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On minimal parabolic subgroups
of exponential Lie groups
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Abstract. The conjecture in Problem 6.3 of [4] is refuted by a coun-
terexample: minimal parabolic subgroups may not be used for testing the
surjectivity of the exponential function. Specifically, the minimal parabolic
subgroups of GL,(H) are not exponential for n > 8. The same is true for
Sp(p,q) if p > ¢ > 8 and SO*(2n) if n > 15. However, we show that the
minimal parabolic subgroups of SO(p, 1)° and of U (p,q) are exponential.

1. Introduction

Let G be a Lie group, with Lie algebra g. Denote by FEg the image of the
exponential map exps:g — G, i.e., the union of all one-parameter subgroups of
G. If Fg is dense in G (which implies that G is connected) then we say that G
i1s a weakly exponential group. We recall that if N is a closed normal subgroup
of G such that both N and G/N are weakly exponential, then also GG is weakly
exponential (see [8]).

We say that a connected Lie group G is exponential if its exponential map
is surjective, i.e., B¢ = G. The problem of deciding which groups are exponential
is still unresolved. Most of the known results are about groups that are either
semisimple or solvable. We refer the reader to [3, 4] for the survey of this area of
research and for some open problems. The case when G is neither semisimple nor
solvable (the so called mixed case) is largely unexplored. In this note we consider
an important class of such mixed groups: the minimal parabolic subgroups of real
semisimple groups.

Let us recall the following result which is a part of a more comprehensive
theorem of Jaworski [9].

Theorem J. A connected real semisimple Lie group is weakly exponential if and
only if its minimal parabolic subgroups are connected.

Motivated in part by this theorem, the Problem 6.3 of [4] asks whether or
not the following conjecture is true.
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Conjecture P. A connected Lie group is exponential if and only if its minimal
parabolic subgroups are exponential.

We assume that the reader is familiar with the definition of minimal para-
bolic subgroups of a connected semisimple Lie group (see e.g. [9, 3, 4]). For
reader’s convenience, we now recall the definition of minimal parabolic subgroups
of GG, adopted in [3, 4], for an arbitrary connected Lie group G'. Let R be the
solvable radical of GG. A subgroup P of (G is called a minimal parabolic subgroup
if P D R and P/R is a minimal parabolic subgroup of the semisimple group G/R.

As a test case for Conjecture P, the Problem 6.3a of [4] asks whether or
not the minimal parabolic subgroups of SL,(H), n > 2, are exponential. (By H
we denote the real quaternion division algebra.) We shall prove that they are not
exponential if n > 8, and consequently the above conjecture is false.

It is now natural to raise the question: For which exponential semisimple Lie
groups are the minimal parabolic subgroups exponential? The groups Sp(p, ¢) and
SO*(2n) are known to be exponential, and we show that their minimal parabolic
subgroups are not exponential if p > g > 8 and n > 15, respectively. It is also
known that the identity component of SO(p, 1) and the unitary groups U(p, q) are
exponential groups. We shall prove that their minimal parabolic subgroups are
exponential.

For any Lie group G we denote by G° its identity component. By ‘z we
denote the transpose of a matrix x, and by z* the transpose conjugate of =. By
x;; we denote the (7, 7)-th entry of the matrix x. Iy denotes the identity matrix of
order k. As usual we set d;; =0 if 1 # 7 and ;; = 1. We denote by Si the matrix
of order k such that (Sg)ij = dipjeq1 forall 4,5 =1,..., k. Weset R* =R\ {0}
and H* =H\ {0}.

It is a pleasure to thank W. H. Hesselink for sending us a list of 2-
dimensional sections for the action of the Borel subgroup B of GLg(C) on the
space N of nilpotent upper triangular complex matrices of size 8. One of these
sections (Nr. 7169) was used, in modified form, in the proof of Theorem 2.1. Our
original proof of that theorem was valid only for n > 10.

2. The case of GL,(H) and SL,(H)

Before concentrating on the quaternionic general linear group, let us review the
situation for complex and real general linear groups.

The group GL,(C) is exponential. Its minimal parabolic subgroups are
the Borel subgroups, i.e., the conjugates of the subgroup B of invertible upper
triangular matrices. It is an elementary fact that B is also exponential, i.e., if
b € B then b= e” for some upper triangular matrix = (this follows from [1]).

The group GL,(R) is not connected. Its identity component GL,(R)® is
not exponential if n > 2. For instance, if n = 2, the matrix

(0 )
0 -1
is not of the form e® for any real 2 by 2 matrix x. The group P of all upper

triangular matrices in GL,(R)°

, n > 2, 1s a minimal parabolic subgroup and is
not connected (in accordance with Theorem J). The group P° is exponential.
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Until further notice, we denote by G the group GL,(H), n > 1, of all
invertible quaternionic matrices of order n. The group T' of all upper triangular
matrices in G is a minimal parabolic subgroup. It admits a Levi decomposition
T = DU where U (resp. D) is the subgroup consisting of all unitriangular (resp.
diagonal) matrices in T'. Let N denote the space of nilpotent upper triangular
quaternionic matrices of order n.

Theorem 2.1.  If n > 8 then the minimal parabolic subgroups of GL,(H) are
not exponential groups.

Proof. Witout any loss of generality we may assume that n = 8. Let z be the
nilpotent upper triangular matrix given by:

0 1 1

where £, € H are chosen so that &n # né. (The supressed entries in the above
matrix are zeroes.) Let a € Zr(z) := {y € T : zy = ya}. We claim that all the
diagonal entries of a are equal and are real.

We equate the entries in the matrix equation za = ax. The (1,2)-entries
give that a;; = azp. The (1,3)-entries give azs = 0. Now the (2,6)-entries give
azy = ags. The (2,5)-entries give azq = 0. Then the (1,4)-entries give a1; = au4.
By symmetry we have agg = ar7, agr =0, a7 = az3, asy = 0, and agg = ass. The
(4,5)-entries give aqq = ass. From (3,6)-entries we obtain ags = az3f, and from
(2,7)-entries naz; = azen. Thus all the diagonal entries of a are equal and must
be in R* because they commute with both ¢ and n. Hence our claim is proved.

Assume that the matrix b := @ — Iy € T belongs to Er, i.e., that there
exists a l-parameter subgroup a:R — T such that «(1) = b. Then for arbitrary
t € R the matrix a(¢) commutes with b, and also with z. Our claim above implies
that all diagonal entries of a(t) are real. As a(0) = I, they are also positive.
Since the diagonal entries of b are all —1, we have a contradiction.

Thus b € T'\ Er, and so T is not exponential. |

The group P = T'N SL,(H) is a minimal parabolic subgroup of SL, (H).
The map f:R x P — T defined by f(t,z) = e’z is an isomorphism, and so we
deduce the following result.

Corollary 1. The minimal parabolic subgroups of SL,(H), n > 8, are not
exponential groups.

It is a routine matter to derive two more corollaries.

Corollary 2. The minimal parabolic subgroups of Sp(p,q), p > q > 8, are nol
exponential groups.
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Proof. We set n =p+ ¢ and let S =5, (as defined in the introduction). Let

G :=Sp(p,q) ={z € GL,(H) : 2" Jz = J},

where
0 0 S
J=10 [, O
S 0 0

The group P consisting of all quaternionic matrices

a ¢ d
A=|0 b —bc*(a*)"'S (1)
0 0 S(a*)7tS

with a € GL,(H) upper triangular, b € Sp(p—¢q), and such that aSd*+dSa*+cc* =
0, is a minimal parabolic subgroup of . The Lie algebra of P consists of all
quaternionic matrices

T oz w
X=10y =25 (2)
0 0 —Sz*§

where x is an upper triangular matrix of order ¢, y is a skew-hermitian matrix of
order p — ¢, and Sw*+wS = 0. Since the blocks a in (1) and z in (2) are upper
triangular matrices, with no further restrictions, and ¢ > 8, the assertion of the
corollary follows immediately from the theorem. ]

Corollary 3. The minimal parabolic subgroups of SO*(2n), n > 15, are nol
exponential groups.

Proof. Let J =15, where 1 € C is the imaginary unit, and let
G :=S0"(2n) = {z € GL,(H) : 2" Jz = J}.

Then the group P of all upper triangular matrices in G is a minimal parabolic
subgroup. The rest of the argument is similar to the proof just given above. |

Remark 1. T acts on N by (¢,z) — txt~'. For n <5 the number of T-orbits
in N is finite: It is equal to 1,2,5,16,61 for n = 1,2,3.4,5, respectively. Each of
these orbits contains a {0, 1}-matrix. For n = 6 the number of T-orbits in N is
infinite. Indeed the matrices

0 1
0 1 1
0 ¢ 1
.Ig: 0
0 1

0

and z, belong to the same T-orbit if and only if = (£(™" for some ( € H*.
There are only finitely many orbits that do not contain any matrix z, and each of
them contains a {0, 1}-matrix. By using these facts, one can show that 7" and P
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are exponential groups for n < 6. (We believe that they are also exponential for

n="7.)

Remark 2. Let us now replace H by an infinite (commutative) field F'. The
problem of describing the T-orbits in N was raised in 1978 by M. Roitman [10].
He observed that for n < 5 there are only finitely many orbits and that each
orbit contains a {0, 1}-matrix. He also showed that for n > 12 there are infinitely
many orbits. In fact the number of orbits is infinite for n > 6 (see [5]). The same
problem, in a more general context, was studied somewhat later by H. Burgstein

and W. H. Hesselink [7, 2]. In particular they classified the T-orbits in N for
n<T7.

3. The case of SO(p,1)°

In this section we consider another class of exponential groups, namely the identity
components of the special orthogonal groups SO(p, 1) of real rank 1.

Theorem 3.1. The minimal parabolic subgroups of SO(p,1)° are exponential
groups.

Proof. Let J be the symmetric matrix of order p + 1 defined by

0 0 1
J=|0o 1., 0
1 0 0

and
Then
A —Ava —XMov/2
P::{ 0 a v Z)\ER*,CLESO(])—1>,U€RP_1}

0 0 At

is a minimal parabolic subgroup of G, and P° is a minimal parabolic subgroup of
G°. We have the Levi decomposition P = LU with

A0 0
L:{ 0 a 0 :)\ER*,aESO(p—l)}:R*xSO(p—l)
0 0 At
reductive, and
1 ='v =lvv/2
U:{ 0 I,— v :UERP_I}”:‘Rp_l
0 1

the unipotent radical. Since U is abelian, for v € U we have Zpo(u) = Zpo(u)U,
and if u # 1 then Zpo(u) = Zgop-1)(u) = SO(p — 2). Hence Zpo(u) is weakly
exponential for all v € U, and by [6, Theorem 2.2] P° is exponential. ]
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4. The case of U(p,q)

We set n = p+q and let S and .J be as in the proof of Corollary 2. For G := U(p, q)
we choose the following matrix realization:

G ={z € GL,(C) : 2" Jx = J}.

The group P consisting of all complex matrices of the form (1) with a € GL,(C)
upper triangular, b € U(p—¢), and such that aSd*+ dSa* + ¢¢* = 0, is a minimal
parabolic subgroup of G.

Theorem 4.1. The minimal parabolic subgroups of U(p,q) are exponential
groups.

Proof. The Lie algebra p of P consists of all complex matrices of the form (2)
where x is an upper triangular matrix of order ¢, y is a skew-hermitian matrix of
order p — ¢, and Sw* 4+ wS = 0.

Let A € P be arbitrary, as in (1). We have to prove that A € Ep. Without
any loss of generality, we may assume that b is diagonal. We use induction on
g > 0 to prove the following stronger assertion: If A is as above (with b diagonal)
then there exists X € p, as in (2), with y diagonal and such that A = ¢X and

—rm<Im(Xy)<m, =1,2,...,n.

Clearly the assertion is true for ¢ = 0. Assume now that ¢ > 0. We shall
use the new partitioning of J :

where J; is now of order n — 2. We partition A € P and
X € p accordingly:

A w ¢ g 7o'
A=10 B —(5\)_1{1(3*)_11}* , X=[10 Y —Jiu|,
0 0 (M)t 0 0

where ( € C, a € R, )
2Re(A() + v Jiv™ =0, (3)

and B belongs to the obvious minimal parabolic subgroup @ of U(p — 1,49 —1).
By induction hypothesis we can choose Y in the Lie algebra of @) such that
e¥ = B, Y is upper triangular, and

—r<Im(Y;)<m, 1=1,2,....,n—2.

We also choose p € C such that e = X and —7 < Im(u) < 7. Then e¥ has the

form
A
eX =10
0

(A~

© e

¢
(A)'lil(B*)'lw*) : (4)
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The row-vector w is given by w = un, where n is the triangular matrix

1 k k-1 k
n= (YO pY* e L),
l%% (k+1)!
If ¢ =Y, is one of the diagonal entries of Y, then the corresponding diagonal

entry of n is given by:

i = {(65 —e"/(E—p), E#p
T el £ =

The above mentioned conditions on the imaginary parts of the diagonal entries Y};
and p imply that n; # 0 for all ¢, and so the matrix » is nonsingular.
Consequently, there is a unique row-vector u such that w = unp = v. We

assume from now on that u has been chosen so that w = v. The complex number
(" in the formula (4) has the form:

= Gtio ), 7 kﬂ (4 =) 4 (=) (=0)),

k>0
where () is independent of a. The coefficient of ic is equal to (e* —e™")/(p + 1)
if p+p #0, and is equal to e” otherwise. Hence it is never 0.
As the equation (3) remains valid when ( is replaced by (', we have

Re(X(') = Re(X(). Since the coefficient of i in A" is real and nonzero, we
can choose a € R such that A’ = X, i.e., (' = (. Then we obtain that X = A.

|
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