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Abstract. The focus of this paper is the standard linear representation of the
group SLn(C)×SLm(C)×SL2(C), that is, the tensor product of the correspond-
ing tautological representations. Classification of its orbits is a classic problem,
which goes back to the works of Kronecker and Weierstrass. Here, we sum-
marize some known results about standard linear representations of SLn(C) ×
SLm(C) × SL2(C), GLn(C) × GLm(C), SLn(C) × SLm(C), and GLn(C) ×
GLm(C) × GL2(C), classify the orbits and describe their degenerations. For
the case n 6= m , we prove that the algebras of invariants of the actions of
SLn(C)× SLm(C)× SL2(C) and SLn(C)× SLm(C) are generated by one poly-
nomial of degree nm/|n−m| , if d = |n−m| divides n (or m), and are trivial
otherwise. It is also shown that the null cone of SLn(C) × SLm(C) × SL2(C)
is irreducible and contains an open orbit if n 6= m . We relate the degenera-
tions of orbits of matrix pencils to the degenerations of matrix pencil bundles
and prove that the closure of a matrix pencil bundle consists of closures of the
corresponding orbits and closures of their amalgams. From this fact we derive
the degenerations of orbits of the four groups listed above. All degenerations
are cofined to the list of minimal degenerations, which are summarized as trans-
formations of Ferrer diagrams. We tabulate the orbits of matrix pencils up to
seventh order and portray the hierarchy of closures of 2× 2, 3× 3, 4× 4, 5× 5,
5× 6 and 6× 6 matrix pencil bundles.

1. Introduction

Although classification of orbits of the standard linear representation of
SLn1(C) × · · · × SLns(C) is trivial for s ≤ 2, it is no longer feasible in any
reasonable sense even for s = 3. The simplest nontrivial case of this generic
problem is when one of the tensor factors is SL2(C). Here, we investigate this
case, the standard linear representation of SLn,m,2 = SLn(C) × SLm(C) × SL2(C)
in Cn,m,2 = Cn ⊗ Cm ⊗ C2 , and describe its orbits and their degenerations.

The space Cn,m,2 is endowed with the natural actions of three other groups:
GLn(C)×GLm(C), SLn(C)× SLm(C), and GLn(C)×GLm(C)×GL2(C). They
are denoted by GLn,m , SLn,m , and GLn,m,2 , respectively. If bases in Cn , Cm , and
C2 are chosen then the components T ijk of a tensor T ∈ Cn,m,2 form two n ×m
matrices, whose entries are T ij1 and T ij2 , respectively. An element of Cn,m,2 can
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be regarded as a pair of complex n × m matrices A and B . Then it is called
the matrix pencil and is denoted by A + λB , where λ is a varying coefficient. If
n = m then the matrix pencil is called square; otherwise it is called rectangular.
The actions of GLn,m,2 and SLn,m,2 on matrix pencils are given by formula

(P,Q,R)◦(A+λB) = (r11PAQ
−1+r12PBQ

−1)+λ(r21PAQ
−1+r22PBQ

−1), (1)

where rij are the entries of R−1 . Two matrix pencils are said to be G-equivalent if
one of them is mapped to the other by a transformation that belongs to G , where
G is one of the groups listed above. Two matrix pencils are said to be equivalent
(no prefix used), if they are GLn,m-equivalent.

Description of equivalence classes of matrix pencils under the action of
GLn,m was obtained by Weierstrass and Kronecker [15, 25]. Here we state some
of their results. The direct sum of a n1 ×m1 matrix pencil P1 = X1 + λY1 and a
n2 ×m2 matrix pencil P2 = X2 + λY2 is the (n1 + n2)× (m1 +m2) matrix pencil
P1 ⊕ P2 = (X1 ⊕ X2) + λ(Y1 ⊕ Y2), where Z1 ⊕ Z2 denotes the diagonal block
matrix composed of Z1 and Z2 . A matrix pencil is said to be indecomposable if it
cannot be represented as a direct sum of two non-trivial matrix pencils. We also
consider n × 0 and 0 ×m matrix pencils; by this we mean that if such pencil is
present in a direct sum then the corresponding matrices are given rows or columns
of zeroes. Every indecomposable matrix pencil is equivalent to one of the following
matrix pencils:

Lk =


1 λ

1 λ
. . . . . .

1 λ


︸ ︷︷ ︸

k+1

, Rk =


1
λ 1

λ
. . .
. . . 1

λ




k + 1, k ≥ 0,

Dk(µ) = Ek + λJk(µ), k > 0,

Dk(∞) = λJk(1), k > 0,

where Ek is the k -th order identity matrix, and Jk(µ) is the k -th order Jordan
matrix with eigenvalue µ . Every matrix pencil is equivalent to the direct sum

Lk1 ⊕ · · · ⊕ Lkp ⊕Rl1 ⊕ · · · ⊕ Rlq ⊕Dn1(µ1)⊕ · · · ⊕ Dns(µs), (2)

where k1, . . . , kp and l1, . . . , lq are the minimal indices of rows and columns, re-
spectively, and µ1, . . . , µs are the eigenvalues of the matrix pencil. The decom-
position (2) is called the Kronecker canonical form of a matrix pencil. The set of
indecomposable matrix pencils in (2) is defined unambiguously up to a transposi-
tion. A matrix pencil A+λB is said to be regular, if it is square and det(A+λB)
is not identically zero. Otherwise, it is called singular. A matrix pencil is said
to be completely singular, if its Kronecker canonical form has no regular blocks.
Every matrix pencil P is decomposed into sum of regular and completely singular
matrix pencils Preg and Psing . They are called the regular part and the singular
part of the matrix pencil, respectively. A matrix pencil is said to be perfect, if its
Kronecker canonical form is Lk ⊕ · · · ⊕Lk or Rk ⊕ · · · ⊕Rk . Otherwise, it is said
to be imperfect.
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Ja’ja extended the results of Kronecker and Weierstrass to the action of
GLn,m,2 [13]. In particular, he proved that completely singular matrix pencils are
GLn,m,2-equivalent if and only if they are GLn,m-equivalent. Thus, the classification
of matrix pencils under the action of GLn,m,2 consists of two separate problems:
classification of completely singular matrix pencils under the action of GLn,m , and
classification of regular matrix pencils with respect to the action of GLn,m,2 .

It took hundred years since the works of Kronecker and Weierstrass to get
the description of closures of GLn,m-orbits. During this time, investigations in
the theory of matrix pencils were motivated mainly by applications to differential
equations and linear-quadratic optimization problems [23, 8]. Several algoritms
for calculation of eigenvalues and Kronecker canonical form of matrix pencils
were designed [10, 24, 2]. However, as in the case of calculation of the Jordan
normal form of a matrix, these algorithms have a common problem: they cannot
distinguish between close points that belong to different orbits. The description
of closures of GLn,m-orbits was obtained in 1986 by Pokrzywa [21] and later by
Bongartz [3]. Pokrzywa has found and systematically described the main types
of degenerations of orbits and has shown that the other degenerations are the
combinations of those main ones. Bongartz has got his result by using the theory
of representations of quivers. However, as the number of orbits is infinite, it is
more convenient to describe the closures of bundles of matrix pencils. This has
been done by Edelman et al [6]. In §7. we give a careful proof for the criterion
that has been stated in their work.

Classification of orbits is closely related to description of invariants. A
pair of matrices A and B that are defined up to the action of GLn,m is a class
of equivalent representations of the quiver of type Ã1 . In fact, description of
invariants of SLn,m for arbitrary n and m can be derived from the general results
on the invariants of representations of tame quivers. For rectangular matrix pencils
GLn,m the description of SLn,m-invariants can be obtained from [11]. In case of
square matrix pencils the coefficients of the binary form det(λA + µB) coincide
with the semi-invariants constructed in [22], which generate the algebra of SLn,m-
invariants according to [12, theorem 2.3]. Hence, the algebra of invariants of the
standard linear representation of SLn,n,2 is isomorphic to the algebra of invariants
of binary forms of degree n .

Thus, the works related to the standard linear representations of GLn,m ,
SLn,m , GLn,m,2 , and SLn,m,2 , can be summarized in the following table (by asterics
we denote the questions addressed in this work):

Group Classification of orbits Orbits’ closures Invariants
GLn,m [15, 25] [21], [3], [6] trivial
GLn,m,2 [13] ? trivial
SLn,m ? ? [22], [12], [16]
SLn,m,2 ? ? ?

.

For several small n and m the standard linear representation of SLn(C)×SLm(C)×
SL2(C) has good properties, which make it more tractable than in generic case.
For instance, if n = m = 4 then the representation is visible, that is, the number
of nilpotent orbits is finite [14]. This case was extensively studied in [19, 20].
Other “exceptional cases” were investigated in works of Ehrenborg and Nurmiev
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on 2× 2× 2 and 3× 3× 3 matrices [7, 17]. In regard of visible representations it
is also worth of mentioning the work of Parfenov [18] and its generalization to the
case of real matrices that was obtained recently by Dokovic and Tingley [5].

Now we ouline the structure of the paper. We classify the orbits of GLn,m ,
SLn,m , GLn,m,2 , and SLn,m,2 separately for regular (section 2.), imperfect singular
(section 3.), and perfect (section 4.) matrix pencils. In section 5. we summarize
the results of the classification. In section 4. we also prove that the algebra of
invariants of rectangular n×m matrix pencils is generated by one polynomial of
degree nm/d , if d = |n−m| divides n and m and is trivial otherwise. In section 6.
we introduce a notion of matrix pencil bundle, which is a union of orbits of GLn,m
over all possible eigenvalues given that the sets of minimal indices of rows, minimal
indices of columns, and multiplicites of eigenvalues are fixed. When we take limits
of elements of a matrix pencil bundle some of the eigenvalues may coalesce; this
process is called amalgamation. In section 7. we prove that the closure of a matrix
pencil bundle consists of closures of the corresponding orbits and closures of their
amalgams (theorem 7.5). In sections 8. and 9. we study closures of orbits of GLn,m,2
and SLn,m,2 . In order to describe the hierarchy of closures (also called the Hasse
diagram), we come up with a list of minimal degenerations, which are summarized
in section 10. as a set of rules for transformations of Ferrer diagrams. In section 11.
we focus on the geometry of the null cones of SLn,m and SLn,m,2 . In particular,
if n 6= m then the null cone of SLn,m,2 is irreducible and contains an open orbit.
If n = m then the null cone of SLn,m,2 is also irreducible but does not contain an
open orbit for n > 4. In section 12. we tabulate the orbits of matrix pencils (up
to seventh order) and produce figures for the hierarchy of closures of 2× 2, 3× 3,
4× 4, 5× 5, 5× 6 and 6× 6 matrix pencil bundles.

In what follows, the base field is the field C of complex numbers. If V is
a vector space over C then V ∗ , L(V ), L0(V ), ΛkV , SkV , and ⊗kV denote the
dual vector space, the space of all linear endomorphisms of V , the space of linear
endomorphisms of V with zero trace, the k-th exterior, symmetric, and tensor
powers of V , respectively. The space ΛkV is identified with the subspace of ⊗kV
in a natural way. If e1, . . . , en is a base in V then e1, . . . , en denotes the dual
base of V ∗ . The components of tensors T ∈ ⊗kV and T ∗ ∈ ⊗kV ∗ are denoted by
T i1...ik and T ∗

i1...ik
, respectively. The mapping π : ΛkV →(Λn−kV )∗ given by

(πvi1...ik)(qik+1...in) = deti1...ikik+1...inv
i1...ikqik+1...in , (3)

where det(e1, . . . , en) = 1, is an isomorphism between ΛkV and (Λn−kV )∗ .

Let G be a group acting on a set X . Denote by Gx (or O(x), if choice of
G is clear from the context) the orbit of x ∈ X under the action of G . If X is a
vector space over C , and G is an algebraic group then C[X] and C[X]G denote the
algebra of polynomial functions on X and its subalgebra of G-invariant polynomial
functions, respectively. The spectrum of C[X]G is denoted by X//G . An element
x ∈ X is called nilpotent if the closure of its orbit contains zero element. The set
of all nilpotent elements of X is called the null cone and is denoted by NX . The
dimension and the codimension of Y ⊂ X are denoted by dimY and cod(X, Y ),
respectively. The closure of Y in X (in the topology of C) is denoted by Y . The
number of elements of a finite set S is denoted by |S| .
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2. Regular matrix pencils

Regular matrix pencils are square. Every regular matrix pencil is SLn,n-
equivalent to the matrix pencil c · P , where P is the Kronecker canoical form.
Obviously, c1 · P and c2 · P are SLn,n-equivalent if and only if cn1 = cn2 , where n is
the order of P . Every regular matrix pencil is SLn,m,2-equivalent to E+λD , where
E is the identity matrix and D is a Jordan matrix. The matrix pencils E + λD
and E + λD′ are GLn,m,2-equivalent if and only if there exist P,Q ∈ GLn(C) and
R ∈ GL2(C) such that {

P (r11E + r12D)Q−1 = E
P (r21E + r22D)Q−1 = D′.

(4)

Equivalently, there exist P ∈ GLn(C) and R ∈ GL2(C) such that P (ϕR(D))P−1 =
D′. Here ϕR is the linear fractional transformation defined by ϕR(X) = (r21E +
r22X)(r11E + r12X)−1 . If we want E + λD and E + λD′ to be SLn,m,2-equivalent
then we need to have det(r11 + r12D) = detR = 1. It is clear that proportional
matrices define equal fractional transformations. Therefore we can assume that
R ∈ GL2(C) has the following property:

det(r11 + r12D) = (detR)n/2. (5)

We now state some of our previous results [20]. The matrix pencils E + λD and
E+λD′ are GLn,m,2-equivalent (respectively, SLn,m,2-equivalent) if and only if the
eigenvalues of D are mapped to the eigenvalues of D′ by a linear fractional trans-
formation (respectively, by a linear fractional transformation that satisfies (5))
that preserves the multiplicities of the corresponding eigenvalues. The polynomial
mapping θ : Cn,n,2→ Y = Sn(C2∗), that takes each matrix pencil A + λB to the
binary form f(α, β) = det(αA + βB) is dominant and SLn,n,2-equivariant assum-
ing that the first and the second factor of SLn,n,2 act trivially on Y . The algebra
C[Cn,n,2]SLn,n is generated by coefficients of the binary form det(αA + βB). It
follows from this theorem that the algebra of SLn,n,2-invariants of n × n matrix
pencils is isomorphic to the algebra of SL2(C)-invariants of binary forms of degree
n , and a square matrix pencil P is nilpotent under the action of SLn,n,2 if and
only if the binary form θ(P) is nilpotent.

3. Imperfect singular matrix pencils

It follows from [13, theorem 3] that all perfect matrix pencils are GLn,m,2-
equivalent. Imperfect singular matrix pencils are GLn,m,2-equivalent if and only
if their regular components are GLn,m,2-equivalent and their singular components
are GLn,m-equivalent.

Now we focus on SLn,m- and SLn,m,2-equivalence of imperfect singular ma-
trix pencils. The following lemma is an analog of [20, lemma 2] for rectangular
matrix pencils.

Lemma 3.1. Let P1 and P2 be matrix pencils, and let n1 ×m1 and n2 ×m2

be the sizes of P1 and P2 , respectively. If the pairs (n1,m1) and (n2,m2) are not
proportional then P1⊕P2 and (α · P1)⊕ (β · P2) are SLn,m-equivalent for any pair
of non-zero complex numbers α and β .
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Proof. Put P = diag(α1En1 , β1En2) and Q = diag(α2Em1 , β2Em2), where Ek
is the k-th order identity matrix. Then P1⊕P2 and (α·P1)⊕(β ·P2) are equivalent
under the action of (P,Q) ∈ SLn,m if and only if αn1

1 β
n2
1 = 1, αm1

2 βm2
2 = 1,

α1α
−1
2 = α and β1β

−1
2 = β . Obviously, these equations have a common solution if

the pairs (n1,m1) and (n2,m2) are not proportional.

Corollary 3.2. The following matrix pencils

(i) P1 = Lp ⊕Rq and P2 = (α · Lp)⊕ (β · Rq),

(ii) P1 = Lp ⊕ Lq and P2 = (α · Lp)⊕ (β · Lq) for p 6= q ,

(iii) P1 = Rp ⊕Rq and P2 = (α · Rp)⊕ (β · Rq) for p 6= q ,

(iv) P1 = Lp ⊕Q and P2 = (α · Lp)⊕ (β · Q),

(v) P1 = Rp ⊕Q and P2 = (α · Rp)⊕ (β · Q)

are SLn,m-equivalent for any square l× l matrix pencil Q and any pair of non-zero
complex numbers α and β .

Theorem 3.3. Imperfect singular matrix pencils are SLn,m-equivalent if and
only if they are GLn,m-equivalent.

Proof. Suppose that P1 and P2 are equivalent. Then P1 and k ·P2 are SLn,m-
equivalent for some k ∈ C . We may replace P1 and P2 with their Kronecker
canonical forms. If P2 is a square singular matrix pencil then P2 = Lp⊕Rq ⊕Q .
It is clear that k · P2 and (k′ · Lp) ⊕ (k′ · Rq) ⊕ Q are equivalent under the
action of SLn,m . Then P1 and P2 are SLn,m-equivalent by corollary 3.2. If P2 is
an imperfect rectangular matrix pencil then its Kronecker canonical form contains
two left blocks of different sizes or two right blocks of different sizes or a non-trivial
regular block. It follows from corollary 3.2 that P1 and P2 are SLn,m-equivalent.
The proof of the converse is trivial.

Theorem 3.4. Imperfect singular matrix pencils are SLn,m,2-equivalent if and
only if they are GLn,m,2-equivalent.

Proof. Suppose that P1 and P2 are GLn,m,2-equivalent. By [13, theorem 3],
their singular components are GLn,m-equivalent, and their regular components are
SLn,m,2-equivalent up to a multiplicative factor. Therefore, P1 is SLn,m,2-equivalent
to Psing

1 ⊕ (k · Preg
2 ) that is, in turn, SLn,m-equivalent to (k′ · Psing

1 )⊕Preg
2 . Then

P1 and P2 are SLn,m,2-equivalent by previous theorem.

4. Perfect matrix pencils

Without loss of generality we consider only perfect n × m matrix pencils
for m > n . Then d = m− n divides n and every perfect matrix pencil is SLn,m-
equivalent to Lk ⊕ · · · ⊕ Lk up to a multiplicative factor. Here Lk ⊕ · · · ⊕ Lk
denotes the sum of d indecomposable k × l matrix pencils, where k = n/d and
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l = m/d = k+1. The matrix pencil Lk⊕· · ·⊕Lk is SLn,m-equivalent to the matrix
pencil P = [En|0nd] + λ[0nd|En] , where En is the n-th order identity matrix, 0nd
is the zero n×d matrix, and [A|B] denotes the matrix obtained by attachment of
the matrix B to the right of the matrix A . The following lemma shows that the
statement of theorem 3.3 is correct only for imperfect matrix pencils, that is, it is
impossible to multiply a perfect matrix pencil by an arbitrary complex number by
a transformation from SLn,m .

Theorem 4.1. Let P be a matrix pencil. Then P and c · P are SLn,m-
equivalent iff ckm = 1.

Proof. Assume that P = [En|0nd] + λ[0nd|En] . Let matrices P ∈ SLn(C) and
Q ∈ SLm(C) be such that P P Q−1 = c · P . Consider the following partition of
the matrix Q (

Q′ Q1

Q2 Q0

)
,

where Q′ is a square n × n matrix, Q1 , Q2 , and Q0 are the corresponding
complementary matrices. Then P [E|0]Q−1 = [E|0] implies P = Q′ and Q1 = 0.
Applying similar arguments to P [0|E]Q−1 = [0|E] we get that Q is composed of
square d× d-blocks Q11 Q12 . . . Q1k 0

0
...

... 0
0 Ql2 . . . Qlk Qll

 ,

and

P =

Q11 Q12 . . . Q1k

0
...

...
0 Qk2 . . . Qkk

 =

Q22 . . . Q2k 0
...

... 0
Ql2 . . . Qlk Qll

 .

Therefore, Q32 = · · · = Ql2 = 0, Q1k = · · · = Qk−1 k = 0 and Q11 = · · · =
Qll . Iterating this process k times we get that P = diag(A, . . . , A) and Q =
diag(cA, . . . , cA), where A is a d × d matrix. Therefore, (detA)k = 1 and
cm(detA)k+1 = 1. This completes the proof.

It follows from theorem 4.1 that SLn,m has infinite number of orbits in
Cn,m,2 . This fact indicates that the algebra of invariants is non-trivial. It turns
out that C[Cn,m,2]SLn,m has only one generator, which is also SLn,m,2-invariant. For
simplicity we now assume that d = 1. Then, n = k and m = k+1. Denote by ∆i

the n-th order minor of the matrix A+ λB that doesn’t contain the i-th column;
they are polynomial functions of λ

∆i(λ) =
n∑
s=0

∆isλ
n−s,

and their coefficients ∆is are n-th degree polynomials of the entries of A and B .
The numbers ∆is form a square (n + 1)× (n + 1) matrix ∆, whose determinant
we denote by ω(P).

Lemma 4.2. The polynomial ω is invariant under the action of SLn,m,2 .
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Proof. It is clear that ω(P) is invariant under the left action of SLn(C).
Consider the matrix A + λB as a collection of columns a1(λ), . . . , am(λ). If we
add the j-th column multiplied by some factor c to the i-th column then ∆j is
converted to ∆j + c(−1)j−i∆i and the other minors don’t change. This proves
that det(∆) is invariant under the right action of SLm(C). Now consider the
transformation A 7→ A+cB . It corresponds to the transformation λ 7→ λ+c of the
varying coefficient, which adds a linear combination of the successive columns to
each column of ∆. Transposition of A and B , being combined with simultaneous
multiplication of B by −1, converts ∆i(λ) to λn∆i(−λ−1). These transformations
don’t affect det(∆). Thus, ω(P) is SLn,m,2-invariant.

In order to construct the invariant for an arbitrary d we will use the
values of ∆i(λ) instead of their coefficients. Let e1, . . . , em be a base in Cm ,
and let e1, . . . , em be the corresponding dual base. Denote the tautological linear
representation of SLp(C) in Cp by ρp and consider the morphism η of the linear
representations ρn ⊗ ρm and Λnρ∗m , that takes each matrix A to the n-vector

η(A) =
∑

i1<···<in

∆i1...in(A) ei1 ∧ · · · ∧ ein .

Here ∆i1...in(A) is the n-th order minor of the matrix A that contains the columns
i1, . . . , in . One can show that the right multiplication of A by a unimodular
matrix Q corresponds to the left multiplication of η(A) by Q> . Obviously, the
left multiplication of A by a unimodular matrix doesn’t affect the n-th order
minors. Therefore, η is SLn,m-invariant (we assume that SLn(C) acts on (ΛnCm)∗

trivially). Recall that (ΛnCm)∗ is identified with ΛdCm by the SLn,m-equivariant
morphism (3). Then η can be regarded as the following chain of morphisms:
Hom((Cn)∗,Cm) → Hom(Λn(Cn)∗,ΛnCm) → Hom(Λn(Cm)∗,ΛnCn) = ΛdCm .
Now chose some distinct complex numbers λ1, . . . , λl and define ω by formula

ω(P) = (−1)
d(d−1)

2
· l(l−1)

2 η
(
P(λ1)

)
∧ · · · ∧ η

(
P(λl)

)
. (6)

The morphism ω takes each matrix pencil P to the element of ΛmCm ' C and is
invariant under the action of SLn,m .

Theorem 4.3. The morphism ω is invariant under the action of SLn,m,2 .

Proof. It is easy to prove that if P = Lk ⊕ · · · ⊕ Lk then ω(P) is equal to
Wandermond determinant of λ1, . . . , λl and otherwise it is equal to zero. The
action of SL2(C) on Cn,m,2 is generated by transformations A+λB 7→ (A+ cB)+
λB and A+ λB 7→ B − λA . They correspond to the following transformations of
λ : P(λ) 7→ P(λ+ c) and P(λ) 7→ λP(−λ−1). If we add the same constant to all
λ1, . . . , λl then the Wandermond determinant will not change. The transformation
P(λ) 7→ λP(−λ−1) doesn’t affect ω , too, as it inverses the order of the columns in
the Wandermond determinant and multiplies the odd columns by −1. Therefore,
ω(P) is SLn,m,2-invariant.

Corollary 4.4. Perfect matrix pencils are SLn,m,2-equivalent if and only if they
are SLn,m-equivalent.

It follows from this theorem that the set of perfect matrix pencils is an open and
dense subset in the set of all n × m matrix pencils, and the orbits of a perfect
matrix pencil under the actions of SLn,m and SLn,m,2 are closed.
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Theorem 4.5. If d = m−n divides n, then C[Cn,m,2]SLn,m ' C[Cn,m,2]SLn,m,2 '
C[ω]. Otherwise, C[Cn,m,2]SLn,m ' C[Cn,m,2]SLn,m,2 ' C.

Proof. If d doesn’t divide n then all elements of Cn,m,2 are imperfect singular
matrix pencils. Then by theorems 3.3 and 3.4 all orbits are nilpotent and therefore
C[Cn,m,2]SLn,m ' C[Cn,m,2]SLn,m,2 ' C . Now let d divide n . Consider the one-
dimensional subspace L spanned over the perfect matrix pencil Lk ⊕ · · · ⊕ Lk .
The set SLn,m · L is a Zarisski open set, which is cut by ω(P) 6= 0. Then L is
a Chevallier section, that is, the morphism of restriction of invariants on L is an
isomorphism, and therefore the transcendence degree of C[Cn,m,2]SLn,m is equal to
one. By theorem 4.1, we have |W | = km = deg(ω). Thus, ω is a generator of
C[Cn,m,2]SLn,m and, since the generic SLn,m -orbits and SLn,m,2 -orbits coincide, also
a generator of C[Cn,m,2]SLn,m,2 .

5. Classification of matrix pencils

A partition of an integer n is a non-decresing infinite sequence of integers
n = (n1, n2, . . . ) that sums up to n . It is obvious that the number of non-zero
terms in such sequence is finite. Let n and m be the partitions of the integers n
and m , respectively. The sum n+m is the termwise sum of the sequences of n and
m . The union n∪m is the union of terms of n and m sorted in descending order.
The conjugate partition n∗ is defined by n∗k = |{i | ni ≥ k}| . For any partitions n
and m we have (n + m)∗ = n∗ ∪m∗ and (n∗)∗ = n . We say that the partition n
dominates the partition m and write n ≥ m , if n1+· · ·+nk ≥ m1+· · ·+mk for all
k . If n = (n1, n2, . . . ) and a is an integer then n+ a denotes (n1 + a, n2 + a, . . . ).
If n and ñ are the partitions of the same integer n and n ≥ ñ then ñ∗ ≥ n∗ .
The partition m (respectively, n) is said to be the lowering (respectively, the
heightening) of the partition n (respectively, m), if n > m , that is, n ≥ m and
n 6= m . The lowering (respectively, the heightening) is said to be minimal, if there
is no partition k such that n > k > m . The partitions are usually illustrated by
Ferrer diagrams. The i-th column of the Ferrer diagram contains ni cells. The
Ferrer diagram of n∗ is obtained from the Ferrer diagram of n by transposition.
The Ferrer diagram of a minimal lowering of the partition n is obtained from the
Ferrer diagram of n by crumbling or deletion of its rightmost cell (if it exists).

Let P be a matrix pencil. Denote the number of blocks Lk , Rk and Dk(µ)
in the Kronecker canonical form of P by lk(P), rk(P) and dk(µ,P), respectively.
Define l(P) =

∑
lk(P) and r(P) =

∑
rk(P). The number dimU − l(P) =

dimV − r(P) is called the normal rank of P and is denoted by nrk(P). Define
the partitions D(µ,P) = (d1(µ,P), d2(µ,P), . . . ), L(P) = (l0(P), l1(P), . . . ), and
R(P) = (r0(P), r1(P), . . . ) by

li(P) =
∑
k≥i

lk(P) (7)

ri(P) =
∑
k≥i

rk(P) (8)

di(µ,P) =
∑
k≥i

dk(µ,P). (9)
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The sequences li(P), ri(P) and di(µ,P) are determined uniquely by partitions
D(µ,P), L(P) and R(P). Note that the partition D(µ,P) is conjugate to the
set of orders of regular blocks corresponding to the eigenvalue µ . For instance, if
D(µ,P) = (2, 1, 1) and L(P) = (1, 1) then P = D1(µ) +D3(µ) + L1 .

Now the classes of equivalent matrix pencils are described as follows:

1. A class of GLn,m-equivalent matrix pencils is given by the set {µ1, . . . , µs}
of (distinct) eigenvalues and the partitions L(P), R(P), and D(µj,P).

2. A calss of GLn,m,2-equivalent matrix pencils is given by the set of eigenvalues
that are defined up to a linear fractional transformation and the partitions
L(P), R(P), and D(µj,P).

3. A class of SLn,m-equivalent matrix pencils is given by

(a) the set of eigenvalues and the partitions L(P), R(P), and D(µj,P), if
the matrix pencil is singular and imperfect;

(b) the proportionality factor (between matrix pencil and its Kronecker
canonical form) that is defined up to multiplication by km-th root of
unity, if the matrix pencil is perfect;

(c) the set of eigenvalues, the partitions D(µj,P), and the proportionality
factor (as before) that is defined up to multiplication by n-th root of
unity, if the matrix pencil is regular;

4. A class of SLn,m,2-equivalent matrix pencils is given by

(a) the set of eigenvalues that are defined up to a linear fractional trans-
formation and the partitions L(P), R(P), and D(µj,P), if the matrix
pencil is singular and imperfect;

(b) the proportionality factor that is defined up to multiplication by km-th
root of unity, if the matrix pencil is perfect;

(c) the set of eigenvalues that are defined up to a linear fractional transfor-
mation, which satisfies (5) and the partitions D(µj,P), if the matrix
pencil is regular.

Remark 5.1. In all tables and figures we use the following simplified notation
of matrix pencils. If D(µi,P) = (ni1, ni2, . . . ) then the regular component of P is
denoted by Jn1(n11, n12, . . . ) ⊕ · · · ⊕ Jns(ns1, ns2, . . . ). The integers nij that are
equal to 0 or 1 are omitted in this expression. We assume that the eigenvalues
that correspond to different terms in this sum are distinct complex numbers
defined up to a certain transformation (depending on which group is acting). The
proportionality factor between matrix pencil and its Kronecker canonical form is
also omitted. For instance, D2(µ1)⊕D1(µ1)⊕D1(µ2) corresponds to J3(2)⊕J1 .
The matrix pencil P⊕· · ·⊕P is shortly denoted by nP , where n is the number of
terms in the sum. The matrix pencils L0 and R0 are not shown in the canonical
form.
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6. Matrix pencil bundles

A set X = {Xα} of subsets of a topological space X is called the strati-
fication, if ∪Xα = X , the closure of each Xα is a union of elements of X , and
Xα∩Xβ = ∅ for α 6= β . The sets Xα are called strata. We say that Xα covers Xβ ,
if Xα ⊃ Xβ and there is no Xγ other than Xα and Xβ such that Xα ⊃ Xγ ⊃ Xβ .

Now let X be an algebraic manifold with an action of some algebraic group.
We are interested in stratifications that have invariant strata. Certainly, such
strata are the unions of orbits, and the orbital decomposition, that is, the set of
all orbits is the finest possible invariant stratification. However, it typically has
infinite number of strata. In the next few paragraphs we introduce the notion of
matrix pencil bundle, which gives a natural stratification that has finite number
of strata.

The term “bundle” originates in works of Arnold and deals with linear
operatiors [1]. A bundle of linear operators is a set of linear operators that have
fixed Jordan structure and varying eigenvalues. In other words, the linear operators
⊕Jki

(αi) and ⊕Jki
(βi) belong to the same bundle if and only if αi = αj implies

βi = βj and vice versa for all i and j . Obviously, the number of bundles of linear
operators is finite.

It is clear how to give similar definition for matrix pencils. Let P be a
matrix pencil that is defined up to a transformation from GLn,m , and let ϕ be a
one-to-one mapping of C = C∪{∞} into itself. The matrix pencil ϕ(P) is defined
by

L(ϕ(P)) = L(P), (10)

R(ϕ(P)) = R(P), (11)

D(µ, ϕ(P)) = D(ϕ−1(µ).P) (12)

up to a a transformation from GLn,m . The Kronecker canonical form of ϕ(P) is
obtained from the Kronecker canonical form of P by replacement of the eigenvalues
of P with their images under ϕ . Denote by Φ the set of one-to-one mappings of
C into itself. The set

B(P) =
⋃
ϕ∈Φ

ϕ(P) (13)

is called a matrix pencils bundle. In what follows, the matrix pencils bundles
are shortly referred to as bundles. Similarly to (13), we introduce the following
notation for the unions of closures of orbits:

B(P) =
⋃
ϕ∈Φ

ϕ(P). (14)

Obviously, B(P) ⊂ B(P) ⊂ B(P).

Now let ψ be a mapping of C into itself (not necesserily one-to-one). Define
ψ(P) by (10), (11) and

D(µ, ψ(P)) =
⋃

ν∈ψ−1(µ)

D(ν,P). (15)

The matrix pencil ψ(P) is defined up to a transformation from GLn,m and is called
the amalgam of P . In what follows we often use two special types of amalgams.
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Let γ(z) be the mapping that takes all C to the point a , and let γz0(z) be the
mapping that takes C\{z0} to the point a and z0 to some other point b for some
z0 ∈ C . If P is a matrix pencil and µ is an eigenvalue of P then the amalgams
γ(P) and γµ(P) are called the main and the submain amalgams, respectively.

Assume that P is a Kronecker canonical form, and let S(P) ⊂ C be the set
of eigenvalues of P . Consider the set Z = {(x1, . . . , xs) ∈ Cs | xi 6= xj if i 6= j} ,
where s = |S(P)| , and the mapping f : Z × GLn,m → Cn,m,2, that takes each
pair ((x1, . . . , xs), g) to a matrix pencil obtained from P by replacement of the
eigenvalues of P with x1, . . . , xs and consequent application of the action of
g ∈ GLn,m . This mapping is polynomial and has constant rank. Since the
dimension of stabilizer of a matrix pencil depends on the partitions D(µ,P) but
not on the eigenvalues themselves, the image of f , that is, B(P) is an irreducible
regular algebraic manifold, whose codimension is given by

cod(Cn,m,2,B(P)) = cod(Cn,m,2,O(P))− |S(P)|. (16)

The codimension of orbit, which appears on the right side of (16), can be calculated
as follows [4]. Let P and Q be n1 ×m1 and n2 ×m2 matrix pencils. Define

〈P ,Q〉 = dim{(A,B) ∈ (Cn1 ⊗ Cn2)× (Cm1 ⊗ Cm2) | PA = BQ}.

Then the dimension of stabilizer of n×m matrix pencil P in GLn(C)×GLm(C)
is equal to 〈P ,P〉 , and the codimension of its orbit in Cn,m,2 is equal to 〈P ,P〉−
(n −m)2 . One can prove that 〈P ,Q〉 =

∑
〈Pi,Qj〉 , if P = ⊕Pi and Q = ⊕Qj .

For µ1 6= µ2 we have 〈Dk(µ1),Dj(µ2)〉 = 0; for the other pairs of indecomposable
matrix pencils the values of 〈P ,Q〉 are given in the following table.

Lk Rk Dk(µ)
Lj (j − k + 1)+ j + k j
Rj 0 (k − j + 1)+ 0
Dj(µ) 0 k min(j, k)

(17)

This gives an efficient method for computation of orbit’s codimension from the
Kronecker canonical form. By dropping L0 and R0 in the Kronecker canonical
form we implicitly use the natural embedding of Cn,m,2 into CN,M,2 for N ≥ n
and M ≥ m . Codimensions of orbits, however, depend on the dimension of the
enveloping space. This motivates the following definition. A matrix pencil P is
said to be a veritable n×m matrix pencil, if l0(P) = r0(P) = 0. Veritability of a
matrix pencil depends on the dimension of the representation. The n×m matrix
pencils that are not veritable n×m matrix pencils are veritable matrix pencils of
smaller orders.

It is convenient to reduce the calculation of the orbit’s codimension to the
case of veritable matrix pencils. Let P be a veritable n×m matrix pencil , N ≥ n ,
M ≥ m , D = N −M , d = n−m . Simple algebra proves that the codimension of
GLN,M -orbit of P is given by

cod(CN,M,2,GLN,MP)− cod(Cn,m,2,GLn,mP) = d2−D2 +N(N −n)+M(M −m).
(18)
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7. Degenerations of matrix pencil bundles

For any partition n , put J(µ,n) = ⊕Jni
(µ), µ ∈ C and J (µ,n) =

⊕Dni
(µ), µ ∈ C ; J(µ,n) is a matrix, J (µ,n) is a matrix pencil.

Lemma 7.1. Let A be an upper triangular block matrix with blocks A1,
A2, . . . , Am on the diagonal. If Ai is conjugate to J(µ,ni) for all i then A belongs
to the closure of SLn(C)-orbit of J(µ,

∑
ni). If Ai is conjugate to J(µi,ni) for

all i and µi 6= µj for i 6= j then A is conjugate to ⊕J(µi,ni).

Proof. The first statement is found in [9]. The proof of the second statement
is trivial.

Corollary 7.2. Let P be an upper triangular block matrix pencil with blocks
Pi on the diagonal. If Pi is equivalent to J (µ,ni) for all i then P belongs to the
closure of GLn,m -orbit of J (µ,

∑
ni). If Pi is equivalent to J (µi,ni) for all i

and µi 6= µj for i 6= j then P and ⊕J (µi,ni) are equivalent.

Lemma 7.3. Let γ1(ε), . . . , γs(ε) be a set of complex numbers that are distinct
for all ε ∈ (0, ε0] and γs(ε) → 0 when ε → 0 for all i. There exist matrices Cε
such that Cε

(
Jk1(γ1(ε))⊕ · · · ⊕ Jks(γs(ε))

)
C−1
ε → Jk1+···+ks(0) when ε→ 0.

Proof. Find a1(ε), . . . , an(ε) from the equiation λn − a1(ε)λ
n−1 − a2(ε)λ

n−2 −
· · · − an(ε) = (λ− γ1(ε))

k1 . . . (λ− γs(ε))
ks and define

Bε =


a1(ε) 1
a2(ε) 0 . . .
. . . . . . 1
an(ε) 0

 .

Clearly, det(λE −Bε) = (λ− γ1(ε))
k1 . . . (λ− γs(ε))ks and the rank of λE −Bε is

greater then or equal to n − 1 for all λ ∈ C . Therefore, the Jordan normal form
of Bε consists of blocks Jk1(γ1(ε)), . . . , Jks(γs(ε)), i.e. Bε = C−1

ε Jk1(γ1(ε))⊕ · · · ⊕
Jks(γs(ε))Cε for some Cε ∈ SLn(C). To complete the proof, it remains to note
that all ai(ε) tend to 0 when ε→ 0.

Lemma 7.4. If P is an upper triangular block matrix pencil with blocks P l ,
Preg , Pr in the diagonal (in this order!), Preg is a regular matrix pencil, P l con-
tains only the blocks Li , and Pr contains only the blocks Rj then P is equivalent
to P l ⊕ Preg ⊕ Pr .

Proof. For simplicity, assume that P is(
P l A
0 Preg

)
.

To prove the equivalence of P and P l⊕Preg , it is enough to find matrices X and
Y such that P lX + Y Preg + A = 0. We prove this statement for P l = Li and
Preg = Dj(µ). Consider the linear operator that takes each pair of matrices (X, Y )
to the matrix pencil LiX + YDj(µ). This operator acts on (2ij + j)-dimensional
complex vector space. According to (17), the dimension of its kernel is j . Therefore
the dimension of its image is 2ij , and, therefore, the desired matrices X and Y
exist for any i× j matrix pencil A .
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Theorem 7.5. The closure of B(P) is the union of closures of its orbits and
closures of their amalgams. That is,

B(P) =
⋃
ψ

B(ψ(P)),

where ψ runs over the set of all mappings of C into itself.

Proof. By lemma 7.3, B(ψ(P)) ⊂ B(P). Therefore, B(ψ(P)) ⊂ B(P) for any
amalgam ψ . Now we need to prove that if Pn ∈ B(P) is a sequence of matrix
pencils that converges to P∗ then P∗ belongs to B(ψ(P)) for some ψ . Assume that
P1 = P and denote the eigenvalues of Pn by µn1, . . . , µns . Since C is compact,
we may assume that µni converges to some µi for all i = 1 . . . s . Consider the
mapping ψ (defined on the set of eigenvalues of P1 ) that takes each µ1i to µi .
It follows from Ivasawa decomposition in the groups GLn(C) and GLm(C) that
there exist unitary matrices Pn and Qn such that

PnPnQ−1
n =

P l
n ∗ ∗

0 Preg
n ∗

0 0 Pr
n

 , (21)

where Preg
n is an upper triangular matrix with numbers ain+λbin in the diagonal,

bin/ain = µin , where µin that are equal to each other run in succesion, P l contains
only the blocks Li , Pr contains only the blocks Rj , and P l

n ⊕ Preg
n ⊕ Pr

n is
equivalent to Pn . Decomposition (21) is called the generalized Shur form of a
matrix pencil [24].

Since Pn and Qn are unitary, we may assume that their limits exist. The
numbers ain and bin are uniformely bounded by i , as Pn is converging. Therefore,
we may assume that ain → ai and bin → bi . Put αin = ain − ai , βin = bin − bi
and consider the matrix pencil

P ′
n =

P l
n ∗ ∗

0 Preg
n −Qn ∗

0 0 Pr
n

 ,

where Qn is a diagonal matrix pencil with αin+λβin on the diagonal. By lemma 7.4
P ′
n is equivalent to P l

n⊕(Preg
n −Qn)⊕Pr

n . By corollary 7.2, we have P ′
n ∈ O(ψ(P))

for all n and, since the limit of Qn is 0, (limPn)P∗(limQn)
−1 ∈ O(ψ(P)).

Therefore, P∗ ∈ B(ψ(P)). The proof is now completed.

Remark 7.6. The sequences ain and bin are uniformely bounded by i since Pn
converges. Therefore, ai and bi are both finite. What if ai and bi are both equal
to zero? Then Preg

n − Qn would not be a regular matrix pencil and the premise
of lemma 7.4 would not hold. In this case we multiply Pn by a diagonal matrix
Tn = diag(tin) to prevent ain and bin from tending to zero simultaneously. Then,
PnPnQ−1

n − T−1
n Qn ∈ B(ψ(P)), but T−1

n Qn → 0 since tin must tend to infinity.
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8. Degenerations of orbits of GLn,m and GLn,m,2

Description of closures of matrix pencil bundles is now reduced to descrip-
tion of closures of GLn,m-orbits. The closures of GLn,m-orbits have been described
in [21]. In particular, the matrix pencil Q belongs to the closure of GLn,m-orbit
of the matrix pencil P if and only if

R(P) + nrk(P) ≥ R(Q) + nrk(Q),

L(P) + nrk(P) ≥ L(Q) + nrk(Q),

D(µ,P) + r0(P) ≤ D(µ,Q) + r0(Q)

hold for all µ ∈ C [21]. The Kronecker canonical form of Q can be obtained from
the Kronecker canonical fom of P by the following transformations [21]:

Ia. Rj ⊕Rk → Rj−1 ⊕Rk+1 , 1 ≤ j ≤ k ,

Ib. Lj ⊕ Lk → Lj−1 ⊕ Lk+1 , 1 ≤ j ≤ k ,

IIa. Rj+1 ⊕Dk(µ) → Rj ⊕Dk+1(µ), j, k ≥ 0, µ ∈ C ,

IIb. Lj+1 ⊕Dk(µ) → Lj ⊕Dk+1(µ), j, k ≥ 0, µ ∈ C ,

III. Dj−1(µ)⊕Dk+1(µ) → Dj(µ)⊕Dk(µ), 1 ≤ j ≤ k , µ ∈ C ,

IV.
⊕s

i=1Dki
(µi) → Lp ⊕Rq , µi 6= µj for i 6= j , µi ∈ C , p+ q + 1 =

s∑
i=1

ki .

The transformations I–IV are not minimal, but the list of minimal transformations
is easily derived from them [6].

In section 2. we have shown that GLn,m,2-orbit of a matrix pencil P is a
union of GLn,m-orbits ϕ(P) over all linear fractional transformations of C . The
following lemma describes the limits of sequences of linear fractional transforma-
tions.

Lemma 8.1. For any sequence of linear fractional transformations of C there
exist a subsequence that converges in pointwise topology. The limit of a sequence
of linear fractional transformations is either a linear fractional transformation or
a mapping that is constant on C except for, may be, one point.

Proof. Let ϕRk
(z) = (rk21 + rk22z)/(r

k
11 + rk12z) be a sequence of linear fractional

transformations. Since rkij are defined up to proportionality, we may assume that
rkij converges to some rij for all i and j and rij are not all equal to zero. Passing
to ϕRk

(1/z) or (ϕRk
(z))−1 , we may assume that r12 6= 0. If matrix (rij) is

degenerate, then the limits of ϕRk
(z) are equal to each other for all z ∈ C except

for, may be, z = −r11/r12 . If matrix (rij) is non-degenerate, then the limit is a
linear fractional transformation.

Now let us go back to the definition of matrix pencil bundles. If in (13) we allowed
ϕ to be only a linear fractional transformation then the bundles would be exactly
GLn,m,2-orbits. This observation allows us to use the proof of theorem 7.5 for the
following theorem.
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Theorem 8.2.

B(P) = B(P) ∪

 ⋃
µ∈S(P)

B(γµ(P))

 ∪ B(γ(P)),

where B(P) = GLn,m,2P and B(P) = GLn,m,2(GLn,mP).

Proof. Let µ1, . . . , µs be the set of eigenvalues of P . It follows from lemma 7.3
that B(γ(P)) ⊂ B(P) since µ1, . . . , µs are mapped to εµ1, . . . , εµs by the linear
fractional transformation z 7→ εz . Similarly, B(γµ(P)) ⊂ B(P). The proof of the
converse is similar to one of theorem 7.5; the difference is that if two eigenvalues
coalesce then all eigenvalues do except for, may be, one (lemma 8.1).

Thus, the regular parts of GLn,m,2-orbits either coalesce all together, or coalese all
but one, or do not coalese at all.

9. Degenerations of orbits of SLn,m and SLn,m,2 .

We have shown that SLn,m-orbits of perfect matrix pencils are closed, while
SLn,m-orbits of imperfect singular matrix pencils coincide with their GLn,m-orbits
(theorem 3.3). We now have to describe degenerations of SLn,m-orbits of regular
matrix pencils. It is enough to determine which of the transformations I–IV (sec-
tion 8.) can be executed under the action of SLn,m . First of all, transformations I–II
are not applicable to regular matrix pencils. The transformation IV is also not
applicable, since the coefficients of the binary form θ(P) are invariant and there-
fore the closure of SLn,m-orbit of a regular matrix pencil consists of regular matrix
pencils only. Transformation III, indeed, is applicable to regular matrix pencils;
it corresponds to regrouping of Jordan blocks under the adjoint representation of
SLn(C).

Now we focus on SLn,m,2-orbits. As before, we may confine ourselves to
SLn,m,2-orbits of regular matrix pencils because SLn,m-orbits and GLn,m-orbits of
imperfect singular matrix pencils coincide (theorem 3.4). Recall that SLn,m,2-orbit
of a regular matrix pencil is defined uniquely by the partitions D(µj,P) and the
set of eigenvalues, which are defined up to a linear fractional transformation that
satisfies (5). The condition (5) is equivalent to

n∏
i=1

(r11 + r12µi) = (detR)n/2 (23)

for a regular matrix pencil P = E + λD , where D is an upper triangular matrix
with µ1, . . . , µn on the diagonal. Let ϕR(z) be a linear fractional transformation
that satisfies (23). Since

ϕR(z)− ϕR(w) =
detR (z − w)

(r11 + r12z)(r11 + r12w)
(24)

holds for any z and w , we have

W (ϕR(µ1), . . . , ϕR(µn)) =
(detR)

n(n−1)
2 W (µ1, . . . , µn)(∏

(r11 + r12µi)
)n−1 , (25)
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where W (z1, . . . , zn) =
∏
i>j

(zi − zj) is the Wandermond determinant. It follows

from (23) that
W (ϕR(µ1), . . . , ϕR(µn)) = W (µ1, . . . , µn). (26)

Theorem 9.1. SLn,m,2-orbit of a regular n × n matrix pencil that has exactly
n distinct eigenvalues is closed.

Proof. Let gk = (Pk, Qk, Rk) be a sequence of elements of SLn,m,2 such that
lim gkP = P∗ . Denote the eigenvalues of P by µ∗1, . . . , µ

∗
n , and let µ∗i be the

limits of ϕRk
(µi) when k → ∞ . We may assume that µi and µ∗i are finite for

all i = 1 . . . n . It follows that W (µ∗1, . . . , µ
∗
n) = W (µ1, . . . , µn) and, therefore,

µ∗1, . . . , µ
∗
n are distinct and the limit of ϕRk

is a linear fractional transformation.
Since SLn,m-orbit of P is closed, it follows that P and P∗ are SLn,m,2-equivalent.

This theorem has a simplier proof. The orbit of a regular matrix pencil
whose eigenvalues are distinct is a pre-image of the orbit of a binary form that
doesn’t have multiple factors. Such orbits are known to be closed. However, this
proof is applicable only when the eigenvalues are distinct, but there are other closed
orbits. In the proof of theorem 9.1 we essentially used the fact that W (µ1, . . . , µn)
is non-zero. Now we introduce another approach that works for matrix pencils
with multiple eigenvalues.

Lemma 9.2. Let n = (n1, . . . , ns) be a partition of an even integer n. The
integer n1 is smaller than or equal to the half of n if and only if there exist a
non-oriented graph whose vertices are n1, . . . , ns and the number of edges coming
from ni is equal to ni for all i.

Proof. Let us translate this statement to the language of Ferrer diagrams. The
Ferrer diagram of n can be built step by step from an empty diagram by picking
any two columns and adding one new cell to each of them. Equivalently, the Ferrer
diagram of n can be sequentially disassembled by picking any two columns on each
step and deleting one cell in each of them. Clearly, if each column gets one cell
at one time then none of the columns gets more than a half of the total number
of cells. This proves the necessary part. The proof of the converse is by induction
over n . Consider three cases:

1. n1 > n2 . Delete the upper cells in the first column and (some) other column
without loss of monotonicity of n . The partition obtained has the same
property: the number of cells in its first column is smaller than or equal to
the total number of cells.

2. n1 = n2 > n3 . Delete the upper cells in the first two columns. Then the
number of cells in the first column is again smaller than or equal to the total
number of cells.

3. n1 = n2 = n3 = ns > ns+1 . In this case n1 ≤ n/3. Therefore, n1 < n/2− 1
for n > 6. Now delete the upper cells in the (s−1)-th and the s-th columns.
The number of cells in the first column of the partition obtained is smaller
than or equal to the total number of cells. The proof is trivial for n ≤ 6.
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Figure 1: The graphs corresponding to the partitions (3, 1, 1, 1) and (2, 2, 2, 2).

The non-oriented graph whose existence is guaranteed by previous lemma is not
always well-defined. Figure 1 illustrates this for the partitions (3, 1, 1, 1) (a) and
(2, 2, 2, 2) (b and c). A non-oriented graph is said to be a star, if all its edges share
a common node. Obviously, the graph built in lemma 9.2 is a star if and only if
n1 = n/2 and in this case it is defined unambiguously.

In what follows, only the main and the submain amalgams of SLn,m,2-orbits
are considered. The number of distinct eigenvalues of these amalgams is smaller
than or equal to two. Therefore, SLn,m,2-orbits of γµ(P) and γ(P) are well-
defined, since every pair of complex numbers can be taken to another pair by a
linear fractional transformation that satisfies (5).

We have shown that the regular matrix pencil P is nilpotent if and only if
the binary form θ(P) is nilpotent. It is known that the binary form is nilpotent
if and only if it has a linear factor whose multiplicity is greater than the half of
the degree of the form. Hence, the regular matrix pencil P is nilpotent if and
only if it has an eigenvalue whose multiplicity is greater than the half of the order
of the matrix pencil. The following theorem describes closures of non-nilpotent
SLn,m,2-orbits.

Theorem 9.3. Put B(P) = SLn,m,2P and B(P) = SLn,m,2(SLn,mP). If the
multiplicities of all eigenvalues of a regular matrix pencil P are strictly smaller
than the half of its order then B(P) = B(P). If the multiplicitiy of the eigenvalue
µ is equal to the half of the order of P then B(P) = B(P) ∪ B(γµ(P)).

Proof. Recall the proof of theorem 9.1. Consider the sequence Pk of elements
of SLn,m,2-orbit of P that converges to P∗ and denote by µ∗i the limit of ϕRk

(µi).
Since P is not nilpotent, the sequence of binary forms θ(Pk) converges to a non-
zero limit. Therefore, µ∗i are the eigenvalues of P∗ . Assume that µ1, . . . , µs are
distinct eigenvalues of P . Their multiplicities form a partition, which we denote
by n = (n1, n2, . . . ).

(i) Case n1 < n/2. If n is an odd number then multiply n by 2. Denote
by E the set of edges of the graph Γ that was constructed in lemma 9.2. We now
follow the proof of theorem 9.1 with one exception: instead of W we consider

Ŵ (z1, . . . , zs) =
∏

[i,j]∈E

(zi − zj),

where [i, j] denotes the edge connecting the i-th and the j-th nodes, i < j . It
follows from (24) that

Ŵ (ϕR(µ1), . . . , ϕR(µs)) =
(detR)nŴ (µ1, . . . , µs)(∏

(r11 + r12µi)ni
)2 .
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For any fractioal transformation ϕR(z) that satisfies (23) we have

Ŵ (ϕR(µ1), . . . , ϕR(µs)) = Ŵ (µ1, . . . , µs). Therefore, Ŵ (µ∗1, . . . , µ
∗
s) =

Ŵ (µ1, . . . , µs). Suppose that the limit of ϕRk
is not a linear fractional

transformation. Then all µ∗i are equal to each other but may be one. Note that
Γ is not a star when n1 < n/2. If we delete one node along with all its edges
then there will remain at least one edge. Since this edge corresponds to a factor
in Ŵ (µ∗1, . . . , µ

∗
s), we have Ŵ (µ∗1, . . . , µ

∗
s) = 0, and therefore Ŵ (µ1, . . . , µs) = 0.

This contradicts to the assumption that µ1, . . . , µs are distinct. Thus, the limit
of ϕRk

is a linear fractional transformation, and P∗ is SLn,m,2-equivalent to a
matrix pencil from SLn,mP .

(ii) Case n1 = n/2. Using the same arguments one can prove that the
eigenvalue µ whose multiplicity is n/2 cannot coalesce with the others. It follows
that B(P) ⊂ B(P)∪B(γµ(P)). It now remains to prove that, indeed, B(γµ(P)) ⊂
B(P). It is convenient to change the notation now. Let µ be equal to 0, and denote
the other eigenvalues by µ1, . . . , µs . Consider the linear fractional transformation

ϕk(z) =
bkckz

1 + ckz
. (27)

Then (23) is equivalent to

b
n/2
k =

(1 + ckµ1) . . . (1 + ckµs)

c
n/2
k

. (28)

The degree of the denominator is equal to the degree of the numerator (s = n/2).
If ck →∞ when k →∞ , then bk → (µ1 . . . µs)

2/n and ϕk(z) → (µ1 . . . µs)
2/n 6= 0

for any z ∈ C\{0} , and ϕ(0) = 0. The proof is now completed.

Theorem 9.4. Let B(P) and B(P) be as in theorem 9.3, and let R and S
denote the sets of regular and singular n × n matrix pencils, respectively, and
consider a nilpotent regular matrix pencil P . Then B(P) ∩R = B(P) ∪ B(γ(P))
and B(P) ∩ S = GLn,m(γ(P)) ∩ S.

Proof. First we prove that if some of the eigenvalues coalesce then they all do.
Suppose that the eigenvalue that has the greatest multiplicity is equal to zero,
and denote the other eigenvalues by µ1, . . . , µs . We may assume that ϕRk

(0) = 0
for all k . Then ϕRk

has form (27). The limit of ϕRk
is not a linear fractional

transformation if and only if the limit of det(Rk) is equal to zero or is infinite.
If it is equal to zero then all µ∗i are equal to zero. If it is infinite then it follows
from (28) that ck →∞ and bk → 0, since the degree of the nominator is smaller
than the degree of the denominator (s < n/2). Thus, ϕk(z) → 0 for all z ∈ C .

If the limit of ϕRk
is a regular matrix pencil that doesn’t belong to B(P)

then its eigenvalues are all equal to each other. That is, B(P) ∩ R ⊂ B(γ(P)).
It is clear that B(γ(P)) ⊂ B(P) ∩ R . If the limit of ϕRk

is a singular matrix
pencil then there exist unitary transformations Pn and Qn that take Pn to the
generalized Shur form. As in theorem 7.5 we can substract a matrix pencil Qn

from PnPnQ−1
n to make the difference belong to GLn,m(γ(P)). Now it remains to

prove that GLn,m(γ(P))∩S ⊂ B(P). It is enough to prove that GLn,m(γ(P))∩S ⊂
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B(γ(P)). The Kronecker canonical form of a singular matrix pencil that is covered
by GLn,m-orbit of a regular matrix pencil can be obtained using transformation
IV (section 8.). The matrix pencils

1 λ
. . . . . .

1 λ
. . . . . .

1 λ

 and


1 λ

. . . . . .

ε λ
. . . . . .

1 λ


are SLn,m,2-equivalent for all ε 6= 0 (the transformation consists in multiplication
of the first matrix by diag(ε, ε, . . . , ε1−n, . . . , ε) and consequent application of the
action of diag(ε−1, ε)). Thus, the degeneration Dn(0) → Lp⊕Rq can be performed
by the action of SLn,m,2 .

10. Minimal degenerations

So far we have obtained the criteria for a matrix pencil to belong to the
closure of an orbit (or bundle) of another matrix pencil. In order to describe
the hierarchy of closures, we need to come up with a description of the covering
relationship for all cases discussed in sections 7.–9.. For GLn,m-orbits and matrix
pencil bundles it has been done in [6].

The orbit of P covers the orbit of Q if and only if the partitions D(µ,Q),
R(Q), and L(Q) are obtained from D(µ,P), R(P), and L(P), respectively, by
one of the following transformations:

A1. Minimal lowering of L(P) or R(P) that doesn’t affect the leftmost column.

A2. Deletion of the rightmost standalone cell of R(P) or L(P) and simultaneous
addition of a new cell to D(µ,P) for some µ ∈ C.

A3. Minimal hightening of D(P).

A4. Deletion of all cells in the lowest raw of each D(µ,P) and simultaneous
addition of one new cell to each lp(P), p = 0, . . . , t and rq(P), q = 0, . . . , k−
t−1, where k is the number of deleted cells, such that every non-zero column
is given at least one cell.

The rule A1 corresponds to the transformations Ia and Ib, the rule A2 corresponds
to the transformations IIa and IIb, the rule A3 corresponds to the transforma-
tion III and the rule A4 corresponds to the transformation IV. A good set of
figures illustrating the respective transformations of the Ferrer diagrams is found
in [6].

The bundle of P covers the bundle of Q if and only if the partitions
D(µ,Q), R(Q), and L(Q) are obtained from D(µ,P), R(P), and L(P), re-
spectively, by the rules A1, B2, A3, B4 and B5:

B2. Same as rule A2, but start with a new set of cells for a new eigenvalue
(otherwise it could have been done using A2 and then B5).
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B4. Same as rule A4, but appply only if there is just one eigenvalue or if all
eigenvalues have at least 2 Jordan blocks (otherwise it could have been done
using B5 and then A4).

B5. Union of any two D(µ,P).

Here we list the similar set of rules for minimal degenerations of SLn,m,2
and GLn,m,2-orbits. No proof is necessary as they are obtained from ones above in
a very straightforward way.

The GLn,m,2-orbit of P covers the GLn,m,2-orbit of Q if and only if D(µ,Q),
R(Q), and L(Q) are obtained from D(µ,P), R(P), and L(P), respectively, by
the rules A1, C2, A3, C4, and C5:

C2. Same as rule A2, but start a new set of cells for a new eigenvalue if the
matrix pencil has less than three eigenvalues.

C4. Same as rule A4, but apply only if there is just one eigenvalue or if all
eigenvalues have at least 2 Jordan blocks.

C5. Union of all D(µ,P) but one.

The SLn,m,2-orbit of P covers the SLn,m,2-orbit of Q if and only if D(µ,Q),
R(Q), and L(Q) are obtained from D(µ,P), R(P), and L(P), respectively, by
the following rules:

1. rules A1, C2, A3, C4 and C5 , if the matrix pencils is imperfect and singular;

2. rules A3, D4 and D5

D4. Rule A4 and consequent union of all D(µ,P).

D5. Union of all D(µ,P),

if the matrix pencils is nilpotent and regular;

3. rules A3 and D6

D6. Union of all D(µ,P) except for ones, whose eigenvalue’s multiplicity is
n/2.

if the matrix pencil is regular and has an eigenvalue with mutiplicity n/2;

4. rule A3 for all other regular matrix pencils.

11. Null cone

Recall that the null cone is the union of all nilpotent orbits. The main focus
of this paragraph is the null cone of SLn,m,2 .

Theorem 11.1. The null cone of SLn,m,2 is irreducible and contains an open
orbit for n 6= m.
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Proof. Suppose m > n and put d = m − n . Condiser the matrix pencil
P = dLk ⊕ (n mod d)Lk+1 , where k = [n/d] . If d divides n then P is a perfect
matrix pencil and the null cone is the border of its GLn,m,2-orbit. The Ferrer
diagram of L(P) is a rectangle with k columns and d raws. If d > 1 then only
the rule A1 is applicable to this diagram. If d = 1 then the only applicable
rule is C2. The corresponding degenerations are (d − 2)Lk ⊕ Lk−1 ⊕ Lk+1 and
(d − 1)Lk−1 ⊕ J1 . Therefore, the orbit of P covers only one SLn,m,2-orbit, since
the other GLn,m,2-orbits and SLn,m,2-orbits coincide (theorem 3.4). Then the null
cone is irreducible and has an open orbit. If d doesn’t divide n then GLn,m,2-orbits
and SLn,m,2-orbits coincide and the null cone is Cn,m,2 . The reader will easily prove
that the closure of the orbit of P contains all other orbits.

Theorem 11.2. The null cone of SLn,n,2 is irreducible.

Proof. A regular matrix pencil is nilpotent if and only if multiplicity of one of
its eigenvalues is greater than the half of its order. Then the null cone of SLn,n,2
is the union of the set of the matrix pencil bundles that have an eigenvalue with
multiplicity n/2 and the set of singular matrix pencils. There is only one bundle
(namely, J[n/2]+1⊕ (n− [n/2]− 1)J1 ) whose closure is the entire null cone. It now
remains to note that the bundles are irreducible.

12. Hierarchy of closures

It turns out that the hierarchy of closures of matrix pencil bundles has an
interesting property: the matrix pencil bundles can be subdivided into three classes
— left, central and right, which are defined by L(P) > R(P), L(P) = R(P), and
L(P) < R(P), respectively, such that if P1 is left, P2 is right, and B(P1) ⊃ B(P2)
then there is a central matrix pencil Q such that B(P1) ⊃ B(Q) ⊃ B(P2). In other
words, matrix pencil bundles from the left and the right classes do not cover each
other. Also, B(Q) covers B(P) if and only if B(Q>) covers B(P>). Thus, we can
save some space in figures illustrating the closures’ hierarchy by showing only left
and central matrix pencils. Sadly, this symmetry breaks for 6× 7 matrix pencils
(see #223 in table 1). Moreover, in higher dimensions there exist matrix pencils
such that L(P) and R(P) are not comparable at all (for example, L0⊕L3⊕2R1 ).

The classification of bundles and GLn,m,2- and SLn,m,2-orbits of matrix
pencils is summarized in table 1 with the following conventions. The consecutive
indexing for matrix pencils of all sizes is used. Only the left and the central
veritable matrix pencils (except for #223) are shown. The right veritable matrix
pencils are denoted by k> , where k is the index of the corresponding transposed
left matrix pencil. For example, 7> stands for R2 . The columns “n” and “m”
have obvious meaning. The column “c” contains codimensions of matrix pencil
bundles in Cn,m,2 (that is in the space where they are veritable). The column
“bundle” lists indices of matrix pencil bundles that are covered by the given matrix
pencil bundle; k∗ means that the given bundle covers both k and k> . For instance,
R1⊕L1⊕J1 (# 25) covers L1⊕ 2J1 and R1⊕ 2J1 . The column “GLn,m,2-orbit”
lists the indices of GLn,m,2-orbits that are covered by the given GLn,m,2-orbit. If
a cell of this colums is empty then its content was the same as in “bundle”. The
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last column lists the indices of SLn,m,2-orbits that are covered by SLn,m,2-orbit of
P , where P is a (veritable) n × m matrix pencil. The indices of SLn,m,2-orbits
that are covered by the orbit of of P under the action of SLn,m,2 for larger n and
m are found in the column “GLn,m,2-orbit”. For instance, the SLn,m,2-orbit of the
6×7 matrix pencil #228 covers the SLn,m,2-orbit of the 6×6 matrix pencil #168.
The symbol of empty set stands for the closed orbits.

The hierarchy of closures of matrix pencil bundles is shown in figures 2–5.
The dots correspond to the matrix pencil bundles; if the canonical form is not
shown in the figure then it is found in table 1. In all figures except for figure 2 (a)
only the left and the central matrix pencils are shown. Two nodes are connected
with an edge if and only if the matrix pencil bundle that corresponds to the node
drawn above covers the matrix pencil bundle that corresponds to the node drawn
below. The matrix pencil bundles, whose corresponding nodes are drawn on the
same level, have equal codimensions, which are indicated by framed numbers on
the side of the diagram.

rJ2 ```````````````````` 9

rJ3 ```````````````````` 8

r2J1 ```````````````````` 6

rJ1⊕L1 ```````````````````` 5

rL2 rL1⊕R1 rJ3(2) ```````` 4

rJ1⊕J2 ```````````````````` 3

rJ3(3) ```````````````````` 2

rJ1⊕J2(2) ```````````````````` 1

r3J1 ```````````````````` 0
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Figure 2: Hierarchy of closures of 2× 2 (a) and 3× 3 (b) bundles.
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# Canonical form n m c Bundle GLn,m,2-orbit SLn,m,2-orbit
1 J1 1 1 0 ∅
2 L1 1 2 0 1 ∅
3 J2 2 2 3 1
4 J2(2) 2 2 1 3, 2∗

5 2J1 2 2 0 4 ∅
6 L1+J1 2 3 1 5
7 L2 2 3 0 6 ∅
8 J3 3 3 8 3
9 R1+L1 3 3 4 6∗

10 J3(2) 3 3 4 8, 6∗

11 J2+J1 3 3 3 10
12 J3(3) 3 3 2 10, 9, 7∗

13 J2(2)+J1 3 3 1 12, 11
14 3J1 3 3 0 13 ∅
15 2L1 2 4 0 7 ∅
16 L1+J2 3 4 5 11
17 L1+J2(2) 3 4 3 16, 15, 13
18 L1+2J1 3 4 2 17, 14
19 L2+J1 3 4 1 18
20 L3 3 4 0 19 ∅
21 J4 4 4 15 8
22 J4(2) 4 4 9 21, 16∗

23 J3+J1 4 4 8 22
24 J4(2, 2) 4 4 7 22, 17∗

25 R1+L1+J1 4 4 6 18∗

26 2J2 4 4 6 24, 18∗ ∅
27 R1+L2 4 4 5 25, 19
28 J4(3) 4 4 5 25, 24, 19∗

29 J3(2)+J1 4 4 4 28, 23
30 J2(2)+J2 4 4 4 28, 26 26
31 J2+2J1 4 4 3 30, 29 30
32 J4(4) 4 4 3 28, 27∗, 20∗

33 J3(3)+J1 4 4 2 32, 29
34 2J2(2) 4 4 2 32, 30 30
35 J2(2)+2J1 4 4 1 34, 33, 31 34, 31
36 4J1 4 4 0 35 33 ∅
37 J1+2L1 3 5 2 19
38 L2+L1 3 5 0 37, 20
39 L1+J3 4 5 11 23
40 R1+2L1 4 5 8 37, 27
41 L1+J3(2) 4 5 7 39, 37, 29
42 L1+J2+J1 4 5 6 41, 31
43 L1+J3(3) 4 5 5 41, 40, 38, 33
44 L2+J2 4 5 5 42
45 L1+J2(2)+J1 4 5 4 43, 42, 35
46 L1+3J1 4 5 3 45, 36
47 L2+J2(2) 4 5 3 45, 44
48 L2+2J1 4 5 2 47, 46
49 L3+J1 4 5 1 48
50 L4 4 5 0 49 ∅
51 J5 5 5 24 21

Table 1: (continued)
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# Canonical form n m c Bundle GLn,m,2-orb. SLn,m,2-orb.
52 J5(2) 5 5 16 51, 39∗

53 J4+J1 5 5 15 52
54 J5(2, 2) 5 5 12 52, 41∗

55 R1+L1+J2 5 5 11 42∗

56 J3+J2 5 5 11 54, 42∗ 54
57 J5(3) 5 5 10 55, 54, 44∗

58 R1+L1+J2(2) 5 5 9 55, 45∗

59 J4(2)+J1 5 5 9 57, 53
60 J3+J2(2) 5 5 9 57, 56
61 R1+L1+2J1 5 5 8 58, 46∗

62 J3+2J1 5 5 8 60, 59 57
63 J5(3, 2) 5 5 8 58, 57, 47∗

64 R1+L2+J1 5 5 7 61, 48
65 J4(2, 2)+J1 5 5 7 63, 59
66 J3(2)+J2 5 5 7 63, 61, 56, 48∗ 63, 56
67 R1+L3 5 5 6 64, 49
68 R2+L2 5 5 6 64∗

69 J1+2J2 5 5 6 66, 65 ∅
70 J5(4) 5 5 6 64∗, 63, 49∗

71 J4(3)+J1 5 5 5 70, 65
72 J3(2)+J2(2) 5 5 5 70, 66, 60
73 J3(3)+J2 5 5 5 70, 66
74 J3(2)+2J1 5 5 4 72, 71, 62 70, 62
75 J2(2)+J2+J1 5 5 4 73, 72, 71, 69 69
76 J5(5) 5 5 4 70, 68, 67∗, 50∗

77 J2+3J1 5 5 3 75, 74 73, 71 ∅
78 J4(4)+J1 5 5 3 76, 71
79 J3(3)+J2(2) 5 5 3 76, 73, 72
80 J3(3)+2J1 5 5 2 79, 78, 74 76, 74
81 J1+2J2(2) 5 5 2 79, 78, 75 75
82 J2(2)+3J1 5 5 1 81, 80, 77 79, 78, 77 77
83 5J1 5 5 0 82 78 ∅
84 3L1 3 6 0 38 ∅
85 J2+2L1 4 6 7 44
86 J2(2)+2L1 4 6 5 85, 84, 47
87 2L1+2J1 4 6 4 86, 48
88 L2+L1+J1 4 6 2 87, 49
89 L3+L1 4 6 1 88, 50
90 2L2 4 6 0 89 ∅
91 L1+J4 5 6 19 53
92 L1+J4(2) 5 6 13 91, 85, 59
93 L1+J3+J1 5 6 12 92, 62
94 R1+J1+2L1 5 6 11 87, 64
95 L1+J4(2, 2) 5 6 11 92, 86, 65
96 L2+J3 5 6 11 93
97 R2+2L1 5 6 10 94, 68
98 L1+2J2 5 6 10 95, 87, 69
99 R1+L2+L1 5 6 9 94, 88, 67

100 L1+J4(3) 5 6 9 95, 94, 88, 71
101 L1+J3(2)+J1 5 6 8 100, 93, 74
102 L1+J2(2)+J2 5 6 8 100, 98, 75

Table 1: (continued)
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# Canonical form n m c Bundle GLn,m,2-orb. SLn,m,2-orb.
103 L1+J2+2J1 5 6 7 102, 101, 77
104 L1+J4(4) 5 6 7 100, 99, 97, 89, 78
105 L2+J3(2) 5 6 7 101, 96
106 L1+J3(3)+J1 5 6 6 104, 101, 80
107 L1+2J2(2) 5 6 6 104, 102, 81
108 L2+J2+J1 5 6 6 105, 103
109 L1+J2(2)+2J1 5 6 5 107, 106, 103, 82
110 L2+J3(3) 5 6 5 106, 105, 90
111 L3+J2 5 6 5 108
112 L1+4J1 5 6 4 109, 83 106, 83, 82
113 L2+J2(2)+J1 5 6 4 110, 109, 108
114 L2+3J1 5 6 3 113, 112
115 L3+J2(2) 5 6 3 113, 111
116 L3+2J1 5 6 2 115, 114
117 L4+J1 5 6 1 116
118 L5 5 6 0 117 ∅
119 J6 6 6 35 51
120 J6(2) 6 6 25 119, 91∗

121 J5+J1 6 6 24 120
122 J6(2, 2) 6 6 19 120, 92∗

123 R1+L1+J3 6 6 18 93∗

124 J4+J2 6 6 18 122, 93∗ 122
125 J6(3) 6 6 17 123, 122, 96∗

126 J6(2, 2, 2) 6 6 17 122, 95∗

127 2R1+2L1 6 6 16 97∗

128 J5(2)+J1 6 6 16 125, 121
129 J4+J2(2) 6 6 16 125, 124
130 2J3 6 6 16 126, 98∗ ∅
131 J4+2J1 6 6 15 129, 128 125
132 R1+L1+J3(2) 6 6 14 123, 101∗

133 R1+L1+J2+J1 6 6 13 132, 103∗

134 J6(3, 2) 6 6 13 132, 126, 125, 105∗

135 R1+L1+J3(3) 6 6 12 132, 127, 106∗

136 R1+L2+J2 6 6 12 133, 108
137 J5(2, 2)+J1 6 6 12 134, 128
138 J4(2)+J2 6 6 12 134, 133, 124, 108∗ 134, 124
139 J3(2)+J3 6 6 12 134, 133, 130, 108∗ 130
140 R1+L1+J2(2)+J1 6 6 11 135, 133, 109∗

141 J3+J2+J1 6 6 11 139, 138, 137 139
142 J6(4) 6 6 11 136∗, 134, 111∗

143 J6(3, 3) 6 6 11 135, 134, 110∗

144 R1+L1+3J1 6 6 10 140, 112∗

145 R1+L2+J2(2) 6 6 10 140, 136, 113
146 J5(3)+J1 6 6 10 142, 137
147 J4(2)+J2(2) 6 6 10 142, 138, 129
148 J4(2, 2)+J2 6 6 10 143, 140, 138, 113∗ 143, 138
149 J3(3)+J3 6 6 10 142, 139 139
150 R1+L2+2J1 6 6 9 145, 144, 114
151 J4(2)+2J1 6 6 9 147, 146, 131 142, 131
152 J3+J2(2)+J1 6 6 9 149, 147, 146, 141 149, 141
153 3J2 6 6 9 148, 144, 114∗ ∅

Table 1: (continued)
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# Can. form n m c Bundle GLn,m,2-orb. SLn,m,2-orb.
154 J6(4, 2) 6 6 9 145∗, 143, 142, 115∗

155 R1+L3+J1 6 6 8 150, 116
156 R2+L2+J1 6 6 8 150∗

157 J3+3J1 6 6 8 152, 151 149, 146 149
158 J5(3, 2)+J1 6 6 8 154, 146
159 J4(2, 2)+J2(2) 6 6 8 154, 148, 147
160 J4(3)+J2 6 6 8 154, 150∗, 148, 116∗ 154, 148
161 2J3(2) 6 6 8 154, 150∗, 139, 116∗ 139
162 R1+L4 6 6 7 155, 117
163 R2+L3 6 6 7 156, 155
164 J4(2, 2)+2J1 6 6 7 159, 158, 151 154, 151
165 J3(2)+J2+J1 6 6 7 161, 160, 158, 141 161, 141
166 J2(2)+2J2 6 6 7 160, 159, 153 153
167 J6(5) 6 6 7 156, 155∗, 154, 117∗

168 2J2+2J1 6 6 6 166, 165, 164 160, 158 ∅
169 J5(4)+J1 6 6 6 167, 158
170 J4(3)+J2(2) 6 6 6 167, 160, 159
171 J3(3)+J3(2) 6 6 6 167, 161, 149 161, 149
172 J4(4)+J2 6 6 6 167, 160
173 J4(3)+2J1 6 6 5 170, 169, 164 167, 164
174 J3(2)+J2(2)+J1 6 6 5 169−171, 165, 152 171, 165, 152
175 J3(3)+J2+J1 6 6 5 171, 172, 169, 165 171, 165
176 J2+2J2(2) 6 6 5 172, 170, 166 166
177 J6(6) 6 6 5 167, 163∗, 162∗, 118∗

178 J3(2)+3J1 6 6 4 174, 173, 157 171, 169, 157 171, 157
179 J2(2)+J2+2J1 6 6 4 173−176, 168 168−172 168
180 J5(5)+J1 6 6 4 177, 169
181 J4(4)+J2(2) 6 6 4 177, 172, 170
182 2J3(3) 6 6 4 177, 171 171
183 J2+4J1 6 6 3 179, 178 172, 169 ∅
184 J4(4)+2J1 6 6 3 181, 180, 173 177, 173
185 J3(3)+J2(2)+J1 6 6 3 180−182, 175, 174 182, 175, 174
186 3J2(2) 6 6 3 181, 176 176
187 J3(3)+3J1 6 6 2 185, 184, 178 182, 180, 178 182, 178
188 2J2(2)+2J1 6 6 2 186, 185, 184, 179 181, 180, 179 179
189 J2(2)+4J1 6 6 1 188, 187, 183 183, 181, 180 183
190 6J1 6 6 0 189 180 ∅
191 J1+3L1 4 7 3 88
192 L2+2L1 4 7 0 191, 90
193 J3+2L1 5 7 14 96
194 R1+3L1 5 7 12 191, 99
195 J3(2)+2L1 5 7 10 193, 191, 105
196 J2+J1+2L1 5 7 9 195, 108
197 J3(3)+2L1 5 7 8 195, 194, 192, 110
198 J2(2)+J1+2L1 5 7 7 197, 196, 113
199 L2+L1+J2 5 7 7 196, 111
200 3J1+2L1 5 7 6 198, 114
201 L2+L1+J2(2) 5 7 5 199, 198, 115
202 L2+L1+2J1 5 7 4 201, 200, 116
203 L3+L1+J1 5 7 3 202, 117
204 L4+L1 5 7 2 203, 118

Table 1: (continued)



470 Pervouchine

# Can. form n m c Bundle GLn,m,2-,SLn,m,2-orbit
205 J1+2L2 5 7 2 203
206 L3+L2 5 7 0 205, 204
207 L1+J5 6 7 29 121
208 L1+J5(2) 6 7 21 207, 193, 128
209 L1+J4+J1 6 7 20 208, 131
210 L2+J4 6 7 19 209
211 R1+J2+2L1 6 7 17 196, 136
212 L1+J5(2, 2) 6 7 17 208, 195, 137
213 L1+J3+J2 6 7 16 212, 196, 141
214 R1+J2(2)+2L1 6 7 15 211, 198, 145
215 L1+J5(3) 6 7 15 212, 211, 199, 146
216 R1+2L1+2J1 6 7 14 214, 200, 150
217 L1+J4(2)+J1 6 7 14 215, 209, 151
218 L1+J3+J2(2) 6 7 14 215, 213, 152
219 R2+J1+2L1 6 7 13 216, 156
220 L1+J3+2J1 6 7 13 218, 217, 157
221 L1+J5(3, 2) 6 7 13 215, 214, 201, 158
222 L2+J4(2) 6 7 13 217, 210
223 R3+2L1 6 7 12 219,163>

224 R1+L2+L1+J1 6 7 12 216, 202, 155
225 L1+J4(2, 2)+J1 6 7 12 221, 217, 164
226 L1+J3(2)+J2 6 7 12 221, 216, 213, 202, 165
227 L2+J3+J1 6 7 12 222, 220
228 L1+J1+2J2 6 7 11 226, 225, 168 226, 225, 168, 166
229 R2+L2+L1 6 7 11 224, 219, 163
230 R1+L3+L1 6 7 11 224, 203, 162
231 L1+J5(4) 6 7 11 224, 221, 219, 203, 169
232 L2+J4(2, 2) 6 7 11 225, 222
233 L3+J3 6 7 11 227
234 L1+J4(3)+J1 6 7 10 231, 225, 173
235 L1+J3(2)+J2(2) 6 7 10 231, 226, 218, 174
236 L1+J3(3)+J2 6 7 10 231, 226, 175
237 R1+2L2 6 7 10 230, 205
238 L2+2J2 6 7 10 232, 228
239 L1+J3(2)+2J1 6 7 9 235, 234, 220, 178
240 L1+J2(2)+J2+J1 6 7 9 234−236, 228, 179 234−236, 228, 179, 176
241 L1+J5(5) 6 7 9 229−231,223, 204, 180
242 L2+J4(3) 6 7 9 234, 232, 205
243 L1+J2+3J1 6 7 8 240, 239, 183 236, 234, 183, 179, 178
244 L1+J4(4)+J1 6 7 8 241, 234, 184
245 L1+J3(3)+J2(2) 6 7 8 241, 236, 235, 185
246 L2+J3(2)+J1 6 7 8 242, 239, 227
247 L2+J2(2)+J2 6 7 8 242, 240, 238
248 L1+J3(3)+2J1 6 7 7 245, 244, 239, 187
249 L1+J1+2J2(2) 6 7 7 245, 244, 240, 188 245, 244, 240, 188, 186
250 L2+J2+2J1 6 7 7 247, 246, 243
251 L2+J4(4) 6 7 7 244, 242, 237, 206
252 L3+J3(2) 6 7 7 246, 233
253 L1+J2(2)+3J1 6 7 6 249, 248, 243, 189 243−245, 189, 188, 187
254 L2+J3(3)+J1 6 7 6 251, 248, 246
255 L2+2J2(2) 6 7 6 251, 249, 247

Table 1: (continued)
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# Canonical form n m c Bundle GLn,m,2-orb. SLn,m,2-orb.
256 L3+J2+J1 6 7 6 252, 250
257 L1+5J1 6 7 5 253, 190 244, 190, 189
258 L2+J2(2)+2J1 6 7 5 255, 254, 253, 250
259 L3+J3(3) 6 7 5 254, 252
260 L4+J2 6 7 5 256
261 L2+4J1 6 7 4 258, 257 257, 254, 253
262 L3+J2(2)+J1 6 7 4 259, 258, 256
263 L3+3J1 6 7 3 262, 261
264 L4+J2(2) 6 7 3 262, 260
265 L4+2J1 6 7 2 264, 263
266 L5+J1 6 7 1 265
267 L6 6 7 0 266 ∅
268 J7 7 7 48 119
269 J7(2) 7 7 36 268, 207∗

270 J6+J1 7 7 35 269
271 J7(2, 2) 7 7 28 269, 208∗

272 R1+L1+J4 7 7 27 209∗

273 J5+J2 7 7 27 271, 209∗ 271
274 J7(3) 7 7 26 272, 271, 210∗

275 J6(2)+J1 7 7 25 274, 270
276 J5+J2(2) 7 7 25 274, 273
277 J5+2J1 7 7 24 276, 275 274
278 J7(2, 2, 2) 7 7 24 271, 212∗

279 J4+J3 7 7 23 278, 213∗ 278
280 R1+L1+J4(2) 7 7 21 272, 217∗

281 J1+2R1+2L1 7 7 20 219∗

282 R1+L1+J3+J1 7 7 20 280, 220∗

283 J7(3, 2) 7 7 20 280, 278, 274, 222∗

284 R1+L1+J4(2, 2) 7 7 19 280, 225∗

285 R1+L2+J3 7 7 19 282, 227
286 J6(2, 2)+J1 7 7 19 283, 275
287 J5(2)+J2 7 7 19 283, 282, 273, 227∗ 283, 273
288 J4+J3(2) 7 7 19 283, 282, 279, 227∗ 283, 279
289 L2+L1+2R1 7 7 18 281, 229,223>

290 R1+L1+2J2 7 7 18 284, 228∗

291 J4+J2+J1 7 7 18 288, 287, 286 283
292 J7(4) 7 7 18 285∗, 283, 233∗

293 J7(3, 2, 2) 7 7 18 284, 283, 232∗

294 R1+L1+J4(3) 7 7 17 284, 281, 234∗

295 J6(3)+J1 7 7 17 292, 286
296 J6(2, 2, 2)+J1 7 7 17 293, 286
297 J5(2)+J2(2) 7 7 17 292, 287, 276
298 J4+J3(3) 7 7 17 292, 288
299 J4(2)+J3 7 7 17 293, 290, 279, 238∗ 293, 279
300 R1+L1+J3(2)+J1 7 7 16 294, 282, 239∗

301 R1+L1+J2(2)+J2 7 7 16 294, 290, 240∗

302 J5(2)+2J1 7 7 16 297, 295, 277 292, 277
303 J4+J2(2)+J1 7 7 16 298, 297, 295, 291 292, 291
304 J1+2J3 7 7 16 299, 296 ∅
305 J7(3, 3) 7 7 16 294, 293, 242∗

306 R1+L1+J2+2J1 7 7 15 301, 300, 243∗

Table 1: (continued)
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# Canonical form c Bundle GLn,m,2-orbit SLn,m,2-orb.
307 R1+L1+J4(4) 15 294, 289∗, 244∗
308 R1+L2+J3(2) 15 300, 285, 246
309 J4+3J1 15 303, 302 298, 295 292
310 J5(2, 2)+J2 15 305, 300, 287, 246∗ 305, 287
311 J4(2, 2)+J3 15 305, 301, 299, 247∗ 305, 299
312 R1+L1+J3(3)+J1 14 307, 300, 248∗
313 R1+L1+2J2(2) 14 307, 301, 249∗
314 R1+L2+J2+J1 14 308, 306, 250
315 J3+2J2 14 311, 310, 306, 250∗ ∅
316 J7(4, 2) 14 308∗, 305, 292, 252∗
317 R1+L1+J2(2)+2J1 13 313, 312, 306, 253∗
318 R1+L2+J3(3) 13 312, 308, 254
319 R1+L3+J2 13 314, 256
320 R2+L2+J2 13 314∗
321 J6(3, 2)+J1 13 316, 296, 295
322 J5(2, 2)+J2(2) 13 316, 310, 297
323 J5(3)+J2 13 316, 314∗, 310, 256∗ 316, 310
324 J4(2)+J3(2) 13 316, 314∗, 299, 288, 256∗ 316, 299, 288
325 J4(3)+J3 13 316, 314∗, 311, 256∗ 316, 311
326 R1+L1+4J1 12 317, 257∗ 312, 257∗, 253∗
327 R1+L2+J2(2)+J1 12 318, 317, 314, 258
328 J5(2, 2)+2J1 12 322, 321, 302 316, 302
329 J4(2)+J2+J1 12 324, 323, 321, 291 316, 291
330 J3(2)+J3+J1 12 325, 324, 321, 304 304
331 J3+J2(2)+J2 12 325, 323, 322, 315 315
332 J7(5) 12 320, 319∗, 316, 260∗
333 J7(4, 3) 12 318∗, 316, 259∗
334 R1+L2+3J1 11 327, 326, 261
335 R1+L3+J2(2) 11 327, 319, 262
336 R2+L2+J2(2) 11 327∗, 320
337 J3+J2+2J1 11 331, 330, 329, 328 325, 323, 321 ∅
338 J6(4)+J1 11 332, 321
339 J6(3, 3)+J1 11 333, 321
340 J5(3)+J2(2) 11 332, 323, 322
341 J5(3, 2)+J2 11 333, 327∗, 323, 262∗ 333, 323
342 J4(2)+J3(3) 11 332, 324, 298
343 J4(2, 2)+J3(2) 11 333, 327∗, 324, 311, 262∗ 333, 324, 311
344 J4(4)+J3 11 332, 325
345 R1+L3+2J1 10 335, 334, 263
346 R2+L2+2J1 10 336, 334∗
347 J5(3)+2J1 10 340, 338, 328 332, 328
348 J4(2)+J2(2)+J1 10 342, 340, 338, 329, 303 332, 329, 303
349 J4(2, 2)+J2+J1 10 343, 341, 339, 329 333, 329
350 J3(3)+J3+J1 10 344, 342, 338, 330 330
351 J3+2J2(2) 10 344, 340, 331 331
352 J3(2)+2J2 10 343, 341, 334∗, 315, 263∗ 315
353 J7(5, 2) 10 336, 335∗, 333, 332, 264∗
354 R1+L4+J1 9 345, 265
355 R2+L3+J1 9 346, 345
356 J4(2)+3J1 9 348, 347, 309 342, 338, 309 332, 309
357 J3+J2(2)+2J1 9 351, 350, 348, 347, 337 344, 340, 338, 337 337
358 J1+3J2 9 352, 349 341, 339, 334∗, 263∗ ∅
359 J6(4, 2)+J1 9 353, 339, 338
360 J5(3, 2)+J2(2) 9 353, 341, 340

Table 1: (continued)



Pervouchine 473

# Can. form c Bundle GLn,m,2-orbit SLn,m,2-orb.
361 J5(4)+J2 9 353, 346, 345∗, 341, 265∗ 353, 341
362 J4(2, 2)+J3(3) 9 353, 343, 342
363 J4(3)+J3(2) 9 353, 346, 345∗, 343, 325, 265∗ 353, 343, 325
364 R1+L5 8 354, 266
365 R2+L4 8 355, 354
366 R3+L3 8 355∗
367 J3+4J1 8 357, 356 344, 338 ∅
368 J5(3, 2)+2J1 8 360, 359, 347 353, 347
369 J4(2, 2)+J2(2)+J1 8 362, 360, 359, 349, 348 353, 349, 348
370 J4(3)+J2+J1 8 363, 361, 359, 349 353, 349
371 J1+2J3(2) 8 363, 359, 330 330
372 J3(2)+J2(2)+J2 8 363, 361, 360, 352, 331 352, 331
373 J3(3)+2J2 8 362, 361, 352 352
374 J7(6) 8 355∗, 354∗, 353, 266∗
375 J4(2, 2)+3J1 7 369, 368, 356 362, 359, 356 356, 353
376 J2(2)+J1+2J2 7 373, 372, 370, 369, 358 361, 360, 359, 358 358
377 J3(2)+J2+2J1 7 372, 371, 370, 368, 337 363, 361, 359, 337 337
378 J6(5)+J1 7 374, 359
379 J5(4)+J2(2) 7 374, 361, 360
380 J5(5)+J2 7 374, 361
381 J4(3)+J3(3) 7 374, 363, 362
382 J4(4)+J3(2) 7 374, 363, 344
383 3J1+2J2 6 376, 377, 375 361, 359 ∅
384 J4(4)+J2+J1 6 382, 380, 378, 370 374, 370
385 J4(3)+J2(2)+J1 6 381, 379, 378, 370, 369 374, 370, 369
386 J5(4)+2J1 6 379, 378, 368 374, 368
387 J3(3)+J3(2)+J1 6 382, 381, 378, 371, 350 371, 350
388 J3(2)+2J2(2) 6 382, 379, 372, 351 372, 351
389 J3(3)+J2(2)+J2 6 381, 380, 379, 373, 372 373, 372
390 J7(7) 6 374, 366, 365∗, 364∗, 267∗
391 J4(3)+3J1 5 385, 386, 375 381, 378, 375 375, 374
392 J3(2)+J2(2)+2J1 5 385−388, 377, 357 382, 377−379, 357 377, 357
393 J3(3)+J2+2J1 5 389, 387, 384, 386, 377 381, 380, 378, 377 377
394 J2+J1+2J2(2) 5 389, 388, 384, 385, 376 380, 379, 378, 376 376
395 J6(6)+J1 5 390, 378
396 J5(5)+J2(2) 5 390, 380, 379
397 J4(4)+J3(3) 5 390, 382, 381
398 J3(2)+4J1 4 392, 391, 367 382, 378, 367 367
399 J2(2)+J2+3J1 4 394, 393, 392, 391, 383 383, 380, 379, 378 383
400 J5(5)+2J1 4 396, 395, 386 390, 386
401 J4(4)+J2(2)+J1 4 397, 396, 395, 384, 385 390, 384, 385
402 J1+2J3(3) 4 397, 395, 387 387
403 J3(3)+2J2(2) 4 397, 396, 389, 388 389, 388
404 J2+5J1 3 399, 398 380, 378 ∅
405 J4(4)+3J1 3 401, 400, 391 397, 395, 391 391, 390
406 J3(3)+J2(2)+2J1 3 400−403, 393, 392 395−397, 393, 392 393, 392
407 J1+3J2(2) 3 403, 401, 394 396, 395, 394 394
408 J3(3)+4J1 2 406, 405, 398 398, 397, 395 398
409 3J1+2J2(2) 2 407, 406, 405, 399 399, 396, 395 399
410 J2(2)+5J1 1 409, 408, 404 404, 396, 395 404
411 7J1 0 410 395 ∅

Table 1: Bundles and orbits of matrix pencils.
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Figure 3: Hierarchy of closures of 4× 4 (a) and 5× 5 (b) bundles.
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Figure 4: Hierarchy of closures of 5× 6 bundles.
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Figure 5: Hierarchy of closures of 6× 6 bundles.
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r119` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `35

r120` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `25

r121` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `24

r122` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `19

r123 r124` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `18

r125 r126` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `17

r127 r128 r129 r130` ` ` ` ` ` ` `16

r131` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `15

r132` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `14
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Figure 5: (continued)
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