New a-T-menable HNN-extensions

Światosław R. Gal and Tadeusz Januszkiewicz*

Communicated by A. Valette

Abstract. The Baumslag-Solitar groups are a-T-menable. This is proved by embedding them into topological groups and studying representation theoretic properties of the latter. The paper is motivated by a question of A. Valette. 2000 Mathematics Subject Classification: 20F65

We are mainly interested in Baumslag-Solitar groups which are discrete. However, topological groups (Lie groups and the automorphism group of a tree) arise in the proof.

Definition 1 (M. Gromov). A locally compact, second countable group G is a-T-menable iff there exists a metrically proper affine isometric action of G on some Hilbert space.

a-T-menability is often referred to as the Haagerup approximation property. It is equivalent to the existence in $C_0(G)$ of an approximate unit of positive definite functions on G. For ample discussion one may consult [2].

Let $G \subset \mathfrak{N}$ be a closed subgroup of a locally compact compactly generated topological group \mathfrak{N} . Let $i_k: H \to G$ (k = 1, 2) be two inclusions onto finite index open subgroups, which are conjugated by an automorphism ϕ of \mathfrak{N} .

The main case of interest is when G is discrete and \mathfrak{N} is a Lie group.

Definition 2. A \mathfrak{N} -BS group is the group derived from such (G, H, i_1, i_2) by the (topological) HNN construction. In other words, if G is given by the presentation $\langle S|R \rangle$, Γ has the presentation $\langle S, t|R, ti_1(g)t^{-1} = i_2(g) \ \forall g \in H \rangle$.

Through this paper let Γ be a $\operatorname{\mathfrak{N}\text{-}BS}$ group as above.

Since we are working with topological presentations, recall that the topology in the HNN extension Γ is given by the basis $\mathcal{B} = \{\gamma U \gamma' : U \text{ open} \text{ in } G, \gamma, \gamma' \in \Gamma\}$. It is clear, that Γ is a topological group with respect to \mathcal{B} .

To see that \mathcal{B} is in fact a basis consider U open in G. We can decompose U with respect to $i_1(H)$ as follows $U = \bigcup i_1(U_n)g_n$, where g_n are representatives of cosets of $i_1(H)$. Then $tU = \bigcup i_2(U_n)tg_n$. Therefore any set of \mathcal{B} can be

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

 $^{^{\}ast}~$ Both authors were partially supported by a KBN grant 2 P03A 035 20.

written uniquely in form $\bigcup U_{\gamma}\gamma$ where U_{γ} runs over open subsets of G and γ runs over the chosen set of representatives of $G \setminus \Gamma$. Thus \mathcal{B} is closed under the intersections and in particular \mathcal{B} is a basis. The same argument shows that the topology on G induced from Γ concides with the original one (i.e. $G \subset \Gamma$ is an open embedding).

Examples:

- 1. $(\mathfrak{N} = \mathbb{R})$ Baumslag-Solitar group with parameters p and q is given by a following presentation $BS_q^p = \langle x, t | x^p = tx^q t^{-1} \rangle = \text{HNN}(\mathbb{Z}, \mathbb{Z}, p, q).$
- 2. $(\mathfrak{N} = \mathbb{R}^n)$ Torsion free, finitely generated, abelian-by-cyclic groups are exactly ascending $(i_1 = id)$ HNN extensions of \mathbb{Z}^n with i_2 given by a n by n matrix with nonzero determinant [1].
- 3. \mathfrak{N} a homogeneous nilpotent group (i.e. one admitting a dilating automorphism ϕ) with a discrete subgroup $G \subset \mathfrak{N}$ such that $\phi(G) \subset G$.

An obvious adaptation of the Bass-Serre theory [6] to the topological context shows that for a topological HNN extension Γ of a group G there is a tree T with an edge-transitive Γ -action such that the vertex stabilizers are conjugated to G and edge stabilizers are conjugated to H.

Since $i_k(H)$ are of finite index in G, T is locally finite. So, the simplicial automorphism group $\operatorname{Aut}(T)$ carries the natural (compact-open) topology such that the group is locally compact. More precisely, the basis of neighborhoods of the identity is the family $\mathcal{U}_K := \{g | gv = v \ \forall v \in K\}$ where K runs over the family of the compact subsets $K \subset T$. Denote $j_T \colon \Gamma \to \operatorname{Aut}(T)$ the homomorphism given by the action.

Define $\mathfrak{N} = \mathbb{Z}$ ffn \mathfrak{N} , to be the semidirect product given by the \mathbb{Z} -action on \mathfrak{N} via ϕ . There is an obvious homomorphism $j_{\mathfrak{N}}: \Gamma \to \mathfrak{N}$, which is the identity on G and sends t to the generator of \mathbb{Z} .

Theorem 1. Let Γ be a \mathfrak{N} -BS group, and let j_T and $j_{\mathfrak{N}}$ be the homomorphisms defined above. Then the homomorphism $j = (j_T, j_{\mathfrak{N}}): \Gamma \to Aut(T) \times \widetilde{\mathfrak{N}}$ is an embedding onto a closed subgroup which is a topological isomorphism onto its image.

Proof. Observe that since $j_{\mathfrak{N}}$ restricted to G is an embedding onto a closed subgroup (this follows from the fact that G in closed subgroup in \mathfrak{N}) the same is true for j restricted to G. Let v be the vertex stabilized by G. Then $j_T(G) = \operatorname{Stab}_v \cap j_T(\Gamma)$.

Let $g \in \Gamma$ such that j(g) = 1. Since $j_T(g) = 1$, gv = v i.e. $g \in G$. Since $j_{\mathfrak{N}}$ restricted to G is an embedding; this implies g = 1. Thus injectivity follows.

Let $\gamma \notin j(\Gamma)$. Since Γ acts transitively on T, we can multiply γ by some element of $j(\Gamma)$ and assume that $\gamma v = v$. Then $(\operatorname{Stab}_v - G) \times \mathfrak{N}$ is an open neighbourhood of γ omitting $j(\Gamma)$. So $j(\Gamma)$ is closed.

The topologies on G and j(G) coincide. Since G and j(G) are open in Γ and $j(\Gamma)$ respectively, the same is true for Γ and $j(\Gamma)$.

Corollary 1. If \mathfrak{N} is a-T-menable then so are \mathfrak{N} -BS groups.

Proof. Since T is locally finite, the group Aut(T) is a-T-menable by a result of Haagerup [4].

A cyclic extension of a-T-menable group is a-T-menable by [5]. Therefore $\widetilde{\mathfrak{N}}$ is a-T-menable.

It is clear that a-T-menability is closed under direct products and under taking closed subgroups. Thus the corollary follows from Theorem 1.

Remark 1. According to Chapter 4 of [2] every a-T-menable connected Lie group \mathfrak{N} is locally isomorphic to a direct product of an amenable group and copies of SO(1, n) and SU(1, n). A Lie group is amenable if it is compact-by-solvable. Thus the examples 1.-3. are a-T-menable.

Remark 2. Another proof of Corollary 1, relying on the study of a-T-menable of amalgams, is given in a forthcoming paper by the first author [3].

References

- [1] Bieri, R., and K. Strebel, *Almost finitely presented soluble groups*, Comm. Math. Helv. **53** (1978), 258–278.
- [2] Cherix, P. A., M. Cowling, P. Jolissant, P. Julg, and A. Valette, "Groups with the Haagerup property (Gromov's a-T-menability)," Birkhäuser Verlag, 2001.
- [3] Gal, S. R., *a-T-menability of groups acting on trees*, Preprint.
- [4] Haagerup, U., An example of a non-nuclear C^{*}-algebra which has the metric approximation property, Invent. Math. **50** (1979), 279–293.
- [5] Jolissaint, P., Borel cocycles, approximation properties and relative property T, Ergodic Th. Dyn. Syst. **20** (2000), 483–499.
- [6] Serre, J. P., "Trees," Springer-Verlag, 1980.

Światosław R. Gal Instytut Matematyczny Uniwersytet Wrocławski pl. Grunwaldzki 2/4 50-384 Wrocław sgal@math.uni.wroc.pl Tadeusz Januszkiewicz Instytut Matematyczny PAN and Instytut Matematyczny Uniwersytet Wrocławski pl. Grunwaldzki 2/4 50-384 Wrocław tjan@math.uni.wroc.pl

Received January 6, 2002 and in final form October 25, 2002