0, k > 1 [2]:

Ta,k(n) =
k−1
∑

i=0

Ta,k(n− i− a− Ta,k(n− i− 1)), n > a+ k, k ≥ 2

with Ta,k(n) = 1 for 1 ≤ n ≤ a + k. This family generalizes the Tanny sequence (A006949,
[17]). Sub-families of this family have also been considered [11, 12]. For all a and all odd k,
the growth rate of sequences in this family is linear [2, Cor. 5.14]:

lim
n→∞

Ta,k(n)

n
=

k − 1

k
.
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In previously described meta-Fibonacci sequences, three orders of growth have been
found: exponential, linear, and constant. Moreover, all of the sequences in each of the
above meta-Fibonacci families have the same order of growth. We have given examples of
all of these orders of growth and more in the r(n)-bonacci family. Part of the explanation
for this difference is that both of the above families contain only countably many sequences.
In contrast, there are uncountably many r(n)-bonacci sequences. When we define an r(n)-
bonacci sequence, we get to make countably many choices for r(n). Each choice can be made
in n(≥ 2) ways. These choices can be made recursively, so b(n) can be defined recursively to
satisfy specified behavior on its growth. It follows that we can construct a wide variety of
growth in the family (see Theorem 1).

R. Dawson, G. Gabor, R. Nowakowski and D. Wiens defined a family of meta-Fibonacci
sequences by a random process [5]. A (p, q)-sequence (Fn) is defined as follows: Fix positive
integers p and q and choose real numbers a1, · · · , ap. Set Fn = an with probability one
for n ≤ p. Let Fn+1 =

∑q
k=1 Fjk for n ≥ p, where the jk are randomly chosen (with

replacement) from (1, 2, · · · , n) with the uniform distribution. Note that (p, q)-sequences
are extremely general; any sequence defined by an order q linear recursion with positive
integer coefficients can occur as a (p, q)-sequence. This includes all previously published
meta-Fibonacci sequences. The authors did not address the question of the possible values
of (Fn), instead they asked about its average value. The expected value of Fn is a polynomial
in n of degree q − 1 [5, Thm. 1]. We propose the following interpretation of this result: a
“typical” meta-Fibonacci sequence defined by a recursion of fixed order grows at a polynomial
rate. Under this interpretation, there are r(n)-bonacci sequences that grow at the rate of a
typical meta-Fibonacci sequence, but there are also r(n)-bonacci sequences that grow faster
or slower.

In many ways, the family of (p, q)-sequences is the meta-Fibonacci family which is most
similar to the r(n)-bonacci family: both families are uncountable; they properly contain the
r-bonacci numbers; there are sequences in both families that grow at different rates (the
Fibonacci sequence, the Tanny sequence, and an eventually constant sequence can all occur
as (p, 2)-sequences). However, it is not always possible to make meaningful comparisons
between the two families because (p, q)-sequences are random and r(n)-bonacci sequences
are deterministic.

3 Asymptotic Growth

In this section, we examine the asymptotic growth of b(n). We show more precisely the
variety of different growth rates that b(n) can have. Here, the r(n)-bonacci family is charac-
terized by flexibility in its short-term growth. This flexibility leads to short-term oscillation,
and the possible asymptotic limits are quite restricted. On the other hand, a wide range of
possible long-term growth rates are possible.

After some preliminaries, we consider the short-term growth of b(n). The key question
is about doubling: how does b(n)/b(n− 1) compare to 2? We give an answer based on r(n),
which is the foundation of the rest of our results. We show that in the long term, no b(n)
can more than double. We give a condition for b(n) to grow exponentially.
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Given a sequence σ(n) that satisfies some mild conditions on growth, there is an r(n)-
bonacci sequence that grows at the same rate as σ(n). This shows some of the broad range
of possible growth rates that occur in the r(n)-bonacci family. In contrast, the asymptotic
limits of b(n) are restricted. If b(n) ∼ σ(n), then σ(n) grows like an r-bonacci sequence or
2n.

In this section, let b(n) be a variable-r meta-Fibonacci sequence generated by r(n). We
state elementary conclusions about the limiting behavior of b(n).

Lemma 3.1. We have lim supn→∞ r(n) = 1 if and only if b(n) is eventually constant.

Lemma 3.2. We have lim supn→∞ r(n) > 1 if and only if limn→∞ b(n) =∞.

Thus, an r(n)-bonacci sequence converges if and only if it is eventually constant. We
consider sequences that are not eventually constant.

We examine the short-term growth of b(n). For any given n, the larger r(n) is, the larger
b(n) will be. However, it is ∆r(n) = r(n) − r(n − 1) that has the greatest influence on the
growth rate. The following lemma is our basic estimate; we give a condition for b(n) to
double.

Lemma 3.3. If ∆r(n) = 1 for some n ≥ 1, then b(n)/b(n− 1) = 2.

Proof. We have r(n) = r(n− 1) + 1. Hence,

b(n) =

r(n)
∑

k=1

b(n− k)

= b(n− 1) +

r(n−1)+1
∑

k=2

b(n− k)

= b(n− 1) +

r(n−1)
∑

j=1

b(n− 1− j)

= 2b(n− 1).

We give a universal upper bound for b(n)—one which does not depend on r(n).

Proposition 3.4. If b(n) is an r(n)-bonacci sequence, then b(n) ≤ 2n−1 for all n ≥ 1.

Proof. Let r̂(n) = n for all n ≥ 1, and let b̂(n) be the r(n)-bonacci sequence generated by
r̂(n). By Lemma 3.3, b̂(n) = 2n−1 for all n ≥ 1. Note that b(0) = b̂(0) = 1. Inductively, we
have

b(n) =

r(n)
∑

k=1

b(n− k) ≤
n
∑

k=1

b(n− k) ≤
r̂(n)
∑

k=1

b̂(n− k) = b̂(n) = 2n−1.
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This bound shows that all r(n)-bonacci sequences are O(2n). Hence, their order is at
most exponential. We compare the growth rate of b(n) to the growth rate of the r-bonacci
numbers.

Proposition 3.5. Let b(n) be an r(n)-bonacci sequence. If r ≤ lim infn→∞ r(n) for some
r ∈ Z+, then b(n) is Ω(αn

r ).

Proof. Fix N so that r(n) ≥ r for all n > N . Let r̂(n) = r(n) for n = 0, . . . , N , and r̂(n) = r
for n > N . Let b̂(n) be the r(n)-bonacci sequence generated by r̂(n). For n large, b̂(n)
satisfies the r-bonacci recursion, so its tail is a generalized r-bonacci sequence with initial
conditions b̂(N + 1), . . . , b̂(N + r). Hence, b̂(n) is Θ(αn

r ). It is clear that b̂(n) ≤ b(n) for all
n. Therefore, b(n) is Ω(αn

r ).

We give a condition for b(n) to grow exponentially.

Corollary 3.6. If lim infn→∞ r(n) ≥ 2, then b(n) grows exponentially.

Proof. By Proposition 3.5, b(n) is Ω(αn
r ) for some r ≥ 2. It is known that αr > 1 for r ≥ 2

[15].

We extend Lemma 3.3 to cover all cases of ∆r(n). This yields information about the
relative magnitude of b(n)/b(n− 1) and 2. The following is the main lemma in this paper:

Lemma 3.7. For all n ≥ 1 the following hold:

a. b(n)/b(n− 1) = 1 if and only if ∆r(n) = 1− r(n− 1);

b. 1 < b(n)/b(n− 1) < 2 if and only if 1− r(n− 1) < ∆r(n) < 1;

c. b(n)/b(n− 1) = 2 if and only if ∆r(n) = 1;

d. b(n)/b(n− 1) > 2 if and only if ∆r(n) > 1.

Proof. We will prove the “if” part of each case. Case a is equivalent to r(n) = 1, so it is
clear. Case c is Lemma 3.3. In case b, we have r(n) < r(n− 1) + 1. Thus,

b(n) =

r(n)
∑

k=1

b(n− k) <

r(n−1)+1
∑

k=1

b(n− k) = 2b(n− 1),

where the last equality follows from Lemma 3.3. Case d is similar. The “only if” directions
follow by considering the above cases.

We use this result on the short-term growth of b(n) to study the long-term growth of
b(n).

Corollary 3.8. If lim sup
n→∞

b(n)

b(n− 1)
< 2, then r(n) is eventually constant.
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Proof. By Lemma 3.7.b for all n sufficiently large, r(n)− 1 < r(n− 1). It follows that for n
large, r(n) is a non-increasing sequence of positive integers, so it is eventually constant.

Lemma 3.9. For any r(n)-bonacci sequence b(n), we have

lim inf
n→∞

b(n)

b(n− 1)
≤ 2.

Proof. Towards a contradiction, suppose not. By Lemma 3.7.d, for all n sufficiently large,
∆r(n) > 1. It follows that n− r(n) < (n− 1)− r(n− 1) for n large. Thus, (n− r(n)) is a
strictly decreasing sequence of integers for n large. Therefore, N − r(N) < 0 for some N ,
contrary to r(n) ≤ n by Definition 1.1.

We now demonstrate the wide range of asymptotic growth rates that are found in the r(n)-
bonacci family. For a sequence of real numbers σ(n) that satisfies the following conditions
on growth, we can construct an r(n)-bonacci sequence b(n) that grows at the same rate as
σ(n) in some sense. In particular, b(n) is Θ(σ(n)).

Theorem 1. Let σ(n) be a sequence of real numbers such that the following hold for all n
sufficiently large:

1. σ(n) is non-decreasing;

2. σ(n) ≥ 1;

3. σ(n) ≤ 2n−1;

4. σ(n) ≥ σ(n+ 1)/2.

Then there is an r(n)-bonacci sequence b(n) such that for all n sufficiently large,

σ(n)/2 < b(n) ≤ σ(n).

Proof. We construct b(n) by using Lemma 3.7 to choose r(n) appropriately. Take N large
enough so that σ(n) satisfies all 4 of the above conditions for all n ≥ N . We have 1 ≤
σ(N) ≤ 2N−1 by Conditions 2 and 3, so σ(N)/2 < 2m ≤ σ(N) for some m < N . Let
r(n) = n for n = 1, . . . ,m, and r(n) = 1 for n = m + 1, . . . , N . Lemma 3.7 implies that
b(N) = b(m) = 2m, so b(N) satisfies the desired bounds.

Suppose now that for some n > N we have defined the sequence up to b(n− 1), so that
σ(n− 1)/2 < b(n− 1) ≤ σ(n− 1). We will choose r(n) so that b(n) also satisfies the desired
bounds.

If b(n − 1) > σ(n)/2, let r(n) = 1, so b(n) = b(n − 1) and the lower bound is obviously
satisfied. For the upper bound, b(n) = b(n− 1) ≤ σ(n− 1) ≤ σ(n) by Condition 1.

Otherwise, we have b(n − 1) ≤ σ(n)/2. Let r(n) = r(n − 1) + 1. By Lemma 3.3,
b(n) = 2b(n− 1) ≤ σ(n). Also, b(n) = 2b(n− 1) > σ(n− 1) ≥ σ(n)/2 by Condition 4.

11



Examples 2.6, 2.7 and 2.8 show the b(n) given by the above construction for σ(n) =√
3
n
, σ(n) = n, and σ(n) = 2 log2 n respectively. The conditions on σ(n) are mild. The

first two conditions reflect basic properties of the growth of b(n). The last two say that σ(n)
does not more than double in either the long term or the short term respectively. Conditions
1–3 are necessary (by Definition 1.1 and Proposition 3.4). Condition 4 is only sufficient and
could be weakened. We note three common classes of sequences that can be σ(n).

Corollary 3.10. Let γ ∈ R. The following sequences satisfy the hypotheses of Theorem 1:

1. σ(n) = γn (1 ≤ γ < 2);

2. σ(n) = nγ (γ ≥ 0);

3. σ(n) = logγ n (γ > 1).

Suppose σ(n) satisfies the conditions of Theorem 1 and σ(n) → ∞. If we allow greater
oscillation from b(n), we can construct uncountably many r(n)-bonacci sequences that grow
at the same rate as σ(n).

Corollary 3.11. If σ(n) is a sequence that satisfies the hypotheses of Theorem 1 and
limn→∞ σ(n) = ∞, then there are uncountably many r(n)-bonacci sequences b(n) such that
for all n sufficiently large,

σ(n)/4 < b(n) ≤ σ(n).

Proof. The details of the proof are essentially the same as in Theorem 1. Suppose that we
have defined the sequence up to b(n− 1). If b(n− 1) > σ(n)/2, let r(n) = 1. If b(n− 1) ≤
σ(n)/4, let r(n) = r(n − 1) + 1. The interesting case is when σ(n)/4 < b(n − 1) ≤ σ(n)/2.
Either of the choices r(n) = 1 or r(n) = r(n − 1) + 1 will result in a b(n) that satisfies the
desired bounds. Since σ(n)→∞, there will be countably many n where we have to make a
choice.

We now turn to the question of asymptotic limits of b(n). The possible limits for the
short-term growth of b(n), that is the sequence (b(n)/b(n− 1)), are restricted. One possible
limit is αr, the growth rate of the r-bonacci numbers.

Lemma 3.12. If limn→∞ r(n) = r, then

lim
n→∞

b(n)

b(n− 1)
= αr.

Proof. For n sufficiently large, b(n) satisfies the r-boncacci recursion or is eventually constant.

If r(n) is not eventually constant, the only possible limit for the short-term growth is 2.

Lemma 3.13. If the sequence (b(n)/b(n−1)) converges and r(n) is not eventually constant,
then

lim
n→∞

b(n)/b(n− 1) = 2.
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Proof. Suppose lim supn→∞ b(n)/b(n− 1) < 2. By Corollary 3.8, limn→∞ r(n) = r for some
r ∈ Z+, contrary to assumption. Thus, lim supn→∞ b(n)/b(n− 1) ≥ 2. By Lemma 3.9,
lim infn→∞ b(n)/b(n− 1) ≤ 2. Therefore, the only possible limit for (b(n)/b(n− 1)) is 2.

It is known that αr → 2 [16]. Hence, if the short-term growth rate of b(n) converges, it
converges to some αr, or the limiting value of the αr. This restriction on short-term growth
leads to a restriction on long-term growth. Particularly, b(n) can converge asymptotically to
a restricted class of sequences. Although b(n) can grow at the same rate as a wide variety of
sequences, b(n) is a good approximation of a limited class of sequences. While b(n) may grow
at the same rate overall as some σ(n), in general b(n) oscillates a great deal. For instance,
the sequences constructed by Theorem 1 oscillate between σ(n)/2 and σ(n). This oscillation
severely restricts the possible asymptotic limits of b(n).

Theorem 2. Let σ(n) be a sequence of real numbers such that limn→∞ σ(n)/σ(n− 1) exists
and is non-zero. If

lim
n→∞

b(n)

σ(n)
= L

with 0 < L <∞, then

lim
n→∞

σ(n)

σ(n− 1)
= 2, or lim

n→∞

σ(n)

σ(n− 1)
= αr

for some r ≥ 1 and r(n) = r for all n sufficiently large.

Proof. A simple computation gives

b(n)

σ(n)
=

b(n)

b(n− 1)

b(n− 1)

σ(n− 1)

σ(n− 1)

σ(n)
.

Taking limits we find that

L =

(

lim
n→∞

b(n)

b(n− 1)

)

(L)

(

lim
n→∞

σ(n− 1)

σ(n)

)

lim
n→∞

σ(n)

σ(n− 1)
= lim

n→∞

b(n)

b(n− 1)
.

The Theorem follows from Lemmas 3.12 and 3.13.

4 Estimates on Growth

In this section, we derive estimates for b(n) in terms of r(n). We gvie a technique to
iteratively compute estimates. We recall how one determines the growth rate of r-bonacci
sequences. We generalize this technique to cover r(n)-bonacci sequences. We find upper
and lower bounds for the short-term growth of r(n)-bonacci numbers. We use these bounds
to study long-term growth. We give upper and lower bounds for b(n) that depend only on
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r(1), . . . , r(n), and not the previous b(k). As an application of our estimates, we show that
the Narayana-Zidek-Capell numbers converge asymptotically. Throughout this section, let
b(n) be a variable-r meta-Fibonacci sequence generated by r(n).

We begin by outlining how one shows that the short-term growth rate of the Fibonacci
numbers converges to α2. Let α2(n) = fn/fn−1. By the defining recursion of fn,

fn
fn−1

= 1 +
fn−2

fn−1

.

We can rewrite this equation in terms of α2(n):

α2(n) = 1 +
1

α2(n− 1)
.

Let n → ∞. It follows that α2(n) → (1 +
√
5)/2 = α2. A similar argument works for the

r-bonacci numbers. However, to show convergence we use that the order of the recursion is
constant.

Now consider an r(n)-bonacci sequence b(n). Fix n such that r(n) > 1. We can start in
the same manner:

b(n)

b(n− 1)
= 1 +

r(n)
∑

k=2

b(n− k)

b(n− 1)
. (1)

In general, the ratios do not converge, but we can use (1) to estimate the growth of b(n).
It is useful to write the terms on the right-hand side as telescoping products:

b(n)

b(n− 1)
= 1 +

r(n)
∑

k=2

k−1
∏

j=1

b(n− j − 1)

b(n− j)
. (2)

Notice that we have expressed the ratio b(n)/b(n − 1) in terms of the reciprocal of the
ratio of the previous b(n− j)/b(n− j− 1). F. Dubeau used a similar fact in his study of the
growth rate of the r-bonacci numbers (αr) [6]. Generalizing Dubeau’s argument, we can use
this equation to obtain upper bounds from lower bounds and vice versa.

Lemma 4.1. If for some n > 1, we have r(n) > 1 and

λ(i) ≤ b(i)

b(i− 1)
≤ υ(i),

for i = n− r(n), . . . , n− 1, then

1 +

r(n)
∑

k=2

k−1
∏

j=1

1

υ(n− j)
≤ b(n)

b(n− 1)
≤ 1 +

r(n)
∑

k=2

k−1
∏

j=1

1

λ(n− j)
.

Our objective now is to find explicit upper and lower bounds for b(n)/b(n − 1). The
following lemma is the basis for many of our other estimates. We relate the short-term
growth of b(n) to r(n).
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Lemma 4.2. For all n ≥ 1,
b(n)

b(n− 1)
≤ r(n).

Proof. By definition,

b(n) =

r(n)
∑

k=1

b(n− k)

≤
r(n)
∑

k=1

b(n− 1) since the b(n) are non-increasing,

= r(n) b(n− 1).

The above estimate is sharp. We can let r(1) = · · · = r(n− 1) = 1 and r(n) = n for any
n > 1. Then b(1) = · · · = b(n−1) = 1, and b(n) = n, so b(n)/b(n−1) = n = r(n). From the
above Lemma, it follows that b(n) ≤ ∏n

k=1 r(k). Which implies b(n) ≤ n!. Although, from
Lemma 3.4 we know in fact that b(n) ≤ 2n−1. Therefore, while Lemma 4.2 gives a sharp
estimate of the short-term growth of b(n), in the long term it is highly inaccurate. However,
it is good enough for our purposes. We give a lower bound for b(n)/b(n− 1), which depends
only on r(n− 1).

Lemma 4.3. If r(n) > 1, then

b(n)

b(n− 1)
≥ 1 +

1

r(n− 1)
.

Proof. Since r(n) > 1, we can combine Lemmas 4.1 and 4.2 to get

b(n)

b(n− 1)
≥ 1 +

r(n)
∑

k=2

k−1
∏

j=1

1

r(n− j)
≥ 1 +

1

r(n− 1)
.

We use Lemma 4.3 to obtain a new upper bound for growth.

Lemma 4.4. If r(k) > 1 for k = n− r(n), . . . , n, then

b(n)

b(n− 1)
≤ 1 +

r(n)
∑

k=2

k−1
∏

j=1

r(n− j)

1 + r(n− j)
< r(n).

Proof. Combine Lemmas 4.3 and 4.1.

Note that we have obtained a better estimate than we started with. One could certainly
find even better estimates. One method is to continue to use Lemma 4.1 to iterate the
bounds. Dubeau used a similar technique to good effect in his study of the αr [6].
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Definition 4.5. For n ≥ 1, define

ρ(n) = 1 +
1

r(n− 1)
if r(n) > 1,

and ρ(n) = 1 otherwise.

We give an estimate for b(n) that depends only on ρ(k) (k ≤ n), that is r(1), . . . , r(n).

Theorem 4.6. For all n ≥ 1,

n
∏

k=1

ρ(k) ≤ b(n) ≤ 1 +

r(n)
∑

k=2

k−1
∏

j=1

1

ρ(k)
.

Proof. Since b(0) = 1, b(n) = b(n)/b(0). So we can write b(n) as a telescoping product:

b(n) =
n
∏

k=1

b(k)

b(k − 1)
.

It follows from Lemma 4.3 that ρ(k) ≤ b(k)/b(k − 1) for all k. Applying Lemma 4.1 gives
the upper bound.

In the late 1960s, T. V. Narayana, J. Zidek and P. Capell studied the combinatorics of
knock-out tournaments. The Narayana-Zidek-Capell sequence (A002083) gives the number
of knock-out tournaments with n players [3]. According to G. Kreweras, this sequence was
originally discovered by M. A. Stern in 1838 [13]. This sequence is an r(n)-bonacci sequence.
As an application of the above techniques, we solve an open problem. We show that the
Narayana-Zidek-Capell sequence converges asymptotically. We start with a fairly weak upper
bound; the ratios of successive terms of the sequence are bounded above by 2. We obtain a
lower bound that is sufficiently strong to show asymptotic convergence.

Example 4.7 (The Narayana-Zidek-Capell sequence). Let r(0) = r(1) = 1, and
r(n) = bn/2c, n > 1:

n 0 1 2 3 4 5 6 7 8 9 10 11
r(n) 1 1 1 1 2 2 3 3 4 4 5 5
a(n) 1 1 1 1 2 3 6 11 22 42 84 165

Remark. It is unconventional to define a(0).

The sequence satisfies the recursion relation:

a(2n) = 2 a(2n− 1), a(2n+ 1) = 2 a(2n)− a(n), n > 1. (3)

Narayana and Capell found upper and lower bounds for a(n) [3, p. 108]:

0.625 <
a(n)

2n−3
< 0.64453125, n ≥ 11. (4)
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G. McGarvey conjectured that lim infn→∞ a(n)/2n−3 ≈ 0.633368 (A002083):

n 2 3 4 5 6 7 8 9 10 11 12 13
a(n)/2n−3 2 1 1 .75 .75 .6875 .6875 .65625 .65625 .64453 .64453 .63867

We show that a(n) ∼ c2n−3 for some c > 0. We give an explicit estimate for convergence,
so the rate of convergence is computable. First, we prove a lower bound for the short-term
growth when the index is odd.

Lemma 4.8. For all n ≥ 2,
a(2n+ 1)

a(2n)
≥ 2− 1

2n−1
.

Proof. From the recursion relation (3), it is immediate that a(k)/a(k − 1) ≤ 2 for all k ≥ 1.
We apply Lemma 4.1 to obtain

a(2n+ 1)

a(2n)
≥ 1 +

n
∑

k=2

k−1
∏

j=1

1

2
=

n−1
∑

i=0

1

2i
= 2− 1

2n−1
.

Theorem 4.9. The Narayana-Zidek-Capell sequence converges asymptotically to c2n−3 for
some positive real number c.

Proof. It suffices to show that a(n)/2n converges to a non-zero limit. Write a(n)/2n as a
telescoping product:

a(n)

2n
=

n
∏

k=1

1

2

a(k)

a(k − 1)
.

We use the comparison test to show that the product converges. From the recursion, it is
clear that a(n)/2n ≤ 1 for all n. So, we need only consider lower bounds. If k is even, then
a(k)/a(k − 1) = 2. Thus, only the terms with odd indices affect the product. We can write

a(n)

2n
=

bn/2c
∏

k=2

1

2

a(2k + 1)

a(2k)
,

since a(3)/a(2) = a(1)/a(0) = 1. Hence, a(2n)/22n = a(2n + 1)/22n+1, and it suffices to
consider only the odd terms of the product:

a(2n+ 1)

22n+1
=

n
∏

k=2

1

2

a(2k + 1)

a(2k)
.

By Lemma 4.8,
a(2n+ 1)

22n+1
≥

n
∏

k=2

1

2

(

2− 1

2k−1

)

=
n
∏

k=2

(

1− 1

2k

)

.

The product on the right-hand side (A048651) converges as n→∞.
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5 A Generalization

We define a generalization of b(n), which is a double sequence. This generalization allows us
to remove the restriction that r(n) ≤ n. It also allows us to pick different initial conditions
for our sequence. This generalization has applications to polynomial dynamics.

Definition 5.1. We call a double sequence β(n), n ∈ Z, an extended variable-r meta-
Fibonacci sequence if there exists r : Z → Z+ such that for all n ∈ Z,

β(n) =

r(n)
∑

k=1

β(n− k).

The author originally discovered r(n)-bonacci numbers while studying the dynamics of
complex polynomials [7, 8]. The generalized return times of polynomials are extended r(n)-
bonacci numbers, with r(n) = 1 and β(n) = 1 for n ≤ 0. Note that such a β(n) is a
non-decreasing sequence of positive integers. We give an example of this type of β(n). For
fun, we take r(n) as the Fibonacci numbers for n > 0.

Example 5.2. Let β(n) = 1 and r(n) = 1 for n ≤ 0. Let r(n) = fn+1 for n > 0:

n −2 −1 0 1 2 3 4 5 6 7 8 9
r(n) 1 1 1 1 2 3 5 8 13 21 34 55
β(n) 1 1 1 1 2 4 9 20 44 95 202 424

It is left as an exercise to show that β(n) = 2β(n− 1) + fn−1 − 1 for n > 0.

Remark. Certain results in this paper, especially Lemma 4.1, used only the form of the
recursion—these results apply immediately to all β(n). Provided that β(n) > 0 for all
n ∈ Z, many results in this paper apply to β(n), particularly Lemma 3.7. We used the fact
that b(n) is non-decreasing in the proof of Lemma 4.2. So, all results that depend on this
lemma, require that β(n) be non-decreasing. In particular, all results in Section 4 apply if
β(n) non-decreasing and positive. One important difference is that the long-term growth
rate of an extended r(n)-bonacci sequence can exceed 2. Therefore, Proposition 3.4, Lemma
3.13 and Theorem 2 do not necessarily apply to extended sequences when we have r(n) > n.

We can generalize Lemma 3.9.

Lemma 5.3. Let β(n) be an extended variable-r meta-Fibonacci sequence generated by r(n).
If lim infn→∞ β(n)/β(n− 1) > 2, then ∆r(n) ≥ 2 for all n sufficiently large.

It is not clear which double sequences r(n) can generate an extended r(n)-bonacci se-
quence. We do not attempt to give a complete answer to this question. Instead, we give
a class r(n) that work; we require that r(n) be constant for non-positive n. Recall for the
Fibonacci numbers, we use fn−2 = fn − fn−1 to define fn for n ≤ 0. We can define β(n) for
n ≤ 0 in an analogous manner. In this case, a closed form of β(n) for n ≤ 0 can be easily
found using standard techniques.
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Proposition 5.4. Fix R > 0. Let r : Z → Z+ such that r(n) = R for all n ≤ 0. Choose
initial conditions β(0), β(−1), . . . , β(1−R) ∈ R. First, for n = 0,−1,−2, . . . define

β(n−R) = β(n)−
R−1
∑

k=1

β(n− k). (5)

Next, for n ≥ 0 let

β(n) =

r(n)
∑

k=1

β(n− k).

Then β(n) is an extended variable-r meta-Fibonacci sequence generated by r(n).

Proof. We need to check that β(n) is well defined and satisfies the r(n)-bonacci recursion
for all n ∈ Z. For n ≤ 0, note that β(n) depends only on β(n+1), . . . , β(n+R), which have
been previously defined, and (5) can be rewritten as the r(n)-bonacci recursion. For n > 0,
the only concern is that we may have n − r(n) < 0 for some n, but then β(n − r(n)) was
defined in the first step.

We give two examples of the above construction.

Example 5.5. Let r(n) = 2 for n ≤ 0 and r(n) = 2n for n > 0. Choose β(0) = π and
β(−1) = 1. Now, we use (5) to compute β(−2) = β(0) − β(−1) = π − 1. Next, compute
β(n) for n < −2. Finally, compute β(n) for n positive.

n −5 −4 −3 −2 −1 0 1 2 3 4
r(n) 2 2 2 2 2 2 2 4 6 8
β(n) −3π + 5 2π − 3 −π + 2 π − 1 1 π π + 1 3π + 1 5π + 4 12π + 5

In the above example, even though the initial conditions are both positive, for n ≤ −2,
β(n) alternates between positive and negative values.

Example 5.6. Let r(n) = 3 for n ≤ 0, and r(n) = 2n for n > 0. Choose β(0) = 3,
β(−1) = 2 and β(−2) = 1:

n −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
r(n) 3 3 3 3 3 3 3 3 2 4 6 8 10 12
β(n) 2 −1 0 1 0 1 2 3 5 11 22 45 90 179

Lemma 3.7 does not apply to the above sequence, because not all of the terms are positive.
Note that ∆r(3) = 2, but β(3)/β(2) = 2. Even worse, ∆r(6) = 2, but β(6)/β(5) < 2.
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