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Abstract. Let L be a closed analytic subgroup of a faithfully repre-

sentable complex analytic group G , let R(G) be the algebra of complex
analytic representative functions on G , and let G0 be the universal alge-

braic subgroup (or algebraic kernel) of G .

In this paper, we show many characterizations of the property that
the homogenous space G/L is (representationally) separable, i.e, R(G)L

separates the points of G/L . For example, G/L is separable if and only
if G0 ∩ L is an algebraic subgroup of G0 which is (rationally) observable

in G0 . These characterizations yield new characterizations for the analytic

observability of L in G and new characterizations for the existence of a
quasi-affine structure on G/L . For example, L is (analytically) observable

in G if and only if G/L is separable and L0 = G0 ∩ L .

Similarly, we discuss a weaker separability of G/L and the exis-
tence of a representative algebraic structure on G/L .

2000 Mathematics Subject Classification: 22E10, 22E45, 22F30, 20G20,

14L15.

Let L be a closed analytic subgroup of a faithfully representable complex ana-
lytic group G . Then L is called (analytically) observable in G if every finite-
dimensional complex analytic representation of L is extendable to a finite-
dimensional analytic representation of G ; or more precisely, if every finite-
dimensional analytic L-module is a sub L-module of a finite-dimensional analytic
G -module [7, p. 166]. Similarly, we have the notion of (rational) observability
for algebraic subgroups of linear algebraic groups [1]. If there is no ambiguity,
we shall simply use the term ”observable” .

The homogenous space G/L will be called (representationally) separable
if R(G)L separates the points of G/L . The homogenous space G/L is said to
have a quasi-affine structure if G/L has the structure of a quasi-affine algebraic
variety which is compatible with G and R(G) [2, p. 813] (see Definition 1 below).
Moreover, G/L is said to have a (representative) algebraic structure if G/L has
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the structure of an algebraic variety which is compatible with G and [R(G)] [3,
p. 852] (see Definition 2 below).

The question of observability of L in G has been studied by Lee and
Wu in [7]. But there was no explicit mention of the separability of G/L (see
Theorem A below). So our Theorem 1 and Corollary 2 completely clarify the
role of separability in this respect. The question of having a quasi-affine algebraic
structure on G/L has been studied by Hochschild and Mostow [2] where the
separability of G/L plays an essential role (see Theorem C below). Moreover,
the question of having a (representative) algebraic structure on G/L has been
also studied by Hochschild and Mostow [3] where the weaker separability by
[R(G)]L plays an essential role (see Theorem D below). So Theorems 1 and 4
and their corollaries clarify the role of separability and weaker separability of
G/L which are essential for the existence of such structures on G/L .
In addition, Remark 1 clarifies the definition of a quasi-affine structure on G/L .
If G is an algebraic group and L is an algebraic subgroup of G , Remark 2 shows
that if L is analytically observable in G , then L is rationally observable in G .
Finally we use the proof of Theorem 1 to give a new proof, independently of [7],
of the ”if part” or the extension part in Thm. 4.5 of [7] stated in Theorem A
below.

The proofs in this paper rely heavily on [2], [3], and [7] as well as the
recent work by Magid and the author in [8] concerning observable subgroups of
pro-affine algebraic groups. We shall assume that the reader is familiar with the
basic theory of pro-affine algebraic groups found in [4, Section 2] as well as the
basic facts about observable subgroups of linear algebraic groups found in [1] or
[6, Thm. 2.1].

Notation and Conventions. Let C be the field of complex numbers,
let R(G) be the Hopf algebra of complex analytic representative functions on
G , and let G∗ be the pro-affine algebraic group associated with R(G). Since G
is assumed to be faithfully representable, we shall identify G with its canonical
image in G∗ . So R(G) = C[G∗] where C[G∗] is the Hopf algebra of polynomial
functions on G∗ . If A is a subgroup of G∗ , let R(G)A be the A -fixed part
of R(G) under the translation action a.f(x) = f(xa), and let AR(G) be the
A -fixed part of R(G) under the translation action f.a(x) = f(ax). Similarly,
we define [R(G)]A and A[R(G)] , where [R(G)] is the field of fractions of the
integral domain R(G). Note that Hochschild and Mostow in [2] and [3], worked
with the right cosets L \ G rather than the left cosets G/L and worked with
(R(G)L)′ = LR(G) rather than R(G)L where f ′(x) = f(x−1).

We recall that the universal algebraic subgroup G0 of G may be defined
as the subgroup generated by [G,G] and all reductive analytic subgroup of G
[9, p. 623]. In fact, G0 is the unique maximal normal subgroup of G that is
algebraic under all finite-dimensional analytic representations of G . Moreover,
G0 has a unique irreducible algebraic group structure which is compatible with
its analytic group structure [9]. In [7], G0 is referred to as the algebraic kernel
of G .

For the convenience of the reader, we recall the following (slightly re-
worded) definitions and results.
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Definition 1. [2, top p. 813] A quasi-affine structure for L\G is the structure
of a quasi-affine algebraic variety on L\G satisfying the following two conditions:

(1) The variety L \ G is G-homogenous [2, top. 809] in the sense that it
satisfies the following conditions.
(a) For each element x of G , the translation action of x on L \ G
is an automorphism of the algebraic variety L \ G . (Moreover, G acts
transitively on L \G .)
(b) If P (L \ G) is the algebra of polynomial functions on L \ G , then
P (L\G) ⊂ LR(G) (where the elements of LR(G) are viewed as functions
on L \G).

(2) The variety L \ G is a G-variety [2, p. 810] in the sense that the
translation action of G on L \G staisfies (a) above, and
(c) for every polynomial f on L \ G and every point v of L \ G , the
map fv : G → C defined by fv(x) = f(v.x) is a holomorphic function
on G .

Remark 1. The above two conditions (1) and (2) on L \G are equivalent.

Proof. In fact, if L \ G is a G -variety, then L \ G is G -homogenous by
[2, Thm. 1.3]. Converseley, suppose that L \ G is G -homogenous. To prove
condition (c) above, Let f be a polynomial function on L \G , let v = Lg be an
element of L\G , let g∗ be the translation action of g on L\G , let π : G→ L\G
be the canonical projection, and let πt : P (L \ G) → LR(G) be its transpose
in view of (b) above. Then fv(x) = f(v.x) = f(Lg.x) = f(g∗(Lgxg−1)) =
f(g∗(π(gxg−1))) = (πt(f ◦ g∗))(gxg−1). Hence fv is a holomorphic function on
G because, g∗ is rational by (a), and πt(P (L \G)) ⊂ LR(G) by (b), so we have
condition (c). Hence (1) and (2) are equivalent.

Definition 2. [3, p. 852] A representative algebraic structure for L \ G is
the structure of an irreducible algebraic variety on L \G satisfying the following
two conditions:

(a) For each element x of G , the translation action of x on L \ G is an
automorphism of the algebraic variety L \G .

(b) If F (L\G) is the algebra of rational functions on L\G , then F (L\G) ⊂
L[R(G)] (where the elements of L[R(G)] are viewed as functions on
L \G).

Theorem A. [7, Thm. 4.5] L is observable in G if and only if L satisfies
the following conditions:

(1) L0 = L ∩G0 ;
(2) L0 is observable in G0 (in the categroy of algebraic groups).

Theorem B. [7, Lemmas 4.1, 4.2] If L ∩G0 is an algebraic subgroup of G0 ,
then L∗ ∩ G = L (where L∗ is defined as in Theorem 1 below). In particular,
L∗ ∩G0 = L ∩G0 .

Theorem C. [2, Thm. 7.1] G/L has a quasi-affine structure if and only if
L satisfies the following conditions:
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(1) R(G)L separates the points of G/L ;
(2) S(L)α(G) = α(G)∗ (See [2] for terminology);
(3) N(L)/L has only a finite number of connected components where N(L)

is the normalizer of L in G .

Theorem D. [3, Thm. 3.3] G/L has a representative algebraic structure if
and only if L satisfies the following:

(1) [R(G)]L separates the points of G/L ;
(2) S(L)α(G) = α(G)∗ ;
(3) N(L)/L has only a finite number of connected components where N(L)

is the normalizer of L in G .

Theorem 1. Let L be a closed analytic subgroup of a faithfully representable
complex analytic group G , let R(G) be the algebra of complex analytic represen-
tative functions on G , let G∗ be the pro-affine algebraic group associated with
R(G) , and let L∗ be the algebraic closure of L in G∗ . Let G0 and L0 be the
universal algebraic subgroups of G and L respectively. Then the following are
equivalent.

(1) G/L is (representationally) separabe, i.e, R(G)L separates the points of
G/L .

(2) L∗ is observable in G∗ (in the category of pro-affine algebraic groups)
and L ∩G0 is an algebraic subgroup of G0 .

(3) L ∩ G0 (and hence L0 ) is an observable algebraic subgroup of G0 (in
the category of algebraic groups).

(4) [R(G)L] = [R(G)]L and L ∩G0 is an algebraic subgroup of G0 .

Proof. We shall need the fact that [G,G] and G0 are normal in G∗ since
[G,G] = [G∗, G∗] [5, p. 1149 (last paragraph)]. Suppose R(G)L separates the
points of G/L . Let X be the subgroup consisting of all elements of G∗ that
leave the elements of R(G)L fixed (under the right translation action of G∗ on
R(G) = C[G∗]) Then X is an algebraic sugroup of G∗ and X ∩ G = L since
R(G)L separates the points of G/L . Hence L ∩ G0 = X ∩ G ∩ G0 = X ∩ G0 ,
so L ∩ G0 is an algebraic subgroup of G0 . Since R(G)L = R(G)L

∗
, R(G)L

∗

separates the points of G/L , so in particular, R(G)L
∗

separates the points of
G/L∗ ∩G ∼= G.L∗/L∗ . Hence R(G)L

∗
separates the points of [G,G].L∗/L∗ .

So if Y = [G,G].L∗ , then C[Y ]L
∗

separates the points of Y/L∗ . Hence L∗ is
observable in Y [8, Thm. 3]. Moreover, Y = [G,G].L∗ is observable in G∗ for
being a normal algebraic subgroup of G∗ [8, Thm. 1]. Hence L∗ is observable
in G∗ , so (1) implies (2).
Suppose (2) holds. Then L∗∩G0 is observable in L∗ for being a normal algebraic
subgroup [8, Thm. 1]. But L∗ ∩G0 = L ∩G0 by Theorem B. Hence L ∩G0 is
observable in L∗ . Consequently, by transitivity, L∩G0 is also observable in G∗

since L∗ is given to be observable in G∗ , so (2) implies (3).

Now we show (3) implies (2). Since L∗ ∩ G0 = L ∩ G0 by Theorem
B, L∗ ∩ G0 is observable in G0 . Although it can be justified using [8, section
2] that that the pro-variety G0.L

∗/L∗ is isomorphic to G0/G0 ∩ L∗ which is
quasi-affine, to deduce that L∗ is observable in G0.L

∗ , it is simpler to work with
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the characterization concerning separation of points. Put Z = L∗ ∩G0 , so Z is
observable in G0 . Then C[G0]Z separates the points of G0/Z . If f ∈ C[G0]Z ,
define f+ ∈ C[G0.L

∗]L
∗

by f+(ab) = f(a) if a ∈ G0 and b ∈ L∗ . In fact, f+ is
well-defined since f is invariant under Z = L∗ ∩G0 . Consequently, C[G0.L

∗]L
∗

separates the points of G0.L
∗/L∗ . Hence L∗ is observable in G0.L

∗ [8, Thm.
3]. But this last is observable in G∗ for being normal in G∗ [8, Thm. 1]. Hence
L∗ is observable in G∗ by transitivity, so (3) implies (2).

Now we show that (2) implies (1). Since L∗ is observable in G∗ , and
C[G∗] = R(G), R(G)L

∗
separates the points of G∗/L∗ [8, Thm. 1]. Since

R(G)L
∗

= R(G)L , it follows that R(G)L separates the points of G.L∗/L∗ ∼=
G/L∗ ∩G . But L∗ ∩G = L by Theorem B. Hence R(G)L separates the points
of G/L , so (2) implies (1). Thus (1)-(2)-(3) are equivalent.

Finally, suppose (2) holds. Since L∗ is observable in G∗ and C[G∗] =
R(G), [R(G)L

∗
] = [R(G)]L

∗
([8, Thm. 1] or [7, Thm. 2.2]) But [R(G)L

∗
] =

[R(G)L] and [R(G)]L
∗

= [R(G)]L since L∗ is the algebraic closure of L in G∗ .
Hence [R(G)L] = [R(G)]L , so (2) implies (4). Converseley, suppose (4) holds.
Then [R(G)L] = [C[G∗]]L

∗
. But this last separates the points of G∗/L∗ [8,

Prop. 1]. Hence R(G)L separates the points of G∗/L∗ . Consequently, R(G)L

separates the points of G.L∗/L∗ ∼= G/G ∩ L∗ = G/L by Theorem B above, so
(4) implies (1). This proves Theorem 1.

In view of Theorems A and C, we have the following corollaries.

Corollary 2. The following are equivalent.
(1) L is observable in G .
(2) G/L is separable and L ∩G0 = L0 .
(3) L0 is observable in G0 (in the category of algebraic groups) and L∩G0 =

L0 .
(4) [R(G)L] = [R(G)]L and L ∩G0 = L0 .

Corollary 3. G/L has a quasi-affine structure if and only if L satisfies the
following conditions:

(1) R(G)L separates the points of G/L , or equivalently, L ∩ G0 is an ob-
servable algebraic subgroup of G0 (in the category of algebraic groups);

(2) S(L)α(G) = α(G)∗ ;
(3) N(L)/L has only a finite number of connected components (where N(L)

is the normalizer of L in G).

Theorem 4. The following are equivalent.
(1) [R(G)]L separates the points of G/L .
(2) L ∩G0 is an algebraic subgroup of G0 .

Proof. Let X be the fixer of [R(G)]L in G∗ . Then X is an algebraic subgroup
of G∗ . If [R(G)]L separates the points of G/L , then X ∩G = L . Consequently,
L∩G0 = X∩G0 . Hence L∩G0 is an algebraic subgroup of G0 , so (1) implies (2).
Converseley, suppose L ∩G0 is an algebraic subgroup of G0 . Then L∗ ∩G = L
by Theorem B above. Since [R(G)]L = [R(G)]L

∗
and this last separates the

points of G∗/L∗ [7, Prop. 1], it follows that [R(G)]L separates the points of
G.L∗/L∗ ∼= G/L∗ ∩G = G/L . This proves Theorem 4.
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In view of Theorem D above, we have the following.

Corollary 5. G/L has a representative algebraic structure if and only if L
satisfies the following:

(1) [R(G)]L separates the points of G/L , or equivalently, L ∩ G0 is an
algebraic subgroup of G0 .

(2) S(L)α(G) = α(G)∗ ;
(3) N(L)/L has only a finite number of connected components (where N(L)

is the normalizer of L in G).

Example 1. Let V = C×C where C is the additive group of complex numbers,
let G = V.T be the semi-direct product group where T = C acts on V by
t(x, y) = (etx, y) for every t ∈ T , and let L be the diagonal subgroup in V .
Then L0 = (0) = L∩G0 . Hence L is observable in G by Theorem A. However,
N(L) = V.T ∗ where T ∗ consists of the elements t ∈ T such that et = 1, i.e,
of the integral multiples of 2πi , so N(L)/L is an infinite group. Hence, by
Theorem B and Theorem C, G/L does not have any quasi-affine structures or
even representative algebraic structures although L is observable in G .

Example 2. Let G = SL(2, C) and let L be the unipotent subgroup of

elements of the form
(

1 a
0 1

)
where a ∈ C . Then L0 = (1) while L ∩G0 = L ,

so L is not observable in G (in the category of analytic groups) by Theorem A.
However, L is a unipotent algebraic subgroup of G , so L is observable in G (in
the category of algebraic groups). Hence G/L is a quasi-affine algebraic variety.
Thus G/L has a quasi-affine structure although L is not observable in G (in the
category of analytic groups).

Example 3. Let G = C∗ × SL(2, C) and let L be the subgroup of elements

of the form (ea,
(

1 a
0 1

)
) where a ∈ C . Then G0 = G , so L∩G0 is L which is

not an algebraic subgroup of G0 . Hence G/L is neither separable by Theorem
1, nor weakly separable by Theorem 4. Moreover, L is not observable in G by
Corollary 2.

Remark 2. Supoose that G is an algebraic group and L is an algebraic sub-
group of G . If L is analytically observable in G , then L is rationally observable
in G . However, the converse is false in general.

Proof. The converse is false in general by Example 2. So suppose that L is
analytically observable in G . Then L0 is rationally observable in G0 by Theorem
A. Moreover, G0 is rationally observable in G for being normal in G . Hence L0

is rationally observable in G . Now L/L0 is a unipotent algebraic group since
L = Lu . P and L0 = N . P for every maximal reductive algebraic subgroup
P of L where Lu is the unipotent radical of L and N is the radical of [L,L] .
Hence every multiplicative rational character on L/L0 is trivial. Since L0 is
rationally observable in G , it follows that L is rationally observable in G [10,
Cor. 2 (2)].
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Finally, we use the proof of Theorem 1 to give a new proof independently
of [7] of the ”if part” or the extension part in Thm. 4.5 of [7].

Theorem A (if part). L is observable in G if L satisfies the following
conditions:

(1) L0 = L ∩G0 ;
(2) L0 is observable in G0 (in the categroy of algebraic groups).

Proof. Let L+ be the pro-affine algebraic group associated with R(L), so
R(L) = C[L+] . Then the restriction map R(G)→ R(L) yields a canonical map

f : L+ → G∗

and note that f(L+) = L∗ . Now Let V be a finite-dimensional analytic rep-
resentation of L . Then V is rational representation of L+ . To obtain the
extension to G , first we show that it suffices to have that f is injective. If this
is the case, then V becomes a rational representation of L∗ . Our two given
assumptions imply that L ∩ G0 is an observable algebraic subgroup of G0 (in
the category of algebraic groups). Hence L∗ is observable in G∗ by the implica-
tion (3) ⇒ (2) in Theorem 1. (Note that the proof of this implication does not
rely on Theorem B, so it is independent of [7]). Hence V can be extended to
a finite-dimensional rational representation of G∗ whose restriction to G yields
the required extension.

Now we show that f is indeed injective by showing that the induced
map f+ : L+/L ∩G0 → G/G0 is injective. The inclusion map of L into
G yields an injection of abelian analytic groups i : L/L ∩G0 → G/G0 . So
every representative function on L/L ∩G0 can be extended to a representa-
tive function on G/G0 . Hence the canonical map R(G/G0) → R(L/L ∩G0)
is surjective. But R(G/G0) = R(G)G0 = C[G∗]G0 = C[G∗/G0] . Similarly
R(L/L ∩G0) = C[L+/L ∩G0] . Hence the canonical map (induced by f )
C[G∗/G0]→ C[L+/L ∩G0] is surjective. So the canonical map
f+ : L+/L ∩G0 → G/G0 is injective. Hence Ker(f ) ⊂ L∩G0 . But L∩G0 = L0

and f is injective on L. Hence Ker(f ) is trivial, and our proof is complete.
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