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Abstract. There is a well-known interpretation of group cohomology in
terms of (generalized) group extensions. For a connected semisimple com-

pact Lie group K , we prove that the extensions corresponding to classes in

H4(BK,Z) can be interpreted in terms of automorphisms of a pair consisting
of a type II1 von Neumann algebra and a Cartan subalgebra.

0. Introduction

Throughout this paper K will denote a compact Lie group, BK will denote
a classifying space for K , and if K acts continuously on an abelian separable
metrizable topological group A , then H∗

K(A) will denote the corresponding Borel
group cohomology as in [8] (see also [9], [11]).

There are natural isomorphisms

(0.1) H4(BK, Z) ∼= H4
K(Z) ∼= H3

K(T) ∼= H2
K(U(K, T)/T),

where U(K, T) = U(L∞K), the unitary group of the abelian von Neumann
algebra L∞K , equipped with the strong operator topology, and the action of K
on U(K, T) is induced by left translation. The first isomorphism depends only
upon the fact that the coefficient group Z is discrete (see [9] or [11]). The second
isomorphism follows from dimension shifting, using the short exact sequence
Z→ R→ T , and depends upon the vanishing of H∗

K(R) (see Theorem 3 of [11],
[4], and [1]). The last isomorphism is a consequence of dimension shifting, using
the short exact sequence T → U(K, T) → U(K, T)/T , and depends upon the
vanishing of H∗

K(U(K, T)) (see [8]).
The isomorphisms (0.1) imply that given a level l ∈ H4(BK, Z), we can

identify l with (the isomorphism class of) an abelian noncentral extension El ,

(0.2) 0→ T→ U(K, T)→ El → K → 0,

where K acts on U(K, T) via its left action on K (see (4.2) below for an explicit
realization of El in the case K = SU(2)).

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



200 Pickrell

For various reasons the extension (0.2) is reminiscent of

(0.3) 0→ T→ U(M)→ Aut(M)→ Out(M)→ 0,

where M is a von Neumann algebra factor, and Aut(M) acts naturally on
U(M), the unitary group of M . This suggests the following

Problem 0.4. Given a level l , does there exist a factor Ml (preferably finite)
such that K is faithfully represented as outer automorphisms of Ml and the
induced extension

(0.5) 0→ T→ U(Ml)→ E → K → 0

(where E ⊂ Aut(Ml) is the inverse image of K ) is equivalent to (0.2) (in
particular, K lifts to a group of automorphisms of Ml if and only if l is trivial)?

The answer is affirmative if K = Zn , where Ml = R , the hyperfinite
II1 factor (see V.6.ε of [3]).

In this paper we will prove a weaker result. Recall that a Cartan subalge-
bra A of a type II1 von Neumann algebra M is a maximal abelian self-adjoint
subalgebra such that NU(M)(A), the normalizer of A in U(M), generates M
(see §3 of [6]). We will use the Feldman-Moore structure theory of pairs (M,A)
([6]) to prove the following theorem.

Theorem 0.6. If K is connected and semisimple, then given l ∈ H4(BK, Z) ,
there exists a faithful representation of the extension El of the form

0 → T → U(K, T) → El → K → 0
↓ ↓ ↓

0 → T → NU(M)(A) → Aut(M,A) → Out(M,A) → 0

where M is a type II1 factor and A is a Cartan subalgebra naturally identified
with L∞K .

One motivation for pursuing these questions can be explained in terms
of an analogy. We have H3(BK, Z) ∼= H2

K(T), the group of central T-extensions
of K . In particular there is the spinc extension

(0.7) 0→ T→ Spinc → SO → 0,

which is related to orientation in K -theory and spin geometry (see [7], especially
Appendix D).

For connected K , H4(BK, Z) can be identified (using Chern-Weil the-
ory) with the set of AdK -invariant symmetric forms 〈·, ·〉 satisfying 〈x, x〉 ∈ 2Z
whenever ex = 1, x ∈ k . It is the parameter space for central T-extensions
of LK , the loop group, which have a reciprocity property introduced by Segal.
The spin extension in this loop space picture is related to orientation in ellip-
tic cohomology. However, from this point of view what currently constitutes
”elliptic geometry” is Witten’s loop space Dirac operator, which lacks a proper
mathematical definition (see [10] and references there).
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The realization of H4(BK, Z) above suggests the possibility that an
appropriate M plays a role in “elliptic geometry”.

This paper is organized as follows. In §1 we recall the analysis in §4 of [6]
of the group Aut(M,A), and in terms of this analysis, we show that the questions
above have natural cohomological interpretations in terms of a double complex.
In §2 we define the double complex and apply spectral sequence techniques to
relate the relevant cohomology groups. In §3 we prove (0.6), and add a few
comments. In §4 we discuss issues relevant to the more fundamental question
(0.4). Finally in §5 we discuss our proposed application to “elliptic geometry”.

(0.8)Acknowledgement and Notation. This paper depends heavily upon [5] and
[6], and our own contributions are relatively minor. Throughout this paper we
will use the terminology and notation established in [5] and [6] (which we will
regularly explain in the text).

As in [5] and [6], R will denote an equivalence relation (in our case R
will always be defined by the right action of a countable dense subgroup π on
K ); H∗(R, T) will denote cohomology of the relation R with coefficients in T (in
our case this is isomorphic to H∗

π(U(K, T)), the Eilenberg-Maclane cohomology
of π , where π acts on the coefficients through its right action on K ); C∗ , Z∗

and B∗ will denote groups of cochains, cocycles and coboundaries, respectively;
x ∼ y denotes a pair (x, y) ∈ R , x ∼ y ∼ z , or (x, y, z) ∈ R2 , denotes a triple
such that x ∼ y and y ∼ z , and so on; and δ denotes the differential (see §6 of
[5]).

1. Feldman-Moore Theory

Lemma 1.1. If R is an equivalence relation on a group G which is normalized
by the left action of G (i.e. x ∼ y if and only if gx ∼ gy , ∀g ∈ G), then the
equivalence class of 1 is a subgroup π , and R is defined by the right action of π
on G .

The proof is trivial.
Throughout the remainder of the paper we suppose that R is an ergodic

countable equivalence relation on K , so that the corresponding subgroup π in
the Lemma is a countable dense subgroup of K . The left action of K on itself
induces a natural map K → N(R), the normalizer of R . Here N(R) is the
group of (classes of) Borel automorphisms θ of K (regarded as a Borel space,
not as a group) such that θ × θ(R) ⊂ R ; N(R) is much larger than K , which
equals the continuous automorphisms in N(R).

Given the relation R and σ ∈ H2(R, T), Feldman and Moore construct
a type II1 factor M(R, σ) with Cartan subalgebra A = L∞K (see §2 of [6]).
The details of this construction are not important for the limited purposes of
this paper; we only need to note that because Haar measure is finite, π -invariant
and ergodic, M(R, σ) is a type II1 factor.

According to Theorem 3 of §4 of [6], there is a short exact sequence

(1.2) 0→ Z1(R, T)→ Aut(M(R, σ),A)→ N(R, σ)→ 0,
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where N(R, σ) denotes the subgroup of N(R) fixing σ .
If we assume that the cohomology class σ is fixed by K , i.e. K ⊂

N(R, σ), then (1.2) induces an extension of K by Z1(R, T). This induced
extension is close in form to (0.2).

Because π is dense in K , we have

(1.4) 0→ T→ U(K, T) = C0(R, T) δ→ B1(R, T)→ 0

where the differential δ is given by

(1.5) δf(x ∼ y) =
f(y)
f(x)

(and U(K, T) = U(L∞(K)), as before). Thus the heart of the matter is to
cut down the kernel of the extension (1.2), restricted to K , from Z1(R, T) to
B1(R, T). To analyze this question, we need to recall some details concerning
(1.2).

We fix a function s : R2 → T representing σ . By Prop 7.7 of [5], we
can suppose that s is normalized, meaning that s(x ∼ y ∼ z) = 1 whenever two
of the variables are the same. Because σ is fixed by K , there exists a function

(1.6) d : K → U(R, T) = C1(R, T) : g → dg

such that δdg = s
sg and d1 = 1; here sg denotes the transform of s by g , where

g acts naturally (from the left) on the domain of s , R2 . We can choose d to be
a Borel function, for d is a lift of a well-defined map d ,

(1.7)
C1(R, T)

d↗ ↓
K

d→ C1(R, T)/Z1(R, T)
,

and there exist Borel cross-sections for the projection. Because s is normalized,
dg(x ∼ y) is automatically skew-symmetric in x, y (to see this, in the equation
δdg = ss−1

g , evaluated on the triple x ∼ y ∼ z , take y = z ). Note that s has
values in T , so that we cannot average to obtain an s which is K -invariant.

According to Theorem 2 of [6] there is an isomorphism of Aut(M,A)
with a group G(s), where G(s) consists of pairs (c, θ) ∈ Z1(R, T) × N(R, σ)
with multiplication

(1.8) (c1, θ1) ∗ (c2, θ2) = (c1c
θ1
2

dθ1θ2

dθ1d
θ1
θ2

, θ1θ2)

(where we have momentarily extended d to N(R, σ), as in §4 of [6]). Recall
from (1.6) that d has values in C1(R, T), not necessarily Z1(R, T), so that the
extension (1.8) is not necessarily equivalent to a semidirect product.

We are interested in the restriction of the multiplication (1.8) to
Z1(R, T) × K , so that θ1, θ2 are replaced by g, h ∈ K . From this we see
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that we can cut down the extension (1.2), restricted to K , to B1(R, T), i.e.
B1(K, T)×K is closed under the multiplication in (1.8), if and only if

(1.9) (δKd)g,h =
dg

hdg

dgh
∈ B1(R, T);

here δK is the differential for the group cohomology of K corresponding to its
action on U(R, T) = C1(R, T), where K is acting from the left. Assuming that
(1.9) holds, we obtain a cocycle having values in B1(R, T) (again, we remark
that this cocycle is not necessarily trivial, because d may not have values in
B1(R, T)). Recalling (1.4), the class E ∈ H2

K(U(K, T)/T) is represented by a
cocycle C : K ×K → U(K, T)/T : g, h→ Cg,h satisfying

(1.10) δCg,h(x ∼ y) =
dgh

dgd
g
h

(x ∼ y)

(g, h are treated as constants in this equation).
The compatibility conditions satisfied by the triple (C, d, s) are summa-

rized in the following diagram:

(1.11)

2 Cg,h(x) δ→ dg
h
dh

dgh
(x ∼ y)
↑ δK

1 dg(x ∼ y) δ→ s
sg (x ∼ y ∼ z)
↑ −δK

0 s(x ∼ y ∼ z)
0 1 2

2. Cohomological Formulation.

In this section we will formalize the discussion in §1 in terms of a double complex.
In particular we will see that a triple (C, d, s), satisfying the compatibility
conditions (1.11), is a cocycle for the total differential of the complex. Standard
spectral sequence techniques will then be used to relate the cohomology for the
double complex to the group cohomology for K (the cohomology of the first
column), and the cohomology for the relation R (the cohomology of the first
row); see [2], especially chapter 3).

We consider the following double complex, Ω p,q :

↑ ↑ ↑
2 U(K2, U(R0, T)/T) δ→ U(R×K2, T) δ→ ..

↑ δK ↑ δK

1 U(K, U(R0, T)/T) δ→ U(R×K, T) δ→ U(R2 ×K, T)
↑ δK ↑ δK ↑ δK

q = 0 U(K0, U(R0, T)/T) δ→ U(R×K0, T) δ→ U(R2, T) δ→
p = 0 1 2
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Here

(2.2) Ωp,q =
{

U(Kq, U(R0, T)/T) = U(R0, U(Kq, T))/U(Kq, T), p = 0
U(Rp ×Kq, T) p > 0

)
,

where R0 = K , R1 = R , R2 = {x ∼ y ∼ z ∈ K3} , and so on, as in [5]. The
group K acts on Rp × Kq from the left, and this induces an action on Ωp,q .
For fixed q we obtain a horizontal differential δ = δR , and for fixed p we have a
vertical differential δK , where the coefficient K -module is U(R0, T)/T for p = 0
and U(Rp, T) for p > 0. Since δR originates from the right action of π on
K , whereas δK originates from the left action of K on K , these differentials
commute.

The group Ωp,q is defined in terms of functions on Rp × Kq . As a
mnemonic device, we will use the letters g, h when referring to K degrees of
freedom, and letters x, y, z when referring to the relation R .

(2.3) Remarks. (a) A key point is that the pth column is exact for p > 0. For
we have a K -equivariant isomorphism

(2.4) U(Rp, T) = U(K, U(πp, T))

induced by the correspondence

(2.5) x0 ∼ x1 ∼ ... ∼ xp ↔ (x0, x
−1
0 x1, .., x

−1
p−1xp).

This is the basis of the natural identification H∗(R, T) = H∗
π(U(K, T)); see

Theorem 5 of [5]. Hence the coefficient module is an induced module, and the
cohomology vanishes in positive degree.

(b) There is an easily forgotten assymetry between the roles of K and
π in the above complex. On the one hand, in defining the differential δK , K
is acting on all the variables, g, h, x.. (because in the pth column, U(Rp, T) is
regarded as a K -module). On the other hand, in defining the differential δ , the
variables g, h are treated as constant and only the variables x, y, .. are taken into
account.

Let D = δ +(−1)pδK (in additive notation) denote the total differential
for the double complex Ω. Then we have natural maps

(2.6) H∗
D(Ω)

prK→ H∗
K(U(K, T)/T), H∗

D(Ω)
prR→ H∗(R, T).

For example in degree 2,

(2.7) [Cg,h(x)]← [Cg,h(x), dg(x ∼ y), s(s ∼ y ∼ z)]→ [s(x ∼ y ∼ z)],

where [·] denotes a cohomology class, the left arrow is prK , and the right
arrow is prR . The compatibility conditions (1.11) are equivalent to saying
that the triple (C, d, s) is D -closed. Thus proving that prK is surjective in
degree 2 is equivalent to realizing El as a group of automorphisms of a pair
(M(R, σ).L∞K), by what we said in §1.
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To analyze the map prK , we consider the spectral sequence correspond-
ing to the filtration obtained by deleting successive rows, Ωn = {Ωp,q : n ≤ q} .
We have (E0, d0) = (Ω, δK), hence by (a) of (2.3), E1 is given by

(2.8)

2 H2
K(U(K, T)/T)

1 H1
K(U(K, T)/T)

0 U(R, T)K U(R2, T)K U(R3, T)K ...
0 1 2 3

The differential d1 = δ , and using (2.4) to calculate U(Rp, T)K , we can
also compute E2 :

(2.9)

2 H2
K(U(K, T)/T)

1 H1
K(U(K, T)/T)

0 H1
π(T) H2

π(T) H3
π(T) ...

0 1 2 3

(In calculating the cohomology of the first row of (2.8), we used (2.4) to calculate
the K -invariants, and the identification of the differential for R , δ , and the
differential for the group cohomology of π ; see (2.5) and Theorem 5 of [5]).

It is straightforward to check that the nontrivial higher differentials dr

are identified with the natural maps Hr−1
K (U(K, T)/T)→ Hr

K(T)→ Hr
π(T).

We now focus on degree 2. We can summarize what we have learned to
this point, as follows.

Proposition 2.10. In degree 2 , we have

Im(prK) = E0,2
∞ = ker(H2

K(U(K, T)/T) d3→ H3
π(T))

E1,1
∞ = 0 , and

ker(prK) = E2,0
∞ = coker(H1

K(U(K, T)/T) d2→ H2
π(T)).

To analyze the map prR , we consider the spectral sequence corresponding
to the filtration obtained by deleting successive columns, Ω′n = {Ωp,q : n ≤ p} .
We have (E′

0, d
′
0) = (Ω, δ), hence E′

1 is given by

(2.11)

2 H1(R,U(K2, T)) ..

1 H1(R,U(K, T)) H2(R,U(K, T)) ..

0 H1(R, T) H2(R, T) H3(R, T) ...
p = 0 1 2 3
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The differential d′1 = δK . Now π does not act on the K variables when
we calculate δ . This implies that

(2.12) H1(R,U(K, T)) = U(K, H1(R, T)),

by Theorem 1 of part IV of [8]. The point is that we again obtain an induced
module, and we can compute E′

2 :

(2.13)

2 H2
K(H1(R, T)) H2

K(H2(R, T))

1 H1
K(H1(R, T)) H1

K(H2(R, T))

0 H1(R, T)K H2(R, T)K H3(R, T)K ...
p = 0 1 2 3

Proposition 2.14. We have

Im(prR) = E′2,0
∞ = ker(H2(R, T)K d′3→ H2

K(H1(R, T)))

and
ker(prR) = E′0,2

∞ = H1
K(H1(R, T)).

To summarize, we have two exact sequences:

(2.15) H1
K(U(K, T)/T) d3→ H2

π(T)→ H2
D(Ω)

prK→ H2
K(U(K, T)/T) d4→ H3

π(T)

and

(2.16) H1
K(H1(R, T))→ H2

D(Ω)
prR→ H2(R, T)K d′3→ H2

K(H1(R, T)).

(2.17)Example. Suppose that K = SO(3) and π is isomorphic to F2 , the free
group on 2 generators. In this case we are asserting that

(2.18) H2
K(U(K, T)/T) = H2

D(Ω) = H1
K(H1(R, T)).

To check this directly, note that

(2.19) H1(R, T) = H1
F2

(U(K, T)),

the moduli space of crossed-homomorphisms. Because F2 is free, this group fits
into a short exact sequence

(2.20) 0→ U(K, T)/T→ U(K, T)× U(K, T)→ H1(R, T)→ 0.

The corresponding long exact sequence in cohomology implies (2.18).
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3. Consequences.

Theorem 3.1. If K is connected and semisimple, then given l ∈ H4(BK, Z) ,
there exists a faithful representation of El of the form

0 → T → U(K, T) → E → K → 0
↓ ↓ ↓

0 → T → NU(M)(A) → Aut(M,A) → Out(M,A) → 0

where M = M(R, σ) , for some σ ∈ H2(R, T) , and R corresponds to any π
with H3

π(T) = 0 and π ∩C(K) = 0 , e.g. π isomorphic to a free group, or π1Σ ,
the fundamental group of a closed surface of genus > 1 .

Proof. For a countable dense π satisfying H3
π(T) = 0, Proposition (2.10)

implies that prK in (2.7) (the left map) is surjective. This implies the existence
of a triple (C, d, s) satisfying the conditions in (1.11). Thus by the discussion
in §1, with σ = [s] ∈ H2(R, T), we obtain a representation of the extension El

(with l corresponding to [3] via the isomorphisms in (0.1)).
The only thing that remains is to show that the map K → N(R)

induces an injection K → Out(M,A). This is equivalent to proving that
K ∩ G(R) = {1} , where G(R) is the group of (equivalence classes of) Borel
automorphisms θ of K (as a Borel space, not as a group), such that x ∼ θ(x),
∀x ∈ K (see §4 of [6]).

Suppose g ∈ K and Lg , left translation by g , equals θ ∈ G(R). There
exists a Borel function α : K → π such that θ(x) = xα(x), ∀x ∈ K . We
enumerate the elements of π by α1 , α2 ,.., and we let Ei denote the inverse
image of αi . Then we have gx = xαi , or g = xαix

−1 for all x ∈ Ēi , the closure
of Ei . One of the sets Ēi must have nonempty interior. Since Ēi has nonempty
interior, αi is necessarily central and g = αi ∈ π ∩ C(K), hence g = 1.

(3.2)Remarks. (a) In the case of a torus, given l ∈ H4(BK, Z), there exists
a representation E → Aut(R,A), where R is the unique hyperfinite type II1

factor (and A is unique up to automorphism). Here we can take π = Zn i.e. n
independent irrational rotations. In this case, because the left and right actions
are the same, the intersection of K (acting from the left) and G(R) contains π ,
so that we do not have a faithful map of T into Out(M,A).

(b) In the case of a torus, π is abelian, hence M is necessarily hyperfinite
(see Proposition 4.4 of [5]). This is amazing (but well-known to experts in von
Neumann algebra theory), given the variety of possible π ’s (for example for T ,
π = Zn , Tor(T) = Q/Z , SO(2, Q) (which has torsion subgroup {±1,±i} and
quotient Z∞ ), and so on.

(c) In the semisimple case, one suspects that M cannot be hyperfinite.
For by a result of Sakai (see (4.5) of [5]), M hyperfinite implies that π is
amenable. It would be surprising if a countable dense subgroup of a simple
compact Lie group could be amenable (it obviously cannot be solvable). Beyond
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this result of Sakai, apparently not much is known about how the isomorphism
type of M(R, σ) depends on (R, σ) (but for a conjecture in a related context,
see Problem 1 of V.B.ε of [3]).

4. On H2(R, T) for Surface Groups π = π1Σ .

At this point it is natural to turn to question 0.4 in the introduction. A
cohomological variation of the question is, given K , can we find π such that
there is a correspondence

(4.1) H4(BK, Z)↔ H2(R, T)K : l↔ σl = [s],

with H2
D(Ω) as intermediary (see (2.15) and (2.16)), where K acts as a group

of automorphisms of M(R, σl) if and only if σl is trivial? We are not able to
answer this question for lack of feeling for H2(R, T) (which might vanish in some
generality, for all we know). The point of this section is to at least lay out the
issues in a relatively explicit way.

Suppose that K is connected and k is simple. In this case H4(BK, Z) =
Z〈·, ·〉 , where 〈·, ·〉 is normalized so that 〈·, [·, ·]〉 ∈ (Λ3k)AdK corresponds to a
generator for H3(K, Z). We write [c3] for the corresponding class in H3

K(T).

(4.2)Example. If K = SU(2, C) = S3 , then 〈·, [·, ·]〉 is the normalized volume
element of S3 . The corresponding generator of H3

K(T) is represented by the
Cheeger-Simons Borel cocycle

(4.3) c3(a, b, c, d) = exp2πiV ol(a, b, c, d)

(in the homogeneous picture of group cohomology), where V ol(a, b, c, d) denotes
the oriented volume of the oriented geodesic simplex of S3 with vertices a, b, c, d
(see §8 of [4]). Thus the multiplication of the extension E in (0.3), in terms of
a Borel identification E = U(K, T)/T×K , is given by

(4.4) (λ, g) · (η, h) = (λ(·)ηg(·)e2πiV ol(1,g,h,·), gh).

The general strategy for obtaining a class in H2(R, T)K corresponding
to [c3] is the following. Let Kr denote a copy of K acting on U = U(K, T) (or
U/T) via its right action on K . The results of §2, imply that we have a diagram

(4.5)

H2
π(T) H1

K(H1(R, T))
↘ ↙

H2
D(Ω)

↙ ↘
H2(R, T) H2

Kr
(U/T) ∼= H2

K(U/T) ∼= H3
K(T)

‖ ↓ ↘ ↓
H2

π(U) → H2
π(U/T) → H3

π(T)

where the southeast (respectively, southwest) diagonal maps are derived from
(2.15) (respectively, (2.16)), the bottom row is part of the long exact sequence
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corresponding to the short exact sequence of coefficients T → U → U/T ,
U = U(K, T), and the vertical arrows are induced by restriction (for the vertical
isomorphism, see Theorem 5 of [5]). We want to know that the restriction of
c3 to π will be zero. This will imply that the corresponding extension of π by
U/T comes from an extension by U , and this opens the possibility of obtaining
a nontrivial deformation class σ ∈ H2(R, T) ∼= H2

π(U).
For π isomorphic to Fn or π1Σ, H3

π(T) is automatically zero. Note
that for our example (4.2), this translates into a strange statement about the
possibility of computing volumes (modulo Z) of simplices with vertices in π as
an alternating sum of a function applied to three vertices at a time.

For π = Fn , H2(R, T) = H2
π(U(K, T)) also vanishes, because BFn is

one dimensional. Hence we do not obtain a nontrivial deformation class in this
case.

We consider the next simplest case. Fix a compact connected oriented
surface Σ of genus g > 1, and a faithful homomorphism π1Σ ↪→ K with dense
image. There is an entire moduli space of such homomorphisms (which depends
upon the semisimplicity of K ). We employ the abbreviations π = image(π1Σ→
K), U = U(K, T), and PU = U(K, T)/T .

To calculate H2(R, T) = H2
π(U), we use the standard presentation

(4.6) 0→ N = 〈r = [α1, β1]..[αg, βg]〉 → F2g → π → 0,

where the free group F2g will act on anything that π acts on.
Suppose that π acts on A (an abelian group), and we have an extension

(4.7) 0→ A→ E → π → 0.

This will be the quotient of a trivial extension

(4.8)
A → F ∝ A → F
‖ ↓ ↓
A → E π

,

because we can always find a cross-section for the pullback of E to an extension
of the free group F . The restriction of the cross-section, a map N → A , is
F -equivariant and hence determined by its value, say a , on r . We will write
E = F ∝r∼a A to denote this realization of E .

Now suppose that we have two such realizations of extensions

(4.9) Ei = F ∝r∼ai A

These will be equivalent if and only if we can find a crossed homomorphism
φ : F → A such that φ(r)a1 = a2 , where the equivalence is given by the map

(4.10) E1 → E2 : [f, a]→ [f, φ(f)a].

The value φ(r) is 1 if φ is exact. This proves the following lemma.
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Lemma 4.11. We have

H1
F (A)→ A→ H2

π(A)→ 0,

where
φ ∈ H1

F (A)→ φ(r) ∈ A

and
a ∈ A→ Ea = F ∝r∼a A.

In general, given a presentation N → F → π ,

H1
F (A)→ HomF (N,A)→ H2

π(A)→ 0

where θ ∈ HomF (N,A) maps to the extension

F ∝θ A

and [φ] ∈ H1
F (A) maps to φ|N .

(4.12)Remark. If π acts trivially on A , then φ ∈ H1
F (A) is an ordinary

homomorphism, hence vanishes on r , so that in this case H2
π(A) = A , as it

should.

Consider the linear case A = U(K, R). A φ ∈ Z1
F (U) is completely

determined by its values φα1(k) , .., φβg (k) (functions of k ∈ K ), and conversely
given arbitrary functions φα1 , ..φβg

∈ U , there is a corresponding φ . Using the
crossed-homomorphism property (in particular φγ−1(k)φγ(k)γ−1

= 1), we see

φr(k) = φα1(k)− φα1(kα1β1α
−1
1 ) + φβ1(kα1)− φβ1(k[α1, β1]) + ..

(4.13) +φβg (kα1..αg)− φβg (kr)

Here we have abused notation, in that in the arguments of these functions we
have written α1 and so on for the elements of K corresponding to these symbols;
in particular the r in the last factor = 1.

Note that it is tempting to assert that
∫

φr = 0, with respect to Haar
measure. But this does not make sense because functions in U(K, R) are gener-
ally nonintegrable. It seems more likely that the following is true.

Conjecture 4.14. The operator L : U(K, R)2g → U(K, R) defined by (4.13) is
surjective. Consequently for a relation defined by π1Σ, H2(R, R) and H2(R, T)
vanish.

Although we are assuming g > 1 and π is dense in K , we note that
(4.14) is true for g = 1 and any faithful embedding π1Σ → K . The first
statement is Theorem 7 of [5], and together with (4.11) this implies the second
statement, in the case g = 1.
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5. Globalization.

Suppose that X is a compact oriented Riemannian manifold. We can consider
the oriented orthonormal frame bundle

(5.1)
PSO ← SO
↓
X

In spin geometry the basic topological question is whether PSO is derived
from a spin bundle PSpin → X . This is analyzed in the following way (see
Appendix A of [7]). Corresponding to the spin extension there is an exact
sequence of nonabelian sheaves on X ,

(5.2) Z2 → Spin→ SO.

There is a corresponding exact sequence of pointed cohomology spaces,

(5.3) ..→ H1(X, Z2)→ H1(X, Spin)→ H1(X, SO) w2→ H2(X, Z2).

Thus there exists a spin structure iff w2(PSO) = 0, and the possibilities are acted
upon simply and transitively by H1(X, Z2).

Let K = Spin(n), and for simplicity of exposition we suppose that
n 6= 4. Suppose that w2(X) = 0 and fix a particular spin structure. We fix a
level l ∈ H4(BK, Z) = Z 1

2p1 , we let E = El denote the corresponding group
extension, as in (0.2), and we ask whether PSpin is derived from a bundle with
structure group E . In this context Z2 is replaced by U(K, T)/T . This is not a
Lie group, so that we must think of sheaves in this context in a purely topological
way. As in the spin context, we have an exact sequence
(5.4)

..→ H1(X, U(K, T)/T)→ H1(X, E)→ H1(X, K) ∆→ H2(X, U(K, T)/T))

and we have to understand the meaning of the connecting map ∆.
We first note that U(K, T) is contractible for K connected. To see this

we can replace K by I , the unit interval. A contraction is given by the map

(5.5) U(I, T)× I → U(I, T) : g, s→ gs, gs(x) =
{

1, x ≤ s
g(x), s < x

}
.

It follows that

(5.6) H∗(X, U(K, T)) = 0

in positive degrees. Thus the connecting map in (6.4) can be identified with a
map to H3(X, T). Since H∗(X, R) = 0 in positive degrees, (5.4) is equivalent
to an exact sequence

(5.7) ..→ H3(X, Z)→ H1(X, E)→ H1(X, K) ∆→ H4(X, Z)
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Proposition 5.8. The connecting map satisfies ∆(PSpin) = l
2p1(X) . Thus

there exists a covering of bundles

PE → PSpin → X

if and only if l
2p1(X) = 0 in H4(X, Z) , and the possible coverings are acted

upon simply and transitively by H3(X, Z) .

Proof. We formulate the question in slightly different terms. Because U(K, T)
is contractible, U(K, T)/T has the homotopy type K(Z, 2), and B[U(K, T)/T]
has the homotopy type K(Z, 3). Also the cohomology class l is identified with
a classifying map BK → K(Z, 4). Hence we are given a diagram

(5.9)
K(Z, 3) → BE → BK

l→ K(Z, 4)
↑ P ↗ ∆
X

where P = PSpin , and the question is whether there is a lift PE : X → BE . The
first statement follows immediately from this, and the second statement follows
from either (5.7) or (5.9).

In this result the specific form of the extension E , especially the specific
model for the kernel, U = U(K, T), is unimportant. The important point is
simply that the quotient U/T has homotopy type BT = K(Z, 2) (see the devel-
opment of group cohomology in [9], which emphasizes this flexibility). However,
the specific model for E involving U(K, T) seems quite natural, and it is clearly
related to von Neumann algebras in an interesting way. Although von Neumann
algebras are not normally associated with topology, (5.8), together with 3.1,
suggests that it might be interesting to consider a Grothendieck type group of
bundles of von Neumann algebras of type II1 (or the associated algebras of
unbounded operators, in a given representation), possibly in relation to elliptic
cohomology.

Acknowledgement. I thank Paul Bressler for pointing out the possibility, and
possible importance, of finding an interpretation of the orientation obstruction
from elliptic cohomology, 1

2p1(X) = 0, independent of loop space considerations.
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