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Abstract. This is an investigation of local (analytic or formal) integrating
factors near certain degenerate stationary points of plane analytic vector

fields. The method is to use blow-ups and then apply known results from
the non-degenerate case. The main result is that in general there is no

formal integrating factor which is algebraic over the quotient field of the

formal power series ring.

1. Introduction and preliminaries

Nonlinear symmetries of vector fields are hard to approach and to investigate,
but they are relevant both for the structural and the qualitative understanding of
ordinary differential equations. In dimension two, the situation is a little easier
to understand, due to the correspondence between infinitesimal symmetries and
integrating factors. The purpose of this article is to discuss integrating factors of
analytic vector fields near degenerate stationary points, continuing the work in
[13] and [14]. We note that another motivation for the investigation of integrating
factors comes from differential algebra; see Prelle and Singer [10].

We will investigate degenerate stationary points using blow-up tech-
niques. Thus we obtain detailed results on the possible structure of integrating
factors in various cases, and as a consequence we find that in general there are
not even formal integrating factors.

Let us introduce some notation and review known facts. (References to
be consulted here are Lie [7], Olver [8, 9], Prelle and Singer [10], and [13], among
others.) All functions and vector fields under consideration will be analytic,
unless specified otherwise.

To a given differential equation ẋ = f(x) on an open, nonempty subset
U of C2 , one associates the derivation Lf which assigns to a function φ : U → C
its Lie derivative Lf (φ), with Lf (φ)(x) := Dφ(x) f(x). A function ψ is called a
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first integral, resp. a semi-invariant, of ẋ = f(x) (or, briefly, of f ) if Lf (ψ) = 0,
resp. Lf (ψ) = µψ for some analytic function µ on U . The set of zeros of a
semi-invariant, as well as any level set of a first integral, is an invariant set for
ẋ = f(x).

We call the vector field f divergence-free if div(f) := trDf = 0. (This
definition depends on the choice of coordinates.) To a scalar-valued function
φ one assigns its Hamiltonian vector field qφ :=

(−∂φ/∂x2
∂φ/∂x1

)
, which is obviously

divergence-free, and has the first integral φ by construction. Locally, a two-
dimensional divergence-free vector field is equal to the Hamiltonian vector field
of some function, whence finding a first integral of a divergence-free vector field
reduces to a quadrature problem. One directly verifies that div(ψf) = Lf (ψ) +
div(f) ·ψ , so ψf will be divergence-free if and only if Lf (ψ) + div(f) ·ψ = 0. If
ψ is nonzero, and this equation is satisfied, then we call ψ an integrating factor
of ẋ = f(x). Another function ψ̃ is an integrating factor if and only if ψ̃/ψ is a
first integral or constant. (It should be noted here that there are other versions of
the differential equation in question, e.g. f2 dx1 − f1 dx2 = 0, which correspond
to other, equivalent, notions of integrating factor.)

There is a well-known correspondence between integrating factors and
infinitesimal orbital symmetries in dimension two: If g is a vector field such that
[g, f ] = λf for some analytic λ (with the Lie bracket defined by [g, f ] (x) :=
Df(x) · g(x) − Dg(x) · f(x), as usual), then either θ(x) := det(f(x), g(x)) is
identically zero, or θ−1 is an integrating factor for f . Conversely, one can
construct infinitesimal orbital symmetries from integrating factors, cf. [13], for
instance.

By C[[x1, x2]]c (resp. C[[x1, x2]]) we denote the algebra of power series
with a nontrivial region of convergence (resp. the algebra of formal power series);
see Ruiz [11] for an account of the algebraic properties of these rings. We
recall that both are noetherian and unique factorization domains, and that the
invertible elements are precisely those with a nonzero constant term. Moreover,
by C((x1, x2))c , resp. C((x1, x2)) we denote the respective quotient fields. We
are interested in integrating factors of local analytic (or formal) vector fields that
are algebraic over C((x1, x2))c , resp. over C((x1, x2)). As for one motivation,
we recall the following classical result of Prelle and Singer ([10], Props. 1 and 2,
specialized to our context):

Theorem1.1. Let ẋ = f(x) be given, with f an analytic or formal vector
field.
(a) If this equation has a first integral that is elementary (in the sense of differen-
tial algebra) over C((x1, x2))c (resp. C((x1, x2))) then it admits an integrating
factor that is algebraic over C((x1, x2))c (resp. C((x1, x2))).
(b) If the equation admits an integrating factor that is algebraic over C((x1, x2))c
(resp. C((x1, x2))) then it also admits an integrating factor of the specific form

(ϕd1
1 · · ·ϕdrr )−1,

with the ϕi non-invertible and irreducible semi-invariants, and rational numbers
di . (The possibility r = 0 is included, with integrating factor 1.)
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In the local theory it is sensible to reserve the notion “semi-invariant”
for non-invertible series, and we will do so in the following. We will sometimes
employ coordinate transformations in order to simplify a problem. Then an
integrating factor φd1

1 · · ·φdrr exp(µ) will be changed to the integrating factor
(φ1 ◦ Ψ)d1 · · · (φr ◦ Ψ)dr exp(ν) by a coordinate transformation Ψ, with exp(ν)
also incorporating the functional determinant of Ψ; see [14], for instance.

2. Degenerate stationary points

We assume that f(0) = 0, thus f =
∑
i≥1 f

(i) , with each f (i) a homogeneous
polynomial of degree i , and abbreviate B := f (1) = Df(0). Let B = Bs+Bn be
the decomposition into semisimple and nilpotent part, and α1 , α2 the eigenvalues
of B . We call the stationary point 0 of the differential equation nondegenerate
if Bs 6= 0 (equivalently, not both αi are zero), and degenerate otherwise. For
nondegenerate stationary points we have the Poincaré-Dulac normal form at our
disposal (see Bibikov [3], Bruno [4], and [12]): There is an invertible formal power
series Ψ = id + . . . that is solution-preserving from ẋ = f(x) to ẋ = f̃(x), with
f̃ = B + . . . a formal power series vector field in normal form, thus satisfying
[Bs, f̃ ] = 0. For easy reference we quote some parts of a result recorded in [14],
Thm. 2.3.

Lemma2.1. Let Bs = diag(α1, α2) , with α1 6= 0 . Let f be a (formal power
series) vector field in normal form.
(a) If α2/α1 is not a rational number then x1 and x2 are, up to multiplica-
tion with invertible series, the only irreducible semi-invariants of f = Bs in
C[[x1, x2]] . There is no first integral that is algebraic over C((x1, x2)) , and
the only integrating factor algebraic over C((x1, x2)) , up to multiplication by
scalars, is (x1x2)−1 .
(b) Let α2/α1 = −q/p , with p and q relatively prime positive integers, p ≤ q ,
and f = B +

∑
j≥1 γ

j(σj id + τjB) , where σj , τj ∈ C , and γ(x) := xq1x
p
2 . Then

x1 and x2 are, up to multiplication with invertible series, the only irreducible
semi-invariants of f in C[[x1, x2]] . If not all the σj are equal to zero then there
exists no first integral that is algebraic over C((x1, x2)) . Up to multiplication by
constants, the only integrating factor that is algebraic over C((x1, x2)) is(

x1+lq
1 x1+lp

2 ρ(x)
)−1 =

(
x1x2γ(x)lρ(x)

)−1
,

with l the smallest index such that σl 6= 0 , and

x1x2ρ(x) = det(B(x), σlx+
∑

γ(x)iσl+i(x)).

(c) Let α2 = 0 , and f = B +
∑
j≥1 γ

j(σj id + τjB) , where σj , τj ∈ C , and
γ(x) := x2 . Then x1 and x2 are, up to multiplication with invertible series, the
only irreducible semi-invariants of f in C[[x1, x2]] . If not all the σj are equal
to zero then there exists no first integral that is algebraic over C((x1, x2)) . Up
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to multiplication by constants, the only integrating factor that is algebraic over
C((x1, x2)) is (

x1x
1+l
2 ρ(x)

)−1 =
(
x1x2γ(x)lρ(x)

)−1
,

with l the smallest index such that σl 6= 0 , and ρ is defined similarly to (b).

The remaining case, with α2/α1 rational and positive, is just the case of a
dicritical nondegenerate stationary point, which is characterized by the existence
of infinitely many irreducible semi-invariants; see [14], loc. cit., for details.

In [14], applications of (2.1) to polynomial vector fields were presented.
Here we discuss an application to degenerate stationary points of an analytic
differential equation ẋ = f(x). Degeneracy then means that B = Df(0) is
nilpotent. The general properties of degenerate stationary points are not as well
understood as those of nondegenerate ones. A relatively recent result by Camacho
and Sad [5] shows that there is always an analytic semi-invariant. Little seems
to be known about integrating factors.

A familiar strategy to deal with degenerate stationary points is to use
blow-ups (σ -processes), and thus obtain stationary points of simpler type. One
method in the real setting is to use polar coordinates (see Guckenheimer and
Holmes [6], Ch. 7) to blow up a stationary point into an invariant circle that
contains less degenerate stationary points. An other approach employs rational
functions, and in essence yields a blow-up of a stationary point to a projective
line; see Arnold [2], Ch. 1, §2, and also Anosov et al. [1], Ch. 5, §1, for details.
According to theorems by Bendixson and Seidenberg (see [1], loc. cit.), every
stationary point can be transformed to a collection of nondegenerate stationary
points by a finite series of blow-ups. We will use the second version in an
algebraic incarnation, which amounts to employing what Bruno [4] calls “power
transformations”. In the following, a number of properties of such blow-ups,
most of them well-known, will be listed, and ad-hoc proofs are provided for the
sake of completeness. (There is no intention to state the results in full generality.)

Lemma2.2. Define Φ : C2 → C2 by

Φ(x) =
(

x1

x1x2

)
=
(

x1

x1(x2 − a) + x1a

)
,

with a ∈ C arbitrary.
(a) For any a the map Φ induces a morphism from C[[x1, x2]] to C[[x1, x2−a]]
via ψ 7→ ψ ◦ Φ , and convergent series are mapped to convergent series.
(b) For any a there is a unique analytic vector field f∗ near (0, a)t such that
the identity DΦ(x)f∗(x) = f(Φ(x)) holds; thus Φ maps parameterized solutions
of ẋ = f∗(x) to parameterized solutions of ẋ = f(x) . There is a unique integer
s ≥ 0 such that f∗ = xs1 · f̃ , and x1 does not divide both entries of f̃ .
(c) Let ψ be a formal or analytic semi-invariant of f , and let q be a nonnegative
integer and ψ̃ a (formal resp. convergent) series such that (at the point (0, a)t )
one has ψ ◦Φ = xq1 · ψ̃ , with x1 and ψ̃ relatively prime. Then ψ̃ is invertible or
a semi-invariant of f̃ .
(d) Let ρ be an irreducible local analytic semi-invariant of f̃ at (0, a)t , with
x1 and ρ relatively prime, and assume that locally the zero set Z of ρ is the
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image of some non-constant analytic map µ : U → C2 , with U ⊆ C open and
nonempty. Then there is a semi-invariant σ of f such that Φ(Z) is contained
in the zero set of σ .
Proof. (a) For ψ =

∑
cikx

i
1x
k
2 , the definitions and the binomial formula yield

ψ ◦ Φ =
∑
i,k

cik

k∑
l=0

(
k
l

)
alxi+k1 (x2 − a)l,

and clearly this series is summable, i.e., each monomial xm1 (x2−a)n occurs only
finitely many times with nonzero coefficient.
(b) Since f(0) = 0, each entry of f ◦Φ is divided by x1 , whence the factor x−1

1

in the product with DΦ(x)−1 cancels. The second assertion is obvious.
(c) By a general argument, ψ∗ := ψ ◦Φ is a semi-invariant of f∗ . Since products
and (non-invertible) divisors of semi-invariants are again semi-invariants, and x1

is a semi-invariant of f∗ , ψ̃ is also a semi-invariant of f∗ . Thus xs1Lf̃ (ψ) = ν ·ψ
for some analytic ν , and xs1 must divide ν . But this implies that ψ̃ is a semi-
invariant for f̃ .
(d) The image Φ(Z) = Φ(µ(U)) is contained in some one-dimensional local
analytic set, which coincides with the local zero set of some analytic σ ; cf. Ruiz
[11]. Since Z is locally invariant for f̃ and for f∗ , Φ(Z) is locally invariant for
ẋ = f(x), whence σ is a semi-invariant of f .

Remark2.3. (a) Obviously one gets analogous results for Θ(x) =
(
x1x2
x2

)
, and

for compositions of Φ and Θ.
(b) In the situation of (2.2)(c), ψ̃ can only be a semi-invariant (i.e., non-
invertible) if (0, a)t is a stationary point of f̃ . If a nondegenerate stationary
point of f̃ admits a linearization of a type as enumerated in (2.1), then the
hypothesis of (2.2)(d) is satisfied, due to smoothness of the zero set of the semi-
invariant and the implicit function theorem.

Let us now return to ẋ = f(x), with Df(0) = B . If B 6= 0 then we
may assume that B =

(
0 1
0 0

)
, and this case will be discussed next. We will use a

suitable normalization, and for our purposes the Arnold-Bogdanov normal form
seems the most convenient. The first statement of the following lemma is well-
known (see, for instance, Guckenheimer and Holmes [6], 7.3), while the second
results from an elementary computation.

Lemma2.4. Let B =
(

0 1
0 0

)
, and f(x) = B(x) +

∑
j≥2 f

(j)(x) , with f (j)

homogeneous of degree j , a formal power series vector field. Then there exists
an invertible formal transformation into Arnold-Bogdanov normal form

f∗(x) = B(x) +
∑
j≥2

(
0

αjx
j−1
1 x2 + βjx

j
1

)
.

If f is analytic then for any integer k ≥ 2 there is an analytic transformation
into a vector field which is in normal form up to degree k . For

f(x) = B(x) +
(
ρ1x

2
1 + ρ2x1x2 + ρ3x

2
2

σ1x
2
1 + σ2x1x2 + σ3x

2
2

)
+ t.h. o.,
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(with “t.h.o.” standing for “terms of higher order”), one has

f∗(x) = B(x) +
(

0
σ1x

2
1 + (σ2 + 2ρ1)x1x2

)
+ t.h. o.

Theorem2.5. The analytic equation

ẋ = f(x) :=
(
x2

0

)
+

k∑
j=2

(
0

αjx
j−1
1 x2 + βjx

j
1

)
+ t.h. o.,

with α2 6= 0 and β2 6= 0 , and k ≥ 4 , admits a unique irreducible analytic
semi-invariant φ(x) = x2

2 + t.h. o. ∈ C[[x1, x2]] , up to multiplication by an
invertible series. Furthermore, if there is an integrating factor that is algebraic
over C((x1, x2)) then it is equal to φ−7/6 exp(µ) , for some series µ which is
unique up to an additive constant.

Proof. (i) To show the assertion about semi-invariants, we use a blow-up. We
adopt the procedure in Bruno [4], Ch. II, 3.5. The map

Ψ(x) =
(
x2

1x2

x3
1x

2
2

)
is solution-preserving from ẋ = x1f̃(x), with

f̃(x) =
(
−β2x1 + 2x1x2 − α2x

2
1x2 + . . .

2β2x2 − 3x2
2 + 2α2x1x

2
2 + . . .

)
,

to ẋ = f(x). (In the notation of (2.2) and (2.3) one has Ψ = Φ ◦ Θ ◦ Φ, hence
the results above are applicable.) The inverse image of {0} under Ψ is the
union Y of the coordinate axes. Therefore we have induced maps Ψ∗ = Ψ∗(a1, 0) :
C[[x1, x2]] → C[[x1 − a1, x2]] , σ 7→ σ ◦ Ψ, and Ψ∗ = Ψ∗(0, a2) : C[[x1, x2]] →
C[[x1, x2 − a2]] , σ 7→ σ ◦ Ψ, for all a1, a2 ∈ C . Also note that x1 and x2 are
semi-invariants of f̃ , or invertible, near any point of Y .

Let ψ be a semi-invariant of f . Then ψ ◦ Ψ is a semi-invariant of f̃
or invertible at any point of Y , and the same holds for the series ψ̃ obtained
from ψ ◦ Ψ by dividing out maximal powers of x1 and x2 . Given a point
(a1, a2)t on Y (so a1 = 0 or a2 = 0) such that the corresponding ψ̃ is not
invertible, this point must be stationary for f̃ . On Y there are the two stationary
points (0, 0) and (0, 2β2

3 ). (The higher order terms have no influence on this.)
From Df̃(0, 0) = diag(−β2, 2β2) and (2.1) follows that x1 and x2 are the only
irreducible semi-invariants for f̃ at (0, 0). Their vanishing sets are contained
in Y , and therefore ρ̃ (taken at (0, 0)) is invertible for any semi-invariant ρ of
f . The eigenvalues of Df̃(0, 2β2

3 ) are β2
3 and −2β2 ; hence there are exactly

two irreducible semi-invariants, x1 being one of them. The other one is easily
computed as

φ̃ := 8α2β2x1 − 21(x2 −
2β2

3
) + t.h. o.
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Thus, by (2.2)(c) there is only one irreducible (formal and analytic) semi-
invariant φ for ẋ = f(x) at 0. To get its initial terms explicitly, one may
proceed as in Bruno [4] , loc. cit., and use (2.2)(d). Computing the eigenvector
of Df̃(0, 2β2/3) yields a local analytic parameterization

v(s) =
(

21s+ . . .
2β2/3 + 8α2β2s+ . . .

)
of the zero set of φ̃ , and thus

Ψ(v(s)) =
(

2β2/3 · 212s2 + . . .
(2β2/3)2 · 213s3 . . .

)
is a local analytic parameterization of the zero set of φ . This leads to

φ(x) = x2
2 −

2
3
β2x

3
1 + . . . .

(ii) Consider the equation Lf (φ) = d · div(f) · φ , for some rational d . With
div(f) = α2x1 + . . . , and φ = x2

2 + φ3 + . . . one obtains by comparing terms of
degree 3 that

x2
∂φ3

∂x1
+ (α2x1x2 + β2x

2
1) · 2x2 = d · α2x1x

2
2,

which yields

φ3 = −2
3
β2x

3
1 +

(
d

2
− 1
)
α2x

2
1x2 + ρ3x

3
2.

Comparing homogeneous terms of degree 4 yields an equation x2
∂φ4
∂x1

= . . . , and
the condition that the coefficient of x4

1 must vanish in the remaining terms turns
out to force

(
1− d

2

)
α2β2 = 2

3dα2β2 , hence d = 6
7 .

(iii) The equation admits no (nonconstant) first integral in C((x1, x2)). Such a
first integral σ would be a product of powers of irreducible semi-invariants and
an invertible series. Since φ is the only irreducible semi-invariant, this would
imply that σ = φk exp(ν). One may assume that k = 1 (take some power of σ ,
which is also a first integral, and note that σ(0) = 0 w.l.o.g.). But now the result
of (ii), with d = 0, yields a contradiction. As a consequence, there is no first
integral which is algebraic over C((x1, x2)), since the coefficients of its minimum
polynomial would themselves be first integrals or constant.

From (ii) it also follows that Lf (φ exp(µ))1/d = div(f)(φ exp(µ))1/d

forces d = 6
7 , and the integrating factor is unique according to the previous

paragraph.

Corollary2.6. (a) If the vector field

f(x) = B(x) +
(
ρ1x

2
1 + ρ2x1x2 + ρ3x

2
2

σ1x
2
1 + σ2x1x2 + σ3x

2
2

)
+ t.h. o.,
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with σ1 6= 0 , and 2ρ1 + σ2 6= 0 , admits an integrating factor that is algebraic
over C((x1, x2)) then it is unique and of the form (x2

2 + t.h. o.)−7/6 .
(b) In the setting of (2.5) there exists an integrating factor only if a certain
polynomial in the αi and βi , with i ≤ 3 , vanishes. Thus, in general there will
be no algebraic integrating factor.

Proof. (Sketch.) Part (a) is immediate from (2.4) and (2.5), while part (b)
follows from a straightforward investigation of the degree 5 and degree 6 terms
of the recursion in part (ii) of the proof of (2.5).

Remark2.7. As (2.6) shows, computation of a normal form with respect to a
nilpotent linear part will not generally produce a vector field that is integrable in
an elementary manner. Note that this fact does not depend on the specific choice
of a normal form. This stands in marked contrast to the case of two-dimensional
normal forms with respect to a semisimple linear part.
However, there do exist vector fields which admit an integrating factor as in (2.6).
For instance, the equation

ẋ =
(
x2

0

)
+
(

2x2
1

3
2x

2
1 + 7x1x2

)
(which was constructed using [13], Prop. (3.4), with B = diag(2, 3)), admits the
integrating factor (x3

1 − x2
2)−7/6 . It is worth noting that the irreducible semi-

invariant of an equation as in (2.6), if it exists, is formally equivalent to x2
2 +τx3

1 ,
for some τ 6= 0. (This follows from the expression for φ3 in the proof of (2.4),
and a Newton polygon argument; see, for instance, Bruno [4], Ch. I.) Therefore
[13] essentially allows the construction of all the equations in (2.6) which admit
an algebraic integrating factor.

Let us next discuss degenerate stationary points with vanishing lineariza-
tion. We do not attempt to investigate these completely, but we will present some
results showing that generically there will be no integrating factor which is al-
gebraic over C((x1, x2)). Thus, let ẋ = f(x) be given, with f 6= 0, f(0) = 0,
and Df(0) = 0. Then there is an integer r ≥ 2 such that f =

∑
k≥r f

(k) , with
homogeneous polynomials f (k) , and f (r) 6= 0. Let us collect a few well-known
facts about homogeneous systems. (One source of complete proofs is [15].)

Lemma2.8. For a given homogeneous polynomial vector field f (r) , define
ψ(x) := det(f (r)(x), x) . Then ψ 6= 0 unless there is a polynomial µ such that
f(x) = µ(x) · x for all x .

If ψ 6= 0 then Lf(r)(ψ) = div(f (r))ψ , hence ψ−1 is an integrating
factor. Moreover, ψ = φ1 · · ·φr+1 is a product of linear forms, and there are
homogeneous polynomials λi , of degree r − 1 , such that Lf(r)(φi) = λiφi , for
1 ≤ i ≤ r + 1 .

The vector field f (r) admits a (homogeneous) rational first integral if and
only if the λi are linearly dependent over the field of rational numbers.

Proof. (Sketch.) It follows from [13], Prop. 1.1, that ψ−1 is an integrating
factor. Since the only irreducible complex homogeneous polynomials in two



Walcher 287

variables are those of degree 1, one gets a prime factorization with linear forms.
Since ψ is semi-invariant, so are all the φi .

As to the last assertion, note that if there is a rational first integral
then there is a homogeneous rational first integral, which must be of the form
φk1

1 · · ·φ
kr+1
r+1 . (This follows from simple computations; see [15].) The observation

Lf(r)(φk1
1 · · ·φ

kr+1
r+1 ) = (k1λ1 + . . .+ kr+1λr+1)(φk1

1 · · ·φ
kr+1
r+1 )

then finishes the proof.

For the detailed investigation of the stationary point a blow-up is once
again useful.

Lemma2.9. Let the analytic differential equation ẋ = f(x) be given, with
f =

∑
k≥r f

(k) , and

f (r) =
(∑r

i=0 ρix
r−i
1 xi2∑r

i=0 σix
r−i
1 xi2

)
.

Assume that ρr 6= 0 (whence ψ(x) := det(x, f (r)(x)) is not identically zero),
and that ψ has pairwise relatively prime linear factors φ1, . . . , φr+1 .

Then Φ(x) =
(
x1
x1x2

)
is solution-preserving from an analytic equation

ẋ = xr−1
1 f̃(x) to ẋ = f(x) , with

f̃(x) =
(
ρ0x1 + ρ1x1x2 + x2

1(. . .)
ν(x2) + x1(. . .)

)
,

and ν(x2) = σ0 + (σ1 − ρ0)x2 + . . .+ (σr − ρr−1)xr2 − ρrxr+1
2 .

The vector field f̃ has exactly r + 1 stationary points on the invariant
line x1 = 0 , and these are nondegenerate. If none of these is dicritical then f has
precisely r + 1 irreducible analytic (or formal) semi-invariants ψi = φi + t.h. o.
in 0.

Proof. This follows immediately from (2.2) and (2.3), since by (2.1) every
stationary point on x1 = 0 yields precisely one nontrivial semi-invariant.

Theorem2.10. Let the notation and hypotheses be as in (2.9). Assume that
none of the stationary points of f̃ on the line x1 = 0 is dicritical, and that f (r)

has no nonconstant rational first integral.
(a) If ẋ = f(x) admits an integrating factor that is algebraic over C((x1, x2))
then it is necessarily of the form (φ1 · · ·φr+1 + t.h. o.)−1 .
(b) Given f (r) , the vector field f (r+1) can be chosen in such a way that ẋ = f(x)
admits no algebraic integrating factor.

Proof. (a) Assume that f admits the integrating factor

(ψd1
1 · · ·ψ

dr+1
r+1 )−1 exp(µ).

Then a simple computation shows that f (r) admits the integrating factor

(φd1
1 · · ·φ

dr+1
r+1 )−1,
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and (2.7) shows that d1 = . . . = dr+1 = 1.
(b) Let γ−1 be an integrating factor for f . Then γ =

∑
i≥r+1 γi , with γi a

homogeneous polynomial of degree i , and γr+1 6= 0 is a product of pairwise
different primes, according to part (a). The integrating factor condition yields

(∗) Lf(r)(γr+2)− div(f (r))γr+2 = −Lf(r+1)(γr+1) + div(f (r+1))γr+1.

Denote by Sj the vector space of homogeneous polynomials of degree j
(which has dimension j + 1), and by Pj the space of homogeneous vector fields
with entries of degree j .

The image of the linear map ∆ : Sr+2 → S2r+1 , µ 7→ Lf(r)(µ) −
div(f (r))µ , has dimension at most equal to r + 3 < 2r + 2, and therefore ∆
is not onto.

On the other hand, the linear map Γ : Pr+1 → S2r+1 , p 7→ Lp(γr+1) −
div(p)γr+1 , is onto: Note that p ∈ ker(Γ) if and only if γ−1

r+1 is an integrating
factor for p . Since the entries of γ−1

r+1p are homogeneous of degree 0, it follows
from the proof of [13], Prop. 3.4, that this is the case if and only if

p = ρ

(
−∂γr+1/∂x2

∂γr+1/∂x1

)
+ λx,

with a linear form ρ , and λ (and therefore p) uniquely determined by ρ . This
shows that dim(ker(Γ)) = dim(S1) = 2, and comparing dimensions proves the
surjectivity of Γ.

Therefore, the equation ∆(γr+2) = −Γ(f (r+1)) (which is just (∗) rewrit-
ten) has a solution only if f (r+1) lies in some fixed proper subspace of Pr+1 .

Note that the question of existence of rational first integrals of f (r) can
be decided by (2.8). One also knows that there can be no rational first integral
of f (r) if one of the stationary points of f̃ on the line x1 = 0 has a non-rational
eigenvalue ratio; see (2.1).

If f (r) is given then an elementary computation yields the conditions
on the coefficients of f (r+1) . Moreover, there will be additional conditions from
higher degree terms. For example, the equation

ẋ =
(
−2x2

1 + x1x2 + 2x2
2

−x1x2 + x2
2

)
+
(
x1x

2
2

0

)
admits no integrating factor that is algebraic over C((x1, x2)).

In view of the theorems of Bendixson and Seidenberg, the strategy of
blowing up and reducing to the nondegenerate case is clearly applicable to all
degenerate stationary points in the plane. But with the currently available
methods one seems to be restricted to a case-by-case analysis of various special
classes.



Walcher 289

References

[1] Anosov, D. V. et al., “ Ordinary differential equations and smooth dy-
namical systems,” Springer-Verlag, Berlin etc., 1997.

[2] Arnold, V. I., “ Geometrical methods in the theory of ordinary differential
equations,” Springer-Verlag, Berlin etc., 1988.

[3] Bibikov, Yu. N., “Local theory of analytic ordinary differential equa-
tions,” Lecture Notes in Mathematics 702. Springer-Verlag, Berlin etc.,
1979.

[4] Bruno, A. D., “ Local methods in nonlinear differential equations,” Sprin-
ger-Verlag, Berlin etc., 1989.

[5] Camacho, C., and P. Sad, Invariant varieties through singularities of
holomorphic vector fields, Ann. Math. 115 (1982), 579–595.

[6] Guckenheimer, J., and P. Holmes, “Nonlinear oscillations, dynamical
systems, and bifurcations of vector fields,” Springer-Verlag, Berlin etc.,
1983.

[7] Lie, S., ,,Vorlesungen über Differentialgleichungen mit bekannten in-
finitesimalen Transformationen,“ Teubner-Verlag, Leipzig 1891; Reprint
Chelsea Publ., 1967.

[8] Olver, P. J., “Applications of Lie groups to differential equations,” Sprin-
ger-Verlag, New York etc., 1986.

[9] —, “Equivalence, invariants and symmetry,” Cambridge University Press,
1995.

[10] Prelle, M. J., and M. F. Singer, Elementary first integrals of differential
equations, Trans. Amer. Math. Soc. 279 (1982), 215–229.

[11] Ruiz, J. M., “The basic theory of power series,” Vieweg-Verlag, Braun-
schweig, 1993.

[12] Walcher, S., On differential equations in normal form, Math. Annalen
291 (1991), 293–314.

[13] —, Plane polynomial vector fields with prescribed invariant curves, Proc.
Royal Soc. Edinburgh 130A (2000), 633–649.
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