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Abstract. We show how to describe the cohomology of the nilradical of a
parabolic subalgebra a semisimple Lie algebra with coefficients in an irreducible
representation of g . The situation in the complex case is well–known, Kostant’s
result (see below) gives an explicit description of a representation of a proper
reductive subalgebra on the space of the complex cohomology. The aim of this
work is to determine the structure of the real cohomology from the structure of
the complex one. We will use the notation of Dynkin and Satake diagrams for
the description of semisimple and parabolic real and complex Lie algebras and
their representations.
Keywords: semisimple Lie algebra, Lie algebra cohomology, parabolic subalge-
bra, real form, real cohomology.

0. Introduction. The description of the real cohomology is based on the structure
of the complex case. Each standard parabolic subalgebra q ⊆ f of the complex
semisimple Lie algebra f determines a decomposition f = f− ⊕ f0 ⊕ q+ where
q = f0 ⊕ q+ . Given a representation π : q+ −→ gl(V ), we define the differential
d : Hom (

∧n
q+; V ) −→ Hom (

∧n+1
q+; V ) in the usual way. The corresponding

cohomology will be denoted by Hn(q+, V ). We will be interested only in cases
where π is a restriction of some irreducible representation of f .

Following Kostant (see [3]), we define a natural representation f0 −→
gl(Hn(q+, V )) of the reductive subalgebra f0 on the cohomology space. The main
result of [3] is the description of highest weights of irreducible components of
this representation. The construction of these weights yields the ordering on the
cohomology and a corresponding Hasse diagram. The algorithmic description of
these weights (which uses the notation of Dynkin diagrams) is well known, cf.
[9], which also includes the description of cohomologies Hn(f−, V ) as a dual to
Hn(q+, V ∗).

Let us consider the real semisimple Lie algebra g and its complexification
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f = g(C). The algebra g is called a real form of f . The real forms, up to
isomorphism, are in 1–1 correspondence with involutive automorphisms of f up
to conjugacy [4, 5]. Such an automorphism induces a symmetry of the Dynkin
diagram of f which is important for the description of irreducible representations
of g in terms of their complexification.

There is a classification of parabolic subalgebras of f based on crossing out
some vertices of the Dynkin diagram of f . Similarly, parabolic subalgebras of g can
be given by crossing out some vertices of the Satake diagram of g . [11] describes
which vertices can be crossed out in this case.

The structure of the representation of f0 on the complex cohomology
Hn(q+, V ) (see [3]) follows, that the cohomology of the complexification is iso-
morphic to the complexification of the real cohomology. The representation on
the cohomology in the complex case is well understood, see [3]. The remaining
problem is to describe the representation on the real cohomology in terms of its
complexification. The description of real representations with the help of its com-
plexifications is well–known for semisimple Lie algebras. We generalize it to the
reductive Lie algebras and we show its connection with Satake diagrams. Then
we describe the relation between the real and complex cohomologies. We will see
that Hasse diagrams of real and complex cohomologies are often the same.

It is useful to compute the results from [3] by computers. The web imple-
mentation, which computes both real and complex cohomologies, is available on
the address www.math.muni.cz/~silhan/lac. It is based on the software package
LiE (see [6]) which offers the data structures and corresponding procedures for
the computation with semisimple Lie algebras.

Acknowledgments. This paper has been influenced by the lectures by
Arkadiy Onishchik on real forms (Masaryk University in Brno, 2001), see [4]. The
research has been supported by the grant ‘Mathematical structures of Algebra
and Geometry’, CEZ:J07/98:143100009”. The writing of this paper was finished
at the University of Auckland with partial support from Marsden Fund and a
postgraduate student scholarship of New Zealand Institute of Mathematics & its
Applications. Further I would like to thank Andreas Čap for comments which
simplified some ideas.

1. Known results: complex cohomology and real algebras

1.1. Weyl group and weights. Let us consider a complex semisimple Lie
algebra f with a Cartan subalgebra h , sets of simple roots, positive roots and
roots Π ⊆ ∆+ ⊆ ∆ and Weyl group W . The group W is generated by simple
reflections i.e. the reflections corresponding to the simple roots. The number of
positive roots α ∈ ∆+ which are transformed to w(α) ∈ ∆− = −∆+ is called the
length of w for which we write |w| . Equivalently (see [2]), the length of w is the
minimal number of simple reflections in any expression for w in terms of simple
reflections.

The weights of f can be described by labelling the nodes of the Dynkin dia-
gram by the integer coefficients referring to the linear combination of fundamental
weights. The weight is dominant for f if and only if all the coefficients are non-
negative (such a labeled Dynkin diagram describes an irreducible representation
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of f).

The affine action of the Weyl group is defined by

w.Λ = w(Λ + R)− R

for the weight Λ where R = 1
2

∑
α∈∆+

α is the lowest strictly dominant weight of
f . It means (in the terms of the Dynkin diagram) to add one over each node, then
act with w and finally subtract one over each node.

1.2. Parabolic subalgebras. The standard parabolic subalgebra q ⊆ f is
defined by some set of simple roots Σ ⊆ Π and it is generated by the Cartan
subalgebra, root spaces corresponding to the positive roots and root spaces corres-
ponding to the negative roots which can be expressed as a negative linear combi-
nation of roots from Π \ Σ. The corresponding Dynkin diagram for q is obtained
from the Dynkin diagram for f by crossing out nodes corresponding to the simple
roots from Σ. Using Satake diagrams, a similar notation can be established for
the real case. Each parabolic subalgebra is conjugate to some standard parabolic
subalgebra so we will deal only with standard parabolics. The set Σ induces the
decomposition f = f−⊕ f0⊕ q+ where q = f0⊕ q+ . The reductive part f0 includes
the semisimple part of q and the rest of the Cartan subalgebra; q+ is the nilradical
of q .

It follows from the standard parabolic theory that irreducible represen-
tations of q are irreducible representations of f0 with the trivial action of q+ .
Weights of representations of f0 can be described by a labeled Dynkin diagram,
where coefficients over non–crossed nodes are integers. Such a weight is dominant
for q (or, equivalently, the highest weight of f0 ) if and only if the coefficients over
non–crossed nodes are nonnegative.

For each set Σ ⊆ Π, and the corresponding parabolic subalgebra q ⊆ f , we
define W q ⊆ W as a subset of all elements, which map the weights dominant for
f into the weights dominant for q . Equivalently, W q is the set of all elements w
for which the set Φw = w(∆−) ∩∆+ contains only roots corresponding to q+ i.e.
the positive roots of f which are not roots of the semisimple part of f0 (see [3]).

1.3. Cohomology of Lie algebras. For a representation π : a −→ gl(V ) of
a Lie algebra a we define the differential d : Hom (

∧n
a; V ) −→ Hom (

∧n+1
a; V )

by the formula

(dp)(X0, . . . , Xn) =
∑
i<j

(−1)i+jp([Xi, Xj], X0, . . . X̂i . . . X̂j . . . , Xn)

+
∑

i

(−1)iπ(Xi)p(X0, . . . X̂i . . . , Xn).

The differential d induces the cohomology Hn(a; V ), called the cohomology of a

with the coefficients in V because d2 = 0. We set Hom (
∧n

a; V ) = 0 for n < 0
and n > dim a .

On the complex level, we are interested only in the case, where a = q+ and
π = λ′|q+ for some representation λ′ : f −→ gl(V ) on a complex vector space
V . This is completely solved in [3] and we will further use a lot of results therein
without a specification. We have a natural representation β′ : q −→ gl(H(q+; V ))
on the cohomology (for details see 1.5). This representation is completely reducible
and thus it suffices to investigate the restriction β′ : f0 −→ gl(H(q+; V )).
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Theorem 1.4. [3] Kostant’s result. For a finite dimensional representation
λ′ : f −→ gl(V ) with the highest weight Λ and the restriction π = λ′|q+ , the
irreducible components of β′ are in bijective correspondence with the set W q and
the multiplicity of each component is one. The highest weight of the irreducible
component of the representation β′ corresponding to w ∈ W q is w.Λ = w(Λ +
R)− R and it occurs in degree |w|.

1.5. Complexification of the real cohomology. Now we will consider a
real semisimple algebra g with the complexification denoted by f = g(C) and
a parabolic subalgebra p ⊆ g . That is the complexification q = p(C) is a
parabolic subalgebra of f . We have the decomposition g = g− ⊕ g0 ⊕ p+ and
f = f− ⊕ f0 ⊕ q+ where p = g0 ⊕ p+ and q = f0 ⊕ q+ such that the complex
decomposition determines the real decomposition. Let us consider an irreducible
representation λ : g −→ gl(V ) on a real vector space V with the complexification
λ(C) : f −→ gl(V (C)). Our aim is to describe the cohomology H(p+; V ) with
respect to the restriction λ|p+ .

It follows from the structure of parabolic subalgebras that we have the
natural action of the elements from q on q∗+ (the dual of the adjoint action)
and on V (C) (the restriction of λ(C)). This induces the representation of q on
Hom (

∧n
q+; V (C)), n ∈ N and there is a factorization β′ : q −→ gl(H(q+, V (C)))

on the cohomology, see [3]. It is completely reducible so we can consider β′ : f0 −→
gl(H(q+, V (C))). Moreover, there exists (see [3]) a subspace H ′ ⊆

∧
q∗+ ⊗ V (C)

which is isomorphic to H(q+, V (C)) as an f0–module. Here we consider a tensor
product of the dual of the adjoint action and λ(C)|f0 on H ′ . This isomorphism
i : H ′ −→ H(q+, V (C)) is given by the projection to the factor space (i.e. the
cohomology space).

Similarly, we can define the completely reducible representation of p on
H(p+; V ) i.e. the representation β : g0 −→ gl(H(p+, V )). Due to the isomorphism
i , we can consider β : g0 −→ gl(H) where H = H ′ ∩

∧
p∗+ ⊗ V . Since β is the

restriction of β′ and H ′ = H(C), we get β′ = β(C). Therefore, we have shown that
the complexification of the real cohomology is the cohomology of the complexified
algebra and its representation.

1.6. Satake diagrams and parabolic subalgebras. We describe here the
real form g of the complex semisimple Lie algebra f = g(C) in more details. Recall
that the real simple algebra can be categorized in two ways: real form of a complex
simple algebra and realification of a complex simple algebra. Let us remind that a
realification of a complex vector space is the same set understood as a real vector
space. A real Lie algebra is called compact if it admits an invariant scalar product.
Each complex semisimple Lie algebra has a compact real form which is unique up
to isomorphism [4, 5].

There is a 1–1 correspondence between the classes of real forms of a com-
plex semisimple algebra f up to isomorphism, the classes of involutive antiauto-
morphisms of f up to conjugacy and the classes of involutive automorphisms of f

up to conjugacy. Involutive antiautomorphisms are called the real structures and
they are just the complex conjugations given by real forms. Let us denote the
involutive antiautomorphism and automorphism of f corresponding to g by σ and
θ , respectively. This can be chosen in such a way that there exists a compact
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structure (i.e. a real structure corresponding to a compact real form) τ such that
θ = στ and θ , σ , τ commute. See [4] for details. The involutive automorphism θ
is then called the Cartan involution. Clearly θ(g) = g and it induces the Cartan
decomposition g = l ⊕ r where l is the +1–eigenspace and r the −1–eigenspace
of θ|g . The Killing form of f is negative definite on l and positive definite on r .
This implies that l is a compact Lie algebra.

There is a diagramatic description of real semisimple Lie algebras, so called
Satake diagrams . We remind their construction, for details see [8, 5]. There exists
a Cartan subalgebra h ⊆ g such that θ(h) = h and hr = h ∩ r is a maximal
abelian subspace of r . It yields the decomposition h = hl ⊕ hr to the compact
part hl and the real part hr . The Cartan subalgebra h(C) ⊆ f yields the system
of roots ∆. Since σ is an antiautomorphism of f , one can show that the mapping
σ∗ : ∆ −→ ∆ given by the formula σ∗α(H) = α(σH) for α ∈ ∆ and H ∈ h(C)
is an involutive automorphism of ∆. The roots, which satisfy σ∗α = −α are
called compact and the ones which do not, are called non–compact roots. Let us
denote the set of compact roots by ∆c ; clearly ∆c = {α ∈ ∆ | α|hr = 0} . A
system of positive roots ∆+ can be found in such a way that σ∗(α) ∈ ∆+ for
each non–compact root α ∈ ∆+ . To obtain such a system ∆+ , we consider the
lexicographical ordering with respect to a base H1, . . . , Hn of h such that the first
elements H1, . . . , Hp constitute the base of hr . The set of simple roots Π then has
the following property: if α ∈ Π is a non–compact root then there exists a unique
non–compact root α′ ∈ Π such that (σ∗α− α′)|hr = 0. (This is equivalent to the
property (σ∗α′−α)|hr = 0). The Satake diagram of g is the Dynkin diagram of f

given by Π where the compact roots are denoted by a black dot • , non–compact
roots by a white dot ◦ and if, for a non–compact root α ∈ Π, the unique α′ ∈ Π
such that (σ∗α − α′)|hr = 0 is different from α , then the two corresponding dots
are joined by an arrow.

Parabolic subalgebras of g can be again described by crossing out some
vertices of the Satake diagram but there are restrictions, see [11]: we cannot cross
out the compact roots and if we cross out some non–compact root α , we must
cross out any non–compact root α′ connected to α by an arrow.

1.7. Representations of real semisimple Lie algebras. Facts about
representations of real (semisimple) Lie algebras can be found in [4, 5], we will
use the notation from [4]. First we consider an arbitrary real Lie algebra g . A
complex structure on a real vector space V is an automorphism J : V −→ V such
that J2 = −id. A real (quaternionic) structure on a complex vector space V is an
antiautomorphism J : V −→ V such that J2 = id (J2 = −id). Having a complex
vector space V , we will denote the set V , understood as a real vector space,
by VR (the underlying real vector space of V ). Let us consider a representation
ρ : g −→ gl(V ) on the complex vector space V viewed as a space VR with the
complex structure J . We define a complex space V̄ as the space VR with the
complex structure −J and the complex–conjugate representation ρ̄ : g −→ gl(V̄ )
on the complex space V̄ such that ρ = ρ̄ on the space VR = V̄R . Let us fix a base
on V and denote x 7→ C(x), x ∈ g the matrix form of ρ . Then the same base can
be regarded as a base of V̄ and the corresponding matrix form of ρ̄ is given by the
complex conjugate matrix x 7→ C(x), x ∈ g . For a representation ρ : g −→ gl(V )
on a real vector space V , we will denote its extension to the (complex) space V (C)
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by ρC : g −→ gl(V (C)) and its complexification by ρ(C) : g(C) −→ gl(V (C)). For
a representation ρ : g −→ gl(V ) on a complex vector space V , we will denote its
extension to the (complex) algebra g(C) by ρC : g(C) −→ gl(V ). The complex–
conjugate representation of ρ : f = g(C) −→ gl(V ) on a complex space V with
respect to the real form g is the representation ρ̄ = (ρ|g)C on a complex space V̄ .
A representation ρ of g or f on a complex vector space V is called self–conjugated
if ρ ∼ ρ̄ where ∼ denotes the isomorphism of representations in both real and
complex case. Moreover, we will denote the realification of ρ by ρR : g −→ gl(VR).

Let us consider a representation λ : g −→ gl(V ) on a real vector space V .
The representation λ is

• quaternionic (or of the quaternionic type) if there exists a complex structure
on V and a quaternionic structure on V (understood as a complex space),
both commuting with the action of g

• complex (or of the complex type) if there exists a complex structure on V
commuting with the action of g and λ is not quaternionic

• real (or of the real type) if there is no complex structure on V commuting
with the action of g .

Let us suppose that λ is irreducible. The complexification depends on
the type in the following way. If λ is real then λ(C) is irreducible too and
λ(C) ∼ λ(C). If λ is complex (quaternionic) then the space V can be understood
as a complex vector space and λ(C) ∼ λC ⊕ λ̄C and λC 6∼ λ̄C (λC ∼ λ̄C ).

The self–conjugacy condition appears in both real and quaternionic rep-
resentationans so we need some other tool to distinguish these two types. The
irreducible self–conjugate representation γ : f −→ gl(V ) on the complex vector
space V with the highest weight Γ admits an antiautomorphism J : V −→ V
commuting with γ|g such that J2 ∈ {+id,−id} . We define the index ε(g, γ) as
the sign. A correctness of this definition is shown in [5, 4]. (An index +1 in-
dicates that γ can be obtained as the complexification of some real irreducible
representation of g and −1 indicates that γ is a part of the complexification of
some quaternionic irreducible representation of g .) In the case of semisimple (re-
ductive) algebras, we will sometimes write ε(g; Γ) where Γ is the highest weight
of γ .

Henceforth we will suppose that g is a real form of a complex semisimple Lie
algebra f . Each involutive automorphism of f induces a symmetry of the Dynkin
diagram of f and thus we can consider the symmetry s induced by the Cartan
involution θ corresponding to g . We will describe irreducible representations of
f with the help of their highest weights as given by the vector of coefficients over
the Dynkin diagram. Furthermore, we will denote the symmetry of the Dynkin
diagram which realizes dual weights by ν . Since coefficients of the highest weights
correspond to nodes of the Dynkin diagram, we can consider symmetries of the
diagram on highest weights too. Section 2. shows how to identify s and ν on
the Satake diagram. These two symmetries commute and allow us to describe
the relation between the irreducible representations λ and λ̄ of g on complex
spaces V and V̄ . Denoting the highest weights of λC (λ̄C ) by Λ (Λ̄), it turns out
Λ̄ = sν(Λ). These facts and formulas for indices of semisimple Lie algebras can
be found in [4, 5], for details see Section 5.
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1.8. Hasse graph on the cohomology. We can define a structure of a Hasse
graph on the cohomology. In the complex case given by a parabolic subalgebra q of
the semisimple algebra f , the set of vertices the Hasse graph is W q (or equivalently,
the set of irreducible components in the cohomology, see 1.4). Further, there is an
arrow w1 −→ w2 , w1, w2 ∈ W q if and only if w2 = sαw1 where sα is a reflection
corresponding to a root α ∈ ∆ and |w2| = |w1|+ 1.

In the case of the real cohomology, given by a parabolic subalgebra p

of a semisimple algebra g , the Hasse graph also depends on the representation
λ : g −→ gl(V ). In particular it depends on its type (see Section 6. for details).
We define the set of vertices as the set of irreducible components in the cohomology.
Furthermore, there is an arrow β1 −→ β2 where β1, β2 are irreducible components
of the representation β : g −→ gl(H(p+; V )) if and only if:
(a) λ is complex or quaternionic and there is an arrow between (β1)C and (β2)C
in the complex cohomology H(p+(C); V ) in the given direction, or
(b) λ is real and there is some arrow between the component(s) β1(C) and β2(C)
in the complex cohomology H(p+(C); V (C)) in the given direction.
(The correctness of this definition follows from 1.5 for (b) and from 6.2 for (a).)

2. Symmetries of diagrams

Now we show how to see the discussed symmetries of the Satake diagrams.
Let us consider a real form g of a complex semisimple Lie algebra f and the
corresponding Cartan involution θ which induces the symmetry s of the Dynkin
diagram. Further, let us denote the symmetry which realizes the dual weights
of f by ν . We can consider the system of simple roots Π in such a way that
Π induces both the Satake diagram of g and the Dynkin diagram of f (i.e. Π
satisfies the properties from 1.6). Then we can see all these symmetries on both
diagrams. Moreover, let us denote the symmetry induced by the arrows of the
Satake diagram by a . We will show that except for the exceptional cases to be
described, it turns out that a = sν . Let us note that each involutive symmetry of
the Dynkin diagram induces an involution of f .

2.1. We will use the notation from 1.6. Further we denote the set of non–
compact roots ∆ \ ∆c by ∆nc and the corresponding sets of positive roots by
∆+

nc and ∆+
c . This determines a decomposition on the set of simple roots to

Πc = Π ∩ ∆c and Πnc = Π ∩ ∆nc . Let us consider the compact subalgebra
lc ⊆ l corresponding to the root system ∆c . The Weyl group Wc of lc(C) can be
understood as a subgroup of the Weyl group W of f . There is a unique element
w0 ∈ W (wc

0 ∈ Wc ) such that w0(Π) = −Π (wc
0(Πc) = −Πc ). The dual of the

involution ν̂ induced by ν satisfies ν̂∗ = −w0 , see [4]. Similarly, ν̂∗
c = −wc

0 where
νc is the corresponding symmetry of Πc .

Now we “improve” the involution θ to see the induced symmetry s on the
system of simple roots Π. The automorphism θ induces a dual mapping on ∆
defined as (θ∗α)(H) = α(θH) for α ∈ ∆ and H ∈ h(C). Clearly θ∗|∆c = id and
it follows form properties of a special basis used for the definition of ∆+ (see 1.6)
that θ∗(∆+

nc) ⊆ ∆−
nc . Let us remind that a group of inner automorphisms of f is

a subgroup of Aut f generated by all exp(adX), X ∈ f . The symmetry induced
on Π by inner automorphisms of f is the identity [4, 5]. Since the elements of
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the Weyl group are induced by inner automorphism of f , the composition wc
0θ

∗

induces the same symmetry as θ∗ . The form of the Weyl reflections corresponding
to the root α is Sα(β) = β− 2 (β,α)

(α,α)
α for β ∈ ∆ and thus Sα(β) ∈ ∆+

nc for α ∈ ∆c

and β ∈ ∆+
nc . This implies that wc

0(∆
+
nc) = ∆+

nc . Since wc
0(∆

+
c ) = ∆−

c , we have
shown that wc

0θ
∗(∆+) = θ∗wc

0(∆+) = ∆− . It follows that w0w
c
0θ

∗ fixes the set Π
and induces the symmetry w0w

c
0θ

∗|Π = s .

Now we describe the relation between w0w
c
0θ

∗ and σ∗ . It is easy to see
that σ∗ = −θ∗ . We have wc

0σ
∗ = −wc

0θ
∗ = (ν̂∗w0)w

c
0θ

∗ and thus wc
0σ

∗|Π = νs .
Considering a simple root α ∈ Πnc , it is easy to see that wc

0(α) = α +
∑

β∈Πc
cββ

where cβ ≥ 0 for β ∈ Πc . Further, it follows from the construction of Satake
diagrams that σ∗(α) = α′ +

∑
β∈Πc

dββ , where α′ ∈ Πnc and dβ ≥ 0 for β ∈ Πc ;
α and α′ are connected by an arrow in the Satake diagram if α 6= α′ . Since
wc

0σ
∗(α) = νs(α), this root is simple and from the expressions for σ∗ and wc

0 it
follows that wc

0σ
∗(α) = α′ = νs(α). This shows that the symmetry νs coincides

with the arrows of the Satake diagram on non–compact simple roots. Next, we
consider a simple root α ∈ Πc . Since σ∗(α) = −α , we have wc

0σ
∗(α) = −wc

0(α) =
νc(α) = νs(α).

Theorem 2.2. Suppose g is a real semisimple Lie algebra and let us consider
the corresponding symmetries s, ν, a on its Satake diagram.
(i) Upon restriction to the non-compact roots we have sν = a and upon restriction
to the compact roots we have sν = νc .
(ii) If g is simple, then a = sν for all (simple) real Lie algebras with the following
exceptions: sun , sok,2n−k where k, n have different parity and the compact form
of E6. (Note that the Satake diagrams of sun and the compact form of E6 have
only the compact roots and in the case of son,2n−k where k, n have different parity,
the number of the compact roots is even.)

Proof. It remains to prove (ii). Let us suppose that g is a real simple Lie
algebra. If sν is non–trivial on non–compact roots then a = sν because there is
only one possibility to extending this symmetry from the non–compact roots to
the whole Satake diagram. If f is simple then it is easy to check it case by case.
If f is not simple then it follows from the definition of the Satake diagrams that
Πnc = Π. If sν is trivial on the non–compact roots (i.e. a = id), there are some
exceptions which satisfy a 6= sν : sun , sok,2n−k where k, n have different parity
and the compact form of E6. It is easy to verify this fact case-by-case.

3. Formulation of the problem

3.1. Notation. Henceforth we will use the following notation. We will con-
sider sets of roots Π ⊆ ∆+ ⊆ ∆ as described in 1.6 and a parabolic subalgebra
given by the set Σ ⊆ Π (see 1.2 and 1.6). As in 1.5, we will consider a real semisim-
ple Lie algebra g = g−⊕ g0⊕ p+ with the complexification f = f−⊕ f0⊕ q+ where
f− = g−(C), f0 = g0(C), q+ = p+(C) and parabolic subalgebras are p = g0 ⊕ p+

and p(C) = q = f0 ⊕ q+ . The decompositions g0 = gss
0 ⊕ z and f0 = fss0 ⊕ z(C)

give the semisimple part and the center of g0 and f0 , respectively. The construc-
tion of the Satake diagram from 1.6 gives the Cartan subalgebra h ⊆ g with the
complexification h(C) ⊆ f . The Weyl group of f will be denoted by W .
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The set of simple roots Π induces both the Satake diagram of g and the
Dynkin diagram of f . Therefore we can consider all symmetries on both diagrams.
Let us denote by σ (θ) the real structure (Cartan involution) corresponding to the
real form g of f and s and ν symmetries of a diagram where s is the symmetry
induced by θ and ν is the symmetry which realizes dual weights of f , see Section
2. Furthermore, let us consider the symmetry a induced by arrows of the Satake
diagram. Let us denote by s′, ν ′, a′ the corresponding symmetries of the diagrams
of gss

0 and fss0 with respect to the real form gss
0 of fss0 . Then s′ν ′ is the restriction

of sν . This follows from the fact that sν = a in many cases and the symmetries
a and a′ satisfy this condition. The exceptions must be discussed case by case.
Furthermore, we will not distinguish between sν and s′ν ′ and both of them will
be denoted by sν . Let us note that the symmetry s′ is not a restriction of s and
similarly, ν ′ is not a restriction of ν .

3.2. Complexification and realification of the cohomology for com-
plex and quaternionic g–representations. Let us start with an arbitrary
real Lie algebra a with a representation π : a −→ gl(V ) on a complex vector
space V and consider the representations πR : a −→ gl(VR) and πC : a(C) −→
gl(V ). Our aim is to compare all three induced cohomologies. The mapping

C : Hom (
∧

a; V ) −→ Hom (
∧

a(C); V ) which extends a given multilinear map-
ping from a to a(C), is an isomorphism of complex vector spaces. Similarly,
we have the identification Hom (

∧
a; V )R = Hom (

∧
a; VR) because the complex

structure on Hom (
∧

a; V )R is determined by the complex structure on V . It
follows from the definition of the differential d , that d(pC) = (dp)C and so the
cohomologies H(a; V ) and H(a(C); V ) are isomorphic as complex vector spaces.
Similarly, the definition of d follows that H(a; V ) and H(a; VR) are isomorphic as
real spaces.

Now we consider the case a = p+ with the representations π = λ|p+ , πC =
λC|q+ and πR = λR|p+ where λ : g −→ gl(V ) is a representation on a complex vec-
tor space V . We are interested in the representation β : g0 −→ gl(H(p+; V )) on
the cohomology corresponding to π where we understand H(p+; V ) as a complex
space. Since the actions of X ∈ g0 on spaces Hom (

∧
p+; V ) and Hom (

∧
q+; V )

commute with the isomorphism C , the induced representations of g0 on H(p+; V )
and H(q+; V ) are isomorphic. This follows that we can understand the represen-
tation of f0 on H(q+; V ) as the representation βC : f0 −→ gl(H(q+; V )). Simi-
larly, we can consider the representation of g0 on H(p+; VR) as the representation
βR : g0 −→ gl(H(p+; VR)).

Kostant’s result 1.4 gives the explicit description of βC and we need to
describe βR = (βC|g0)

R . The following simple lemma says when the restriction
( |g)R preserves the irreducibility. It is the opposite result to the complexification
of an irreducible g-representation in 1.7.

Lemma 3.3. Let us consider an arbitrary real Lie algebra g with the comple-
xification f = g(C) and an irreducible representation γ : f −→ gl(V ). Then the
following holds:
(i) (γ|g)R is irreducible if and only if γ 6∼ γ̄ or γ ∼ γ̄ and ε(g, γ) = −1
(ii) (γ|g)R is reducible if and only if γ ∼ γ̄ and ε(g, γ) = 1.
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Proof. It is sufficient to prove only the assertion (ii). The implication ⇐= is
clear. If (γ|g)R is reducible then a γ|g-invariant subspace W ( VR exists. The
subspace iW is also invariant. Therefore W ∩ iW and W + iW are γ -invariant
subspaces. It shows that W ∩ iW = 0 and so V = W (C).

3.4. Using the previous observation, we are going to formulate explicitly what
we need to know for a description of the real cohomology. In the case of complex
and quaternionic g–representations we use Lemma 3.3 and the paragraph before
that lemma. Therefore we need to catalogue complex–conjugate representations
and indices for the reductive algebras g0 . Moreover, we will determine the relation
between ε(g; Λ) for a self–conjugate f–dominant weight Λ and ε(g0; w.Λ) for a
self–conjugate f0–dominant weight w.Λ where w is an element of the Weyl group
of f . In the case of a real g–representation, we describe the real cohomology with
the help of its complexification along the lines described in 1.5. That is we show
which irreducible components (couples of irreducible components) in the complex
cohomology correspond to an irreducible component in the real cohomology. We
will again need to know the complex–conjugation for the Lie algebra g0 .

4. Conjugate representations of reductive algebras

Considering an irreducible representation γ : f0 −→ gl(V ) on a complex
vector space V , our aim is to describe the complex–conjugate representation
γ̄ : f0 −→ gl(V̄ ) with respect to the real form g0 . We denote the highest weight
of γ and γ̄ by Γ and Γ̄ and we will understand them as vectors of coefficients
over diagrams. Recall that in the case of f0–dominant weights, the coefficients
over non–crossed nodes are nonnegative integers and the coefficients over crosses
are arbitrary real numbers.

The ith fundamental weight of f or f0 is a weight with the coefficient 1 over
the ith node and the coefficient 0 over the remaining nodes. The corresponding
representation is called the ith fundamental representation of f or f0 . That is
the ith fundamental representation of f0 is an irreducible component of the ith
fundamental representation of f restricted to f0 generated by the vector of the
highest weight. In particular, the fundamental representations of f0 corresponding
to crosses (i.e. with the coefficient 1 over a cross) are one dimensional. Clearly the
center of g0 acts by some (possibly complex) scalar in irreducible representations.

4.1. First we claim that it is sufficient to treat complex conjugation for the
fundamental representations of f0 . This follows since Γ1 + Γ2 = Γ̄1 + Γ̄2 for f0–
dominant weights Γ1 and Γ2 . This relation holds for coefficients over non-crossed
nodes because after the restriction to the semisimple part, the complex conjugation
is given by the symmetry sν . Coefficients over crosses are given by the action of
the center. This action on the vector of the highest weight is given directly by the
highest weight understood as a form on the Cartan subalgebra of f (which includes
the center). The relation above now follows from the fact that the scalar action
of the center g0 in a complex–conjugate representation is given by the complex–
conjugation in C (see 1.7). The same argument implies that if ρi is a fundamental
representation corresponding to a cross then rρi = rρ̄i , r ∈ R .
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The description of the complex–conjugation for the fundamental weights
corresponding to the non–crossed vertices is given by the symmetry sν so we need
to consider only fundamental representations corresponding to crosses. In this
case, we use the structure of the zero cohomology. Let us consider a fundamental
representation ρi : f0 −→ gl(Vi) with a highest weight Γi corresponding to the
ith cross. Understanding Γi as an f–dominant weight, we get corresponding
fundamental representation ρ′i : f −→ gl(V ′

i ) with this highest weight and we can
suppose Vi ⊆ V ′

i . Vertices in the Satake diagram of f corresponding to the crosses
in the Satake diagram of f0 are non–compact and so we have two possibilities
according to the arrows:

I. First let us suppose that the ith cross has no arrow. Then the representation
ρ′i is self–conjugate because its highest weight is symmetric according to the
symmetry sν (the coefficient 1 is over a vertex without an arrow and all remaining
coefficients are 0, cf. Theorem 2.2). The formulas in 5.1 show that in that case,
the index is +1 because all “quaternionic” vertices have the coefficient 0. Thus ρ′i
is the complexification of some representation of g and according to 1.5, the same
happens with the representation of f0 on the zero cohomology H0(q+; V ′

i ). This
is a representation with the highest weight the same as in the representation ρi ,
see 1.4. It shows that ρi is self–conjugate.

II. Now let us suppose that the ith vertex has an arrow. Then the representation
ρ′i is not self–conjugate because in this case, the symmetry sν (for f) coincides with
arrows according to Theorem 2.2 and there is an arrow connecting vertices with
coefficients 1 and 0. We use the (reducible) representation ρ′i⊕ρ′i : f −→ gl(V ′

i⊕V ′
i )

with the highest weights Γi and Γ̄i = sν(Γi) 6= Γi which is the complexification of
an irreducible representation of g , see 1.7. In the zero cohomology H0(q+; V ′

i ⊕V ′
i ),

which is again the complexification of some representation of g0 , we have the
components with the highest weights Γi and sν(Γi) understood as weights of f0 .
This implies that the representation ρi is either self–conjugate or ρ̄i has the highest
weight sν(Γi). But we will show below that there is an element W ∈ g0 which
acts by some non–zero non–real scalar in ρi (or, equivalently, on the vector of the
highest weight in ρ′i because ρi is one dimensional). It follows from the definiton
of complex–conjugation that in ρ̄i , this element must act by a complex–conjugate
i.e. by a different scalar. Hence ρ̄i 6∼ ρi and thus ρ̄i has the highest weigth sν(Γi).

Now we will show the existence of W ∈ g0 with the required properties.
Let us denote the root corresponding to the discussed cross by α and the root
connected by an arrow by α′ ; the corresponding root elements will be denoted by
Hα and Hα′ . The real structure σ is just complex conjugation corresponding to
the real form g ⊆ f . We describe some properties of Hα − Hα′ ∈ f . Denoting
〈, 〉 the Killing form on f , we can compute, for any simple root α̃ ∈ Π, that
α̃(Hα −Hα′) = 〈α̃, α〉 − 〈α̃, α′〉 and after applying σ to Hα −Hα′ we get

α̃(σ(Hα −Hα′)) = (σ∗α̃)(Hα −Hα′) = 〈σ∗α̃, α〉 − 〈σ∗α̃, α′〉 = 〈α̃, σ∗α〉 − 〈α̃, σ∗α′〉

because σ∗ is an involutive automorphism of the root system. Since α is a non–
compact root, it follows from the construction of the Satake diagrams that σ∗α =
α′ +

∑
β∈Πc

dββ where Πc denotes the system of compact simple roots and the
coefficients dβ are nonnegative integers. This follows that σ∗α′ = α +

∑
β∈Πc

dββ
because σ∗β = −β for each compact root β and σ∗ is an involution. Thus
α̃(σ(Hα −Hα′)) = −α̃(Hα −Hα′). Since this holds for each simple root α̃ ∈ Π, it



492 Šilhan

shows that σ(Hα − Hα′) = −(Hα − Hα′). Now we put W := i(Hα − Hα′) ∈ g0 ;
this element acts by the scalar i in ρi because it is a fundamental representation
corresponding to α .

Summarizing, we have proved the following theorem:

Theorem 4.2. Let us consider a semisimple Lie algebra g with complexification
f = g(C) and their reductive subalgebras g0 ⊆ f0 = g0(C) given by the Satake
diagram with crosses. If an irreducible representation of f0 has the highest weight
Γ, understood as a vector of coefficients over the diagram, then the complex–
conjugate representation (with respect to g0 ) has the highest weight sν(Γ) where
the latter symmetries are given by g ⊆ f, see Section 2..

Remark 4.3. In this section, we have considered only reductive Levi factors
of parabolic subalgebras. Their complex–conjugate representations were described
by using of the structure of the zero cohomology. Another possibility is to evaluate
the action of the center. This is useful for arbitrary reductive algebra.

5. Indices

5.1. Indices of semisimple algebras. Using the notation from 3.1, we
show how to compute the indices ε(g, Λ) for an irreducible self–conjugate f–
representation with the highest weight Λ. First let us note that indices of semisim-
ple cases are products of indices of the simple parts (and corresponding restrictions
of Λ). There is a general procedure for computing the indices which gives formulas
for all (semi)simple Lie algebras. This can be found in [4]. Another way how to
compute the indices (which we will need in the proof of the next theorem) is to
begin with the fundamental representations. The set of vertices of the Dynkin
diagram of f can be identified to the set of the fundamental weights F and let
us denote, by Q ⊆ F the set of quaternionic fundamental weights. Then the
self–conjugate representation with the highest weight Λ = (Λi), i ∈ F is real
(quaternionic) if the sum

∑
i∈Q Λi is an even (odd) number. This fact and the

indices of fundamental weights can be found in [10].

We are going to demonstrate both the resulting formulae and the types
of fundamental representations in the summary below. This case–by–case discus-
sion follows that all quaternionic fundamental representation correspond to the
compact roots of the Satake diagram. In all cases, the parameter l denotes the
number of nodes of a diagram. The fundamental representation ρi corresponds
to the coefficient Λi i.e. it denotes the representation with the highest weight
(0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the position i ∈ F and 0 on the remaining
positions. Simple real forms not mentioned below have index +1 for each self–
conjugate f–representation i.e. they do not admit quaternionic representations.
The notation of real forms and the corresponding Satake diagrams used, is as in
Tables in [5]. The index is given by a formula on the end of the first line of each
item.

• sup,l+1−p , l odd, l + 1 = 2m , sν 6= id . . . . . . . . . . . . . . . . . . . . . . . . (−1)(m−p)Λm

The unique self–conjugate representation is ρm . This representation is real
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(quaternionic) if m− p is even (odd). Note that m− p is the “bigger half”
of the (odd) number of compact nodes in the Satake diagram.

• slm(H), l = 2m− 1, sν = id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (−1)Λ1+Λ3+···+Λl

All fundamental representations are self–conjugate. The representation ρi

is real (quaternionic) if i is even (odd). In the other words, fundamental
representations corresponding to compact nodes are quaternionic and the
remaining are real.

• sop,2l+1−p , sν = id, p = 2k , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (−1)(k+
l(l−1)

2
)Λl

First let us note the the assumption p = 2k is no restriction due to the iso-
morphism soq,r ' sor,q . All fundamental representations are self–conjugate.
Representations ρ1, . . . , ρl−1 are real. The representation ρl is real (quater-
nionic) if l − p ≡ 0 or 3 (l − p ≡ 1 or 2), all cases modulo 4. Note that
l − p is the number of compact nodes in the Satake diagram.

• spp,l−p , sν = id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (−1)
Λ1+Λ3+···+Λ

2[ 12 (l+1)]−1

Here we denote the integer part of a ∈ R by [a] . All fundamental represen-
tations are self–conjugate. The representation ρi is real (quaternionic) if i
is even (odd).

• sop,2l−p . The fundamental representations ρ1, . . . , ρl−2 are self–conjugate
and real. Futher we distinguish two possibilities according to the parity of
l−p . Note that l−p is the number of compact nodes in the Satake diagram
with the exception of the case sol−1,l+1 . In this case, the diagram has an
arrow and no compact node and l − p = 1.

– l − p even, sν = id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (−1)
l−p
2

(Λl−1+Λl)

The fundamental representations ρl−1 , ρl are self–conjugate. They are
both real (quaternionic) if 4 | l − p (4 - l − p).

– l − p odd, sν 6= id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1
The fundamental representations ρl−1 and ρl are mutually conjugate.

• u∗l (H). The fundamental representations ρ1, . . . , ρl−2 are self–conjugate; the
representation ρi , i ≤ l − 2 is real (quaternionic) if i is even (odd). We
distinguish two possibilities according to the parity of l . Note that if l is
even then one of “legs” of the Satake diagram is compact and the second is
non–compact and if l is odd then both “legs” are non–compact and connected
by an arrow.

– l even, sν = id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (−1)Λ1+Λ3+...+Λl−1

The fundamental representations ρl−1 and ρl are self–conjugate. The
representation, ρl−1 , corresponding to the compact node is quaternionic
and the other is real.

– l odd, sν 6= id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (−1)Λ1+Λ3+...+Λl−2

The fundamental representations ρl−1 and ρl are mutually conjugate.

In other words, the fundamental representations corresponding to the com-
pact nodes are quaternionic and the fundamental representations correspond-
ing to the non–compact nodes without arrows are real.
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• The compact form and the real form EV I of E7 , sν = id . . . (−1)Λ1+Λ3+Λ7

All fundamental representations are self–conjugate. The quaternionic repre-
sentations ρ1, ρ3, ρ7 correspond to the compact roots of the Satake digram
of EV I .

5.2. Indices of reductive algebras. Let us consider an irreducible repre-
sentation γ : f0 −→ gl(V ) on the complex vector space V which is self–conjugate
i.e. the highest weight of γ satisfies Γ = Γ̄. We understand the highest weights
as vectors of coefficients over a diagram. Then there exists a γ–invariant antiau-
tomorphism J on V such that J2 ∈ {+id,−id} . This follows that each element
of the center of g0 must act by some real scalar since non–real scalars do not
commute with any antiautomorphism. But real scalars commute with any antiau-
tomorphism and thus the action of the center has no effect on the index. Denoting
by gss

0 the semisimple part of g0 , we have shown that ε(g0, γ) = ε(gss
0 , γ|gss

0 ). The
index on the right hand side can be easily computed using the formulas above.

If the representation γ is a self–conjugate component in the cohomology,
we can determine the index more precisely. Let us suppose that the highest weight
Γ = Γ̄ of γ is of the form Γ = w.Λ for a self–conjugate f–dominant weight Λ
and an element w ∈ W . The following theorem states that the indices ε(g0, Γ)
and ε(g, Λ) are same. Denoting by F0 ⊆ F the set of fundamental weights
corresponding to the non–crossed roots, it follows from the above list and the
corresponding Satake diagrams that all quaterionic fundamental representations
correspond to compact roots and thus Q ⊆ F0 . We observe that therefore
ε(g, Λ) = ε(g0, Λ) where Λ on the right hand side is understood as an f0–dominant
weight.

Theorem 5.3. Let us consider a real semisimple Lie algebra g and its reductive
subalgebra g0 with complexification f0 ⊆ f. If Λ is a self–conjugate f–dominant
weight and Γ is a self–conjugate f0–dominant weight Γ = w(Λ) for w ∈ W then
ε(g, Λ) = ε(g0, Γ). The same assertion holds if we replace the Weyl action by the
affine Weyl action i.e. Γ = w.Λ.

Proof. It follows from the list above that ε(g0; Λ1 + Λ2) = ε(g0; Λ1)ε(g0; Λ2)
for g0–dominant weights Λ1 and Λ2 . This proves the last claim in the theorem.
We prove the theorem case by case for simple real Lie algebras. It is sufficient to
consider only the real forms discussed in 5.1 because the remaining ones admit only
the index +1 for the self–conjugate highest weights. For most of them the proof
is easy if we observe the Weyl actions in terms of the Dynkin diagram notation.
The simple reflection wi ∈ W corresponding to αi ∈ Π acting on a weight Λ′ of f

has the following form:

Let a be the coefficient over the ith node in the expression of Λ′ . In order to
get the coefficients over the nodes corresponding to wi(Λ

′), add a to the adjacent
coefficients, with the apropriate multiplicity if there is a multiple edge directed
towards the adjacent node, and replace a by −a. (This algorithm for computing
with the Dynkin diagrams was established in [1]).

Let us begin with the real form slm(H) where l = 2m− 1. The index of Λ
is given by the parity of the sum Λ1+Λ3+ . . .+Λl . It is easy to see that the simple
reflections do not change the parity of this sum. The index of sop,2l+1−p is either
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always +1 (for both Λ and Γ) or depends on the parity of the last coefficient.
But the first l − 2 reflections do not change the last coefficient and the last two
reflections do not change its parity. Similar considerations prove the theorem for
the algebras spp,l−p , sop,2l−p , the compact form and the real form EV I of E7 and
u∗l (H) for l even.

The remaining cases sup,l+1−p , l = 2m − 1 and u∗l (H) for l odd must be
discussed more carefully. We will consider the usual matrix presentation (see e.g.
[7]) of the (complex) algebras sl2m(C) and so2l(C). Remind that Λ is a vector
of coefficients of the expression of the highest weight (denoted by Λ as well) in
the basis of fundamental weights. We will write Λs to express the weight Λ as a
vector of coefficients with respect to the basis of simple roots. On the other hand
we write Λe to express the same weight in terms of the “matrix” base. (In the
case of sln(C), we will use the matrix base e1, . . . , el+1 where ei extracts the ith
element of the diagonal i.e. the matrix base of the whole algebra gln(C). In the
case of so2l(C), the matrix base is e1, . . . , el where ei extracts the 2ith element
of the diagonal.) Similarly, we will consider the vectors Γ, Γs and Γe . We shall
see below that the proof of the theorem follows from properties of expressions in
“matrix” basis. The Cartan matrices will be denoted by C(Al) and C(Dl).

I. Let us start with the algebra Al , l = 2m − 1 with the real form
sup,l+1−p (i.e. the non–trivial symmetry sν ). We will consider Λs = Λ · (C(Al))

−1

with respect to the system of simple roots Π = {e1 − e2, . . . , el − el+1} . The
structure of the matrix (C(Al))

−1 implies that the vector Λ is symmetric if
and only if the vector Λs is symmetric. If we denote Λs = (a1, . . . , al) we get
Λe = (a1, a2 − a1, . . . , al − al−1,−al). This implies that the symmetric vector Λs

corresponds to the antisymmetric vector Λe . We will further consider the form
Λe = (b1, . . . , bm,−bm, . . . ,−b1). Starting with a (symmetric) highest weight Λ =
(Λ1, . . . , Λm, . . . , Λl), a short computations reveals that bk = Λk+· · ·+Λm−1+

1
2
Λm

for 1 ≤ k ≤ m .

From this point of view, the Weyl group W is realized as Sym 2m . Consid-
ering the form of elements of Λe we see that Λm is even (odd) if and only if the
double of an arbitrary element of Λe is even (odd). But the last property is not
changed by permutation. We have shown that Λm and Γm have the same parity.
(We do not need to do the backward transformation if the weight Γ is symmetric,
which is the case according to our assumptions.) Since the indices of Λ and Γ
depend on this parity in the same way, we have proved the theorem for the real
form sup,l+1−p for l odd.

II. The case of the algebra Dl , l odd with the real form u∗l (H) (i.e. the
non–trivial symmetry sν ) is similar. We consider Λs = Λ · (C(Dl))

−1 with respect
to the system of simple roots Π = {e1− e2, . . . , el−1− el, el−1 + el} . The structure
of the matrix (C(Dl))

−1 implies that the vector Λ is symmetric if and only if
the vector Λs is symmetric (and this symmetry means the equality of the last
two elements). If we denote Λs = (a1, . . . , al) we get Λe = (a1, a2 − a1, . . . , al−2 −
al−1, al−1+al−al−2, al−al−1). This implies that a symmetric vector Λs corresponds
to a vector Λe with zero in the last position. We will further consider the
form Λe = (b1, . . . , bl−1, 0). Starting with a (symmetric) highest weight Λ =
(Λ1, . . . , Λl−1, Λl−1), a short computation reveals that bk = Λk + · · · + Λl−1 for
1 ≤ k ≤ l − 1.

From this point of view, the Weyl group W is generated by permutations
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(i, j) and permutations (i, j) following by a sign change of the elements at positions
i and j . Considering the form of elements of Λe , we see that the parity of the
sum Λ1 + Λ3 + · · · + Λl−2 is the same as the parity of the sum

∑l−1
i=1(Λe)i =

Λ1 + 2Λ2 + · · · + (l − 2)Λl−2 + (l − 1)Λl−1 . But the parity of the last sum is not
changed by the permutations and sign changes, if the resulting vector Γ has zero
as the last component. We have shown that the sums Λ1 + Λ3 + · · · + Λl−2 and
Γ1 +Γ3 + · · ·+Γl−2 have the same parity. Since the indices of Λ and Γ depend on
this parity in the same way, this proves the theorem for the real form u∗l (H) for l
odd.

6. Relation between real and complex cohomologies

Now we know how to identify the couples of conjugate representations
of f0 (with respect to g0 ) and how to compute the index of a self–conjugate
representation of f0 (with respect to g0 ) and thus we can finish the considerations
from the Section 3.. Using the same notation, we describe the real cohomology for
irreducible representations λ : g −→ gl(V ) of all types. First we show that we can
consider symmetries of diagrams as isomorphisms of the Weyl group.

6.1. Symmetries as isomorphisms of the Weyl group. For an arbitrary
symmetry a′ of the Dynkin diagram of f , we define the isomorphism a′ : W −→ W
in the following way: the image of the simple reflection wi , corresponding to the
simple root σi ∈ Π, will be the simple reflection wa′(i) , corresponding to the simple
root a′(σi). In the other words, an element w = wi1 . . . wik given by the sequence
i1, . . . , ik with respect to the (ordered) set Π, is mapped to the element a′(w) given
by the same sequence with respect to the set a′(Π). It also shows the correctness of
the definition of a′ (an expression of w ∈ W as a composition of simple reflections
is not unique).

6.2. Real cohomology for complex and quaternionic representations.
Let us suppose that λ is complex or quaternionic. Thus V is a complex vector
space and we denote the highest weight of λC : f −→ gl(V ) by Λ. We can consider
the representation on the complex cohomology βC : f0 −→ gl(H(p+(C)); V ) and
recall the representation βR : g0 −→ gl(H(p+; VR)) on the real cohomology is given
by the relation βR = (βC|g0)

R , see Section 3.. We will show that the irreducible
components of βC and βR are in 1–1 correspondence. Recall that the highest
weights of the components of βC are of the form w.Λ, w ∈ W q , see Theorem 1.4.

I. First let us suppose that λ is complex i.e. Λ 6= sν(Λ). We claim the
following useful property. For each w ∈ W , an arbitrary symmetry a′ of the
Dynkin diagram and a highest weight Λ′ , the following relation holds:

a′(w.Λ′) = w.Λ′ ⇐⇒ Λ′ = a′(Λ′) and w = a′(w). (∗)

The equality w.Λ′ = a′(w.Λ′) = a′(w).a′(Λ′) implies that the irreducible compo-
nent with the highest weight a′(w.Λ′) is a cohomology component in the cohomol-
ogy induced by f–representations with highest weights Λ′ and a′(Λ′). This implies
Λ′ = a′(Λ′) because Λ′ and a′(Λ′) are f–dominant weights on the same orbit of
the affine Weyl action. Thus w.Λ′ = a′(w).Λ′ and since Λ′ + R is inside the Weyl
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chamber and the Weyl group acts simply transitively on Weyl chambers, it follows
w = a′(w).

Now putting a′ := sν and Λ′ := Λ, it follows from Theorem 4.2 that each
component in βR is of the complex type.

II. If λ is quaternionic then Λ = sν(Λ) and ε(g, Λ) = −1. If there is a
component in βC with the highest weight w.Λ, w ∈ W q such that sν(w.Λ) = w.Λ
then ε(g0, w.Λ) = ε(g, Λ) = −1, see Theorem 5.3. This shows that each component
in βC is complex or quaternionic.

In summary, the space of the real cohomology H(p+; V ), for a complex
or quaternionic representation λ , is just the space of the complex cohomology
H(p+(C); V ) understood as a real vector space. Moreover, Lemma 3.3 implies that
the irreducible components of βC and βR are the same and from the definition of
arrows in 1.8 it follows that the Hasse graphs are the same too.

6.3. Real cohomology for real g–representations. If the representation
λ is real then we start with its (irreducible) complexification λ(C) : f −→ gl(V (C))
with the highest weight Λ. It follows from 1.5 that the complexification of the
required representation β : g0 −→ gl(H(p+; V )) on the real cohomology is just the
representation β(C) : f0 −→ gl(H(p+(C); V (C))) on the complex cohomology for
the f–representation λ(C). Now, our aim is to say which irreducible components of
β(C) correspond to irreducible components in β and which couples of irreducible
components of β(C) correspond to irreducible components in β , cf. 1.7.

The description of the highest weights of β(C) is given by Theorem 1.4.
Moreover, each highest weight has the multiplicity one. Using the Theorem 4.2,
this implies that there is no quaternionic component in β . Thus, the type of
components in β is fully determined by the symmetry sν . In particular, there can
be complex components in β only if sν is non–trivial.

(a) sν = id. All components in H(p+, V ) are clearly of the real type and
the Hasse graphs of H(p+(C), V (C)) and H(p+, V ) are isomorphic. Considering
simple Lie algebras, this case includes all real forms of algebras Bl , Cl , E7 , E8 ,
F4 , G2 and real algebras sll(R), sl2m(H), sop,2l−p for l− p even, u∗

2l(H), EI and
EIV.

(b) sν 6= id. There can be real and complex components in H(p+, V ) (and
one can easily show that both these types of representations in the cohomology
exists for each choice of a parabolic subalgebra). A component in β(C) with a
highest weight w.Λ, w ∈ W q corresponds to a component in β if and only if
sν(w.Λ) = w.Λ (or equivalently sν(w) = w) and a couple of components in β(C)
with highest weights w1.Λ 6= w2.Λ, w1, w2 ∈ W q corresponds to a component in β
if and only if sν(w1.Λ) = w2.Λ (or equivalently sν(w1) = w2 ). The Hasse graph on
irreducible components H(p+, V ) is obtained from the Hasse graph on irreducible
components of H(p+(C), V (C)) by connecting these couples of components which
correspond to one component in the real case. Considering simple Lie algebras,
this case includes sup,l−p , sop,2l−p for l−p odd, u∗

2l+1(H), EII, EIII and all simple
complex Lie algebras understood as real ones.

Example 6.4. Cohomology for su3,1 and the adjoint representation.
The Satake diagram of su3,1 is ◦ ;;• ◦cc and it admits only the parabolic subalgebra
given by the diagram × 99• ×ee . The adjoint representation of su3,1 is real because



498 Šilhan

-4 1 2 -6 1 0
× ◦ × × ◦ ×

-3 2 1 -6 2 -2
× ◦ × × ◦ ×

1 0 1 -3 4 -3 -4 4 -4 -4 0 -4
× ◦ × × ◦ × × ◦ × × ◦ ×

1 2 -3 -2 2 -6
× ◦ × × ◦ ×

2 1 -4 0 1 -6
× ◦ × × ◦ ×

//
44hhhh **VVVV

44iiii **VVVV

88rrrrrrrr
//

&&MMMMMMMM

44hhhh **VVVV

**UUUU 44iiii **VVVV 44hhhh

**VVVVV

88rrrrrrrr &&MMMMMMMM

44iiii
//

Figure 1: The cohomology of the adjoint representation of sl4(C) = (su3,1)(C).
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−6 −4 0 −4
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× 77• ×gg × 77• ×gg
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Figure 2: The real cohomology of su3,1 .

its complexification is the adjoint representation of sl4(C) and this is an irreducible
representation.

The adjoint representation in the complex case is described by the Dynkin
diagram with coefficients 1 0 1◦ ◦ ◦ . The irreducible components of complex coho-
mology and the structure of the Hasse graph are shown in the Figure 1. (The
way to use Kostant’s result for the algorithmic computation of the cohomology is
described in [9].)

In general, the components of the real cohomology are described by the
Satake diagram with the highest weight of the complexification (for the components
of the real type) or by the Satake diagram with a couple of the highest weights of
the complexification (for the components of the complex and quaternionic type).
The Satake diagram with one highest weight denotes an g0–invariant real subspace
of f0–representation with the given highest weight. The Satake diagram with two
highest weights denotes a representation of g0 obtained as the realification of the
f0–representation with any of the given highest weights.

According to 6.3, there can be only real and complex components in the real
cohomology of su3,1 . Since the complex Hasse graph is symmetric (with respect
to the highest weights of its components) according to the middle line, the real
Hasse graph is just the “upper part” of the complex one, see Figure 2.
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