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Communicated by P. Olver

Abstract. In this paper we study some aspects of the integrability prob-
lem for polynomial vector fields ẋ = P (x, y), ẏ = Q(x, y). We analyze the
possible existence of first integrals of the form I(x, y) = (y − g1(x))α1(y −
g2(x))α2 · · · (y−g`(x))α`h(x), where g1(x), . . . , g`(x) are unknown particular so-
lutions of dy/dx = Q(x, y)/P (x, y), αi are unknown constants and h(x) is an
unknown function. We show that for certain systems some of the particular
solutions remain arbitrary and the other ones are explicitly determined or are
functionally related to the arbitrary particular solutions. We obtain in this way
a nonlinear superposition principle that generalize the classical nonlinear super-
position principle of the Lie theory. In general, the first integral contains some
arbitrary solutions of the system but also quadratures of these solutions and an
explicit dependence on the independent variable. In the case when all the par-
ticular solutions are determined, they are algebraic functions and our algorithm
gives an alternative method for determining such type of solutions.
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1. Introduction

We consider in this paper two–dimensional systems

dx

dt
= ẋ = P (x, y) ,

dy

dt
= ẏ = Q(x, y) , (1)

in which P,Q ∈ R[x, y] are polynomials in the real variables x and y and the
independent variable (the time) t is real. Throughout this paper we will denote
by m = max{degP, degQ} the degree of system (1). Obviously, we can also
express system (1) as the differential equation

dy

dx
=
Q(x, y)

P (x, y)
. (2)
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We associate to system (1) the vector field X defined by X = P∂/∂x +
Q∂/∂y .

System (1) is integrable on an open set U of R2 if there exists a nonconstant
C1 function H : U → R , called a first integral of the system on U , which is
constant on all solution curves (x(t), y(t)) in U ; i.e. H(x(t), y(t)) = c , where c is
a constant, for all values of t where the solution is defined. Clearly H is a first
integral of the system (1) on U if and only if XH ≡ 0 on U .

The search of first integrals is a classical tool in the classification of all
trajectories of a dynamical system. The local existence of first integrals in a
neighborhood of a regular point is a consequence of some classical theorems of
differential calculus. The interesting point is the search of global first integrals.
For a two-dimensional system the existence of a global first integral completely
determines its phase portrait. Since for such systems the notion of integrability is
based on the existence of a first integral, the natural question is: given a planar
system depending on parameters, how to recognize the values of the parameters
for which the system has a global first integral ?

The planar integrable systems which are not Hamiltonian are in general
very difficult to detect. Many different methods have been used for studying the
existence of first integrals for non-Hamiltonian systems.

It is known that there are strong relationships between the integrability
of a polynomial differential system like (1) and its number of invariant algebraic
curves. Darboux showed in [5] that the existence of a certain finite number of
invariant algebraic curves for a system of fixed degree implies the integrability of
the system. The first integral is, in this case, a product of the invariant algebraic
curves with complex exponents. Jouanolou showed in [10] that the existence of a
certain number of invariant algebraic curves (higher than Darboux’s bound) for a
system of a fixed degree implies the algebraic integrability of the system, i.e. the
existence of a rational first integral. In this case, all the solutions of the system
are algebraic.

An invariant algebraic curve of system (1) is given by an irreducible al-
gebraic curve, which is defined as the set of points in C2 satisfying an equation
f(x, y) = 0, where f is a polynomial in x and y such that

X f = Kf ,

for some polynomial K(x, y) ∈ C[x, y] with degK ≤ m − 1, see for instance [3].
The polynomial K is termed the cofactor. In 1878, Darboux showed how the first
integral of polynomial systems possessing sufficient invariant algebraic curves are
constructed. In particular he proved that if a polynomial system of degree m has
at least m(m+1)/2+1 invariant algebraic curves, then it has a first integral that
can be directly constructed from these algebraic curves. More precisely, one of the
results of Darboux is the following:

Suppose that a polynomial system (1) of degree m admits q invariant
algebraic curves fi = 0 with cofactors Ki for i = 1, . . . , q . If q ≥ m(m+1)/2+1,

then the function fλ1
1 . . . f

λq
q for suitable λi ∈ C not all zero is a first integral and∑q

i=1 λiKi = 0. The method of Darboux turns out to be a very useful and elegant
one for proving integrability for some classes of systems depending on parameters.
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A systematic search of invariant algebraic curves of a given degree can be carried
out with the help of a computer algebra system, but the involved calculations
become very difficult when the degree of the polynomial increases.

Generalizations of the Darboux method can be found in [3] where the no-

tion of exponential factor is employed. A function of the form fλ1
1 . . . f

λq
q exp(h/g),

where fi , g and h are polynomials in C[x, y] and the λi ’s are complex numbers,
is called a generalized Darbouxian function. System (1) is called generalized Dar-
bouxian integrable if the system has a first integral or an integrating factor which
is a generalized Darbouxian function.

In the method of Darboux a finite number of implicit particular solutions
are sufficient to construct in an algebraic way a first integral and, as we treat with
planar systems, the general solution of the system.

We are lead in this way to the problem of characterizing the systems of
differential equations for which a superposition function, allowing to express the
general solution in terms of a certain finite number of particular solutions, does
exist. As it is well known, this problem has been studied by Lie [11]. Let
Σ = {g1(x), . . . , gn(x)} be a set of particular solutions of equation (2). Then
F (y, g1(x), . . . , gn(x)) is defined as a connecting function of (2) if F = 0 is also an
implicitly defined particular solution. Formally, a nonlinear superposition principle
is an operation F : R × Fn → G where F and G are function spaces such that
the former properties hold.

Moreover, we will say that Σ is a fundamental set of solutions of (2) if a
connecting function F exists, and such that F is a first integral or equivalently
F = c is the general solution of equation (2), where c is an arbitrary constant. The
standard example of nonlinear first order differential equation with a fundamental
set of solutions is the Riccati equation dy/dx = A0(x) + A1(x)y + A2(x)y

2 for
which the general solution is given by the cross ratio of three arbitrary particular
solutions y = g1(x), y = g2(x) and y = g3(x)

F (y, g1(x), g2(x), g3(x)) =
(y − g1(x))(g3(x)− g2(x))

(y − g2(x))(g3(x)− g1(x))
= c ,

where c is an arbitrary constant.

It follows from the work of Lie and Scheffers [11] that the real equation
(2) with n arbitrary particular solutions defining a fundamental set of solutions is
associated with finite dimensional Lie algebras of vector fields on R . In fact, Lie
showed that there is a fundamental set of n arbitrary solutions for the differential
equation (2) if and only if it can be written in the form

dy

dx
=

s∑
i=0

Ai(x)Bi(y) , (3)

where the vector fields Xi = Bi(y)∂/∂y with i = 0, 1, . . . , s , generate an r -
dimensional Lie algebra with s + 1 ≤ r ≤ n . Unfortunately, no easy way to
construct the nonlinear superposition principle is known, see for instance [16]. A
modern treatment of the Lie and Scheffers works of fundamental set of arbitrary
solutions can be found in [1]. Moreover, the notion of a fundamental set of solutions
developed by Lie is extremely restrictive as can be seen from the following theorem
proved by Lie [11].
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Theorem 1.1. The only ordinary differential equations of the form dy/dx =
f(x, y) allowing a fundamental set of arbitrary solutions are the Riccati equation
dy/dx = A0(x)+A1(x)y+A2(x)y

2 and any equation obtained from it by a change
of dependent and independent variables of the form ψ = ψ(y), τ = τ(x).

Are there any connections between the Darboux method and Lie’s theory
for polynomial systems (1)? In order to analyze this question we can express the
first integral given by the Darboux theory in the following way

H(x, y) = fλ1
1 . . . fλq

q = (y − g1(x))
α1(y − g2(x))

α2 . . . (y − g`(x))
α`h(x) . (4)

Here we have privileged the variable y but an analogous expression can
be written interchanging the role of x and y . For obtaining this expression we
have employed the algebraic functions gj(x) for j = 1, . . . , ` , associated to the
invariant algebraic curves fi(x, y) = 0 with i = 1, . . . , q . A function gi(x) is an
algebraic function if there exists a polynomial in two variables f(x, y) such that
f(x, gi(x)) ≡ 0. The number ` of factors depends on q and the degree of each
polynomial fi . To give an upper bound for the number ` of factors in terms of the
degree m of the polynomial system is a very difficult problem. It is directly related
to another problem raised by Poincaré: to find an upper bound for the degree of
an irreducible invariant algebraic curve in terms of the degree of the system. From
Darboux’s results, it is known that for every polynomial vector field, there exists
an upper bound for the possible degrees of irreducible invariant algebraic curves.
However, to explicitly determine when such an upper bound in terms of m exists
is an unsolved problem at present. Some bounds have been given under certain
conditions on the invariant algebraic curves, see for instance [17]. The αi are,
in general, complex constants. Obviously this expression is formal in nature. In
general it is not possible to obtain explicit expressions for the functions gj(x). The
existence of such factorization is ensured by the algebra fundamental theorem. Let
us observe also that the functions gj(x) are particular solutions of (2).

Lemma 1.2. Let f(x, y) = 0 be an invariant algebraic curve of system (1).
Then, each algebraic function gj(x) associated to this curve is a particular solution
of equation (2).

Proof. Let y = gj(x) be a function defined implicitly by f(x, y) = 0. So, we
can use the implicit function theorem as follows

∂f

∂x
+
∂f

∂y

dgj

dx

∣∣∣∣
y=gj(x)

= 0 . (5)

Since f = 0 is an invariant algebraic curve of system (1), we also have

∂f

∂x
+
∂f

∂y

Q

P

∣∣∣∣
f=0

= 0 . (6)

Since the former equation is valid when f = 0, in particular it is valid when
y = gj(x). Consequently, from equations (5) and (6) we conclude that

dgj

dx
=
Q(x, gj(x))

P (x, gj(x))
,

that is, gj(x) is a particular solution of the differential equation (2)
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In the factorized expression of the Darboux first integral given in (4) the
particular solutions gi(x) are not arbitrary. They are well determined functions
obtained by the factorization in the y variable of the polynomials fi(x, y). By
contrary, in the expression of the first integral given by the Lie theory, the particu-
lar solutions gi(x) of the fundamental set are arbitrary. A natural question is: are
there intermediate cases of nonlinear superposition principles for which some of the
particular solutions remains arbitrary and the others are explicitly determined?

To answer this question it is quite natural to introduce the following ansatz
for the first integral

I(x, y) = (y − g1(x))
α1(y − g2(x))

α2 . . . (y − g`(x))
α`h(x) , (7)

where gj(x) are unknown particular solutions of (2), h(x) is an unknown function

of x and the αi are unknown constants such that
∏`

i=1 αi 6= 0, in order to detect
first integrals of (1). Here, the particular solutions gj(x) are not, in general,
algebraic functions.

Let us suppose that I(x, y) given by (7) is a first integral of (1) such
that some particular solutions gi(x) remain arbitrary with i = 1, . . . , j where
0 ≤ j ≤ ` . Then, the following possibilities arise:

(i) j = ` and h(x) is a function only of g1(x), . . . , g`(x), that is, h(x) =
G(g1(x), . . . , g`(x)). Then the expression of I(x, y) is a particular case of a
nonlinear superposition principle given by Lie’s theory, i.e., {g1(x), . . . , g`(x)}
is a fundamental set of arbitrary solutions of (2).

(ii) j < ` and h(x) is a function only of g1(x), . . . , gj(x). In this case h(x) =
G(g1(x), . . . , gj(x)) and each one of the determined functions gi(x) is a
function only of the arbitrary particular solutions {g1(x), . . . , gj(x)} . Then
the expression of I(x, y) is a particular case of a nonlinear superposition
principle given by Lie’s theory, i.e., {g1(x), . . . , gj(x)} is a fundamental set
of arbitrary solutions of (2).

(iii) j < ` and h(x) is a fixed function of x , , i.e., with explicit expression indepen-
dent of g1(x), . . . , gj(x) and each one of the determined functions gi(x) is a
function of only the arbitrary particular solutions {g1(x), . . . , gj(x)} . Then,
taking into account that we can construct a new first integral I1(x, y)/I2(x, y)
independent of h(x) we obtain a particular case of a nonlinear superposition
principle included also in Lie’s theory, see Example 1.

(iv) j = 0; we will see that in this case all the particular solutions gi(x) are
algebraically determined.

(v) In all the other cases we obtain a new type of superposition principle that we
call generalized nonlinear superposition principle, see Example 4.

It is evident that a first integral I(x, y) of the form (7), where the functions
gj(x) are particular solutions of (2), is more general than the Darboux first integral
H(x, y) given by (4). Also, with the exception of the above particular cases (i) (ii)
and (iii), the first integral (7) is not included in the Lie’s theory. So the problem
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is: for a given system (1), how to determine whether it exists a first integral of the
form (7)?

This question was first studied by Painlevé, see [14] and references therein.
He proved that a differential system (1) has a first integral of the form (7) if and
only if it has an integrating factor of the form

M =
α(x)S(x, y)

(y − g1(x))(y − g2(x)) . . . (y − g`(x))
, (8)

where S(x, y) is polynomial in the variable y of degree ` −m − 1. Moreover he
demonstrated that if the system has two different integrating factors M1 and M2

of the form (8) with M2/M1 nonconstant, then there exists a change of variable
that is rational in the variable y which transforms the equation (2) into a Riccati
equation. He also proved that if the differential system has only one integrating
factor of the form (8), then the particular solutions gi(x) from the ansatz (7) are
calculated algebraically and h(x) is given by a logarithmic quadrature.

We follow here another approach with respect to Painlevé’ works. In par-
ticular, we are interested in detecting, in an algorithmic way, the systems which
admit a first integral of the form (7) and specially the cases when some of the par-
ticular solutions gi(x) remain arbitrary. In these cases we will obtain an expression
of I(x, y) that we call a generalized nonlinear superposition principle.

If we introduce the ansatz (7) with a fixed number of factors, we will show
that it is possible to decide if the system has a first integral of the proposed form.
In some cases either all the functions gj(x) are determined explicitly or there are
particular solutions gj(x) expressed in terms of other arbitrary solutions gi(x). In
addition, the function h(x) is always determined in terms of the gj(x) and the
αi , but the expression of h(x) contains, in general, quadratures of the functions
gj(x), see Example 2. When some of the functions gj(x) remain arbitrary the
resulting expression of I(x, y) will contain a double dependence on the variable x .
There is a first dependence of x through the arbitrary particular solutions gi(x).
In addition, the x variable can appear in an explicit way, see for instance Example
4. By contrary, in the Lie theory the dependence of I(x, y) on the variable x
appears only through the fundamental set of solutions.

Then, in some cases, we will arrive to the conclusion that a given system
of the type (1) has a first integral of the form (7) with the proposed number of
factors, but the algorithm does not determine all the arbitrary particular solutions
gj(x). In any way, in this case we can arrive to the important conclusion that a
first integral of the system can be constructed from a finite number of particular
solutions and we can determine this number. When all the particular solutions
gi(x) are determined they are algebraic functions. For these cases, the algorithm
introduced in this work represents an alternative method for determining such type
of solutions.

Since even a formal invariant curve f(x, y) = 0 of system (1) given by
a formal power series f ∈ R[[x, y]] must satisfy always an equation X f = Lf
where L(x, y) is also a formal power series, see [2] and [15], we introduce the next
definition.
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Definition 1.3. A quasipolynomial cofactor M(x, y) associated to a non-algebraic
invariant curve f(x, y) = 0 of system (1) is a function that is polynomial in one
of the variables x or y , satisfying X f = Mf .

This definition is a generalization of the so called generalized cofactor in-
troduced in [6] where a generalization of the Darboux integrability theory in order
to find non-Liouvillian first integrals of system (1) was presented. For the special
invariant curve f(x, y) = y−g(x) = 0 of (1), where g(x) is a particular solution of
(2), a quasipolynomial cofactor always exists as we will see in the next proposition.

Proposition 1.4. A particular solution g(x) of equation (2) has always an
unique associated quasipolynomial cofactor of the form M(x, y) = Km−1(x)y

m−1 +
· · ·+K1(x)y +K0(x) where m is the degree of system (1).

Proof. Let g(x) be a particular solution of (2). Then f(x, y) := y − g(x) = 0
is an invariant curve of system (1). Denote by M(x, y) its associated cofactor, i.e.,
X f = Mf . So we have

Q− Pg′ = M(y − g) . (9)

Let us suppose that M(x, y) is a quasipolinomial cofactor M(x, y) = Km−1(x)y
m−1+

· · · + K1(x)y + K0(x). We will prove that such kind of cofactor always ex-
ists and it is unique. Substituting the expressions P (x, y) =

∑m
j=0 Pj(x)y

j and

Q(x, y) =
∑m

j=0Qj(x)y
j , where Pj and Qj are polynomials, the former equation

reads for(
m∑

j=0

Qj(x)y
j

)
− g′(x)

(
m∑

j=0

Pj(x)y
j

)
=

(
m−1∑
j=0

Kj(x)y
j

)
(y − g(x)) .

Equating the m+ 1 coefficients of the same powers of y in both members of this
equation, the next linear system for the unknowns Kj(x) is obtained

1 0
−g 1 0
0 −g 1 0

. . . . . . . . . . . .
. . . . . . . . . 0

0 −g 1
0 −g





Km−1

Km−2

Km−3
...
K1

K0


=



Qm − g′Pm

Qm−1 − g′Pm−1

Qm−2 − g′Pm−2
...

Q1 − g′P1

Q0 − g′P0


.

From routine linear algebra it is possible to show that the above system is equiv-
alent to

1 0
0 1 0
0 0 1 0

. . . . . . . . . . . .
. . . . . . . . . 0

. . . 0 1
0 0





Km−1

Km−2

Km−3
...
K1

K0


=



Qm − g′Pm

(gQm +Qm−1)− g′(gPm + Pm−1)∑2
j=0Qjg

j − g′
∑2

j=0 Pjg
j

...∑m−1
j=0 Qjg

j − g′
∑m−1

j=0 Pjg
j∑m

j=0Qjg
j − g′

∑m
j=0 Pjg

j


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Finally, since
∑m

j=0Qjg
j − g′

∑m
j=0 Pjg

j = 0 because g is a particular solution of
(2), the above linear system reduces to a system with matrix coefficients given by
the identity matrix of order m . Therefore we obtain a unique solution and the
proposition is proved.

Therefore, a unique quasipolynomial cofactor is always associated to any
particular solution of (2). Let us give an example of quasipolynomial cofactor.
The differential equation dy/dx = (x−y4)/(2y) has the particular solution g(x) =
−
√

Ai′(x)/Ai(x), where Ai(x) is one of the pair of linearly independent solutions
of the Airy equation w′′ = xw . The particular solution y = g(x) posesses the
quasipolynomial cofactor M(x, y) = −y3 + y2

√
Ai′(x)/Ai(x) − yAi′(x)/Ai(x) +

x
√

Ai(x)/Ai′(x). This example was obtained in [7].

Proposition 1.5. Let I(x, y) be the ansatz function defined in (7). I(x, y) is
a first integral of system (1) if and only if

0 ≡ Pm(x)h′(x) , (10)

0 ≡ Pj(x)h
′(x) + h(x)

∑̀
i=1

αiK
(i)
j (x) , j = 0, 1, . . . ,m− 1, (11)

where Mi(x, y) =
∑m−1

j=0 K
(i)
j (x)yj is the quasipolynomial cofactor associated to the

particular solution gi(x).

Proof. It follows by straightforward calculations from X I ≡ 0 taking into
account that, from Proposition 1.4, each particular solution gi(x) of equation (2)
has associated the quasipolynomial cofactor Mi(x, y).

Theorem 1.6. System (1) with P (x, y) 6≡ 0 has ` particular solutions {y =
gi(x)}`

i=1 with associated linearly dependent quasipolinomial cofactors {Mi(x, y)}`
i=1

if and only if system (1) has the first integral I(x, y) =
∏`

i=1(y − gi(x))
αi with∏`

i=1 αi 6= 0.

Proof. The sufficient condition is proved as follows. If {Mi(x, y)}`
i=1 are lin-

early dependent then there exist constants αi with
∏`

i=1 αi 6= 0 such that, from
(11) and (10), we have Pj(x)h

′(x) ≡ 0 for j = 0, 1, . . . ,m . Therefore the function
h(x) becomes constant since P (x, y) =

∑m
j=0 Pj(x)y

j 6≡ 0. So, by Proposition 1.5

we have that I(x, y) =
∏`

i=1(y − gi(x))
αi is a first integral of system (1).

In order to prove the necessary condition, let us suppose that I(x, y) =∏`
i=1(y−gi(x))

αi is a first integral of system (1). Then h(x) = 1 and therefore con-

ditions (11) and (10) reduce to
∑`

i=1 αiK
(i)
j (x) ≡ 0 for j = 0, 1, . . . ,m−1. In fact,

since Mi(x, y) =
∑m−1

j=0 K
(i)
j (x)yj , the former conditions give

∑`
i=1 αiMi(x, y) ≡ 0

and the theorem is proved.

The following proposition is related to the result of Painlevé [14] presented
in the introduction, when the differential system has a unique integrating factor
of the form (8). In this case our proof follows directly from the existence of the
first integral.
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Proposition 1.7. Suppose that system (1) admits the first integral I(x, y) de-
fined in (7) where all the particular solutions gi(x) of equation (2) are determined.
Then gi(x) are algebraic functions for i = 1, . . . , `.

Proof. The condition X I = P (x, y)∂xI +Q(x, y)∂yI ≡ 0 implies

∏̀
i=1

(y − gi(x))
αi−1

{[
h(x)

∑̀
j=1

αj

∏̀
i6=j

(y − gi(x))
]
Q(x, y)

+
[
h′(x)

∏̀
i=1

(y − gi(x))− h(x)
∑̀
j=1

αj
Q(x, gj(x))

P (x, gj(x))

∏̀
i6=j

(y − gi(x))
]
P (x, y)

}
≡ 0,

where we have replaced g′j(x) by Q(x, gj(x))/P (x, gj(x)). We can rewrite this
expression as follows ∏̀

i=1

(y − gi(x))
αi

[
h′(x)P (x, y)

+ h(x)
∑̀
j=1

αj
P (x, gj(x))Q(x, y)−Q(x, gj(x))P (x, y)

(y − gj(x))P (x, gj(x))

]
≡ 0. (12)

The expression inside the brackets is a polynomial in the variable y because
P (x, gj(x)) Q(x, y) − Q(x, gj(x))P (x, y)|y=gj(x) ≡ 0. The identically vanishing
of the coefficients of every power of the variable y gives an algebraic system where
the number of equations is ≤ m + 1. This system has ` + 1 unknown functions
gi(x) and h(x), and the arbitrary constants αi . Let us notice that the number of
equations is independent of the number of factors ` that appear in the expression
of the first integral (7). The vanishing of the coefficient of the highest power of y
gives the equation Pm(x)h′(x) = 0 which is condition (10) found in Proposition
1.5. This algebraic system is always compatible, because it has the trivial solution
α1 = . . . = α` = 0 and h(x) an arbitrary constant.

When we solve the algebraic system there are two possibilities:

(i) The only solution is the trivial one and then there is no first integral of the
proposed form.

(ii) The system has non-trivial solutions. In this case some of the functions gi(x)
(or all of them) are determined. The algebraic relations obtained must be
compatible with the fact that the functions gi(x) are particular solutions of
system (2). Therefore, the next step is to derive these algebraic relations
respect to the variable x and replace g′i(x) by Q(x, gi(x))/P (x, gi(x)). After
this we obtain a new set of algebraic equations which must be satisfied.
The algorithm finishes when the derivation with respect to the variable x
and the substitutions of g′i(x) give expressions which are identically satisfied
when the algebraic equations that have been derivated are satisfied. At
the end of the process if all the functions gi(x) are determined then they
will be algebraic functions because all the equations are algebraic. If some
of the functions gi(x) remains arbitrary we obtain a generalized nonlinear
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superposition principle. Also, it is possible that at the end of the process we
obtain a constant function I(x, y) as the only possibility. In this case the
system does not admit a first integral of the form (7).

The arbitrary coefficients αi are chosen in order to ensure the existence of non-
trivial solutions, when they exist.

2. Examples

Let us now analyze some examples in order to show the application of the method
above described.

Example 1. Consider the following polynomial differential system

ẋ = −y + x2, ẏ = x. (13)

The equation for the orbits is

dx

dy
=
−y + x2

x
. (14)

The quadratic system (13) has a center at the origin because it is monodromic and
φ0 -time-reversible with respect to the involution φ0(x, y) = (−x, y). We propose
the following first integral

I(x, y) = (x− g1(y))
α1(x− g2(y))

α2h(y) ,

where α1α2 6= 0 and the functions g1(y) and g2(y) are particular solutions for
equation (14) with quasipolynomial cofactors M1 and M2 , respectively. Imposing
that X I ≡ 0 we obtain

α1M1(x, y)h(y) + α2M2(x, y)h(y) + h′(y)x = 0. (15)

The equation X fi = Mifi , with fi(x, y) = x− gi(y) takes the form

X fi = ẋ
∂fi

∂x
+ ẏ

∂fi

∂y
= −y + x2 − xg′i(y) = (K

(i)
1 (y)x+K

(i)
0 (y))(x− gi(y)) , (16)

which gives the following system of equations

1 = K
(i)
1 (y),

−g′i(y) = K
(i)
0 (y)− gi(y) K

(i)
1 (y),

−y = −K(i)
0 (y) gi(y).

The resolution of this system of equations gives

K
(i)
1 (y) = 1,

K
(i)
0 (y) =

y

gi(y)
,

g′i(y) =
−y + g2

i (y)

gi(y)
, (17)
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where the equation (17) indicates that gi(y) is a particular solution of equation
(14). Hence, the quasipolynomial cofactors M1 and M2 are of the form M1(x, y) =
x+ y/g1(y) and M2(x, y) = x+ y/g2(y). Therefore, from equation (15) we obtain
the following system of equations

α1h(y) + α2h(y) + h′(y) = 0, (18)

α1 y h(y)

g1(y)
+
α2 y h(y)

g2(y)
= 0. (19)

These equations can also be directly obtained from equation (12). From equation
(18) we obtain h(y) = e−(α1+α2)y where we have taken the arbitrary integration
constant equal to 1. On the other hand, from (19) we obtain g2(y) = αg1(y),
where α := −α2/α1 . Then, we have solved equations (18) and (19) but the
function g1(y) and the coefficients αi remain arbitrary. However, we must impose
that the algebraic relation g2(y) = αg1(y) to be compatible with fact that g1(y)
and g2(y) are particular solutions of (14). So, deriving this expression we obtain
g′2(y) = αg′1(y). Substituting here the expression of the derivatives of g1(y) and
g2(y) we obtain

−y + g2
2(y)

g2(y
= α

−y + g2
1(y)

g1(y)
. (20)

Taking into account that g2(y) = αg1(y) we have

−y + α2g2
1(y)

αg1(y)
= α

−y + g2
1(y)

g1(y)
,

which implies that α = ±1. For these values of α the algebraic relation obtained
after derivation of g2(y) = αg1(y) is identically satisfied and the algorithm is
finished for this example. For α = 1 we obtain α2 = −α1 , g2(y) = g1(y) and
h(y) ≡ 1, i.e., I(x, y) = 1, a constant function. For α = −1 we obtain α2 = α1 ,
g2(y) = −g1(y) and h(y) = e−2α1y . For this case we obtain a generalized nonlinear
superposition principle given by the first integral

I(x, y) = (x2 − g2
1(y))e

−2y ,

where g1(y) is an arbitrary particular solution of equation (14). For this example
our method enables to conclude that system (13) admits a generalized nonlinear su-
perposition principle constructed from only one particular solution of the equation
of the orbits (14). This nonlinear superposition principle is not a particular case of
the Lie theory, owing to the explicit dependence of I(x, y) on the variable y con-
tained in the exponential factor. On the other hand, system (13) has a generalized
Darboux first integral given by H(x, y) = (x2− y− 1/2)e−2y . Therefore, two very
simple solutions of equation (14) are g1(y) =

√
1/2 + y and g2(y) = −

√
1/2 + y .

Replacing g1(y) or g2(y) in the generalized superposition principle we obtain the
generalized Darboux first integral. If we employ another particular solution g2(y)
of equation (14) we have a different first integral I2(x, y) = (x2 − g2

2(y))e
−2y . The

quotient of these first integrals gives a new first integral

I(x, y) =
x2 − g2

1(y)

x2 − g2
2(y)

,
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which is a nonlinear superposition principle in the classical sense of Lie because
g1(y) and g2(y) are arbitrary particular solutions. In fact, system (13) has also
the first integral H(x, y) = (x2 − y − 1/2 + e2y)/(x2 − y − 1/2).

We see that for this example we have a generalized nonlinear superposition
principle constructed from only one particular solution and also a classical one
constructed from two particular solutions of equation (14). Moreover, from the
existence of the generalized Darboux first integral we can conclude nothing about
the existence of a nonlinear superposition principle.

Let us notice that equation (14) can be written in the form dx/dy = −y/x+
x . Hence, it has the form (3), interchanging x with y , with associated vector fields
X1 = −1/x∂/∂x and X2 = x∂/∂x . Since the Lie bracket [X1,X2] = −2/x∂/∂x =
2X1 , then {X1,X2} generates a 2-dimensional Lie algebra L2 . Therefore, from
the standard Lie theory, there exists a change of the dependent variable z = φ(x)
such that X1 is transformed to its canonical form X̄1 = ∂/∂z . In short, such
change of variable is given by z = −x2/2. In this new dependent variable, we
obtain the linear equation dz/dy = y + 2z , a special case of a Riccati equation,
in according with Theorem 1.1. Consequently, in the new variables there exists a
linear superposition principle of the linear equation.

Example 2. Let us consider the following polynomial differential system

ẋ = −y + x4, ẏ = x. (21)

The equation for the orbits is

dx

dy
=
−y + x4

x
. (22)

The quartic system (21) has a center at the origin because it is monodromic
and φ0 -time-reversible with respect to the involution φ0(x, y) = (−x, y). We
propose the following first integral

I(x, y) = (x− g1(y))
α1(x− g2(y))

α2(x− g3(y))
α3(x− g4(y))

α4h(y) ,

where the functions gi(y) for i = 1, . . . , 4 are particular solutions for equation
(22). Applying the same method as in Example 1 we obtain that g2(y) = −g1(y),
g4(y) = −g3(y), α2 = α1 , α3 = α4 = −α1 and h(y) = e2α1

∫
(g2

3(y)−g2
1(y))dy .

Therefore, a generalized nonlinear superposition principle is given by the first
integral

I(x, y) =
(x2 − g2

1(y))

(x2 − g2
3(y))

e2
∫

(g2
3(y)−g2

1(y))dy ,

where g1(y) and g3(y) are arbitrary particular solutions of equation (22). The
algebraic calculations involved in the obtention of this first integral have been
made with an algebraic manipulator. This nonlinear superposition principle is
not a particular case of the Lie theory, because the expression of the first integral
contains quadratures of the particular solutions g1(y) and g3(y).

This example has neither a Darboux or Darboux generalized first integral
nor a Darboux or Darboux generalized inverse integrating factor, see for instance
[6]. Therefore, system (21) has no Liouvillian first integral. In fact, system (21)
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possesses the non-Liouvillian first integral H(x, y) = f1f
−1
2 where f1(x, y) =

2x2Ai(41/3y)+Ai′(41/3y) = 0 and f2(x, y) = 2x2Bi(41/3y)+Bi′(41/3y) = 0 are non-
algebraic invariant curves. Here Ai(z) and Bi(z) is a pair of linearly independent
solutions of the Airy equation w′′ = zw . Let us notice that system (21) can be
written in the form dx/dy = −y/x+x3 . Hence, it has the form (3), interchanging x
with y , with associated vector fields X1 = −1/x∂/∂x and X2 = x3∂/∂x . Since the
Lie bracket [X1,X2] = X3 = −4x∂/∂x , it is easy to see that {X1,X2,X3} generates
a 3-dimensional Lie algebra L3 . Therefore, from the standard Lie theory, there
exists a change of the dependent variable z = φ(x) such that X1 is transformed
to its canonical form X̄1 = ∂/∂z . In short, such change of variable is given by
z = −x2/2. In this new dependent variable, equation (22) becomes the Riccati
equation dz/dy = y − 4z2 , in according with Theorem 1.1. Consequently, in the
new variables, there exists a classical nonlinear superposition principle given by the
cross ratio of three particular solutions. However, by applying our algorithm we
have shown that this system admits a generalized nonlinear superposition principle
constructed with only two arbitrary solutions.

Example 3. Let us consider the polynomial differential systems called Liénard
system

ẋ = y, ẏ = −fs(x)y − gn(x), (23)

where fs(x) =
∑s

i=0 aix
i and gn(x) =

∑n
i=0 bix

i are polynomials of degrees s and
n , respectively. Odani in [12] investigated invariant algebraic curves of (23). He
also studied the example of Wilson [18]

ẋ = y, ẏ = −µ(x2 − 1)y − x− µ2x3

16
(x2 − 4), (24)

with µ 6= 0. System (24) has the invariant algebraic curve

φ1 := [y + (µ/4)x(x2 − 4)]2 + x2 − 4 = 0,

as a limit cycle when 0 < |µ| < 2. For |µ| ≥ 2 the invariant algebraic curve turns
out to contain a singular point, and so it cannot be a limit cycle, see for instance
[13]. Moreover, system (24) has two additional invariant algebraic curves

φ2, φ3 := y + (µ/4)x(x2 − 2)± (λ/2)x = 0, λ :=
√
µ2 − 4,

and the Darboux first integral

H(x, y) =
φ1

φ2φ3

(
φ2

φ3

)µ
λ

. (25)

The equation for the orbits of system (24) is

dy

dx
=
−µ(x2 − 1)y − x− µ2x3

16
(x2 − 4)

y
. (26)

We propose the following first integral

I(x, y) = (y − g1(x))
α1(y − g2(x))

α2(y − g3(x))
α3(y − g4(x))

α4h(x) ,



102 Garćıa, Giacomini, and Giné

where the functions gi(x) for i = 1, . . . , 4 are particular solutions of equation (26).
Applying the method we obtain that h(x) is an arbitrary constant that we have
taken equal to 1, α2 = α1 = 1 and α4 = −α3 − 2. Moreover, all the functions
gi(x) for i = 1, . . . , 4 are determined by the relations (y− g1(x))(y− g2(x)) = φ1 ,
y − g3(x) = φ2 and y − g4(x) = φ3 . In addition, α3 must satisfy the equation
−4−8α3−4α2

3+2α3µ
2+α2

3µ
2 = 0. In fact, the method gives the first integral (25),

i.e., I ≡ H . In this example the method does not give a nonlinear superposition
principle, on the contrary all the particular solutions are completely determined
by a “one shot procedure”. Our algorithm represents for this case an alternative
technique to construct a Darboux first integral.

To construct a Darboux first integral for a polynomial system it is necessary
to determine a sufficient number of algebraic invariant curves of the system. Each
one of these curves must be independently determined. The existence of one of
them does not give information, in principle, about the possible existence of others
invariants algebraic curves. By contrary, for this example, our algorithm enables
to determine in a “one shot procedure” all the invariant algebraic curves of the
system that are necessary to construct a Darboux first integral.

Example 4. Let us consider the following cubic system

ẋ = y, ẏ = −x+Q(x, y). (27)

where Q(x, y) = a1x
2+a2xy+a3y

2+a4x
3+a5x

2y+a6xy
2+a7y

3 . The conditions for
the origin of (27) to be a center were given by Kukles [9] in 1944. Two particular
cases of (27), i.e. the cases in which a2a7 = 0 were recently considered in [4, 8]. For
a2 = 0, the example given in [8] suggests that Kukles’ conditions are incomplete.
In fact, it is proved in [4] that the conditions are indeed incomplete by showing
that the origin is a center in this case. The example is the following

ẋ = y, ẏ = −x+ x2 − x3

3
− x2y√

2
− 2y2 +

y3

3
√

2
. (28)

The equation for the orbits is

dy

dx
=
−x+ x2 − x3

3
− x2y√

2
− 2y2 + y3

3
√

2

y
. (29)

This system has a Darboux generalized inverse integrating factor given by

V (x, y) = e−x(1−x
2
)(3
√

2(1− x) + x(
√

2 x+ y))3

and the following Liouvillian first integral

H(x, y) =
y2(x+ 1) + 2

√
2xy(x− 2) + 6(3x− 2) + 2x3 − 10x2

(x(y +
√

2x) + 3
√

2(1− x))2
ex(1−x

2
)

+

∫
ex(1−x

2
)dx .

We propose the following first integral

I(x, y) = (y − g1(x))
α1(y − g2(x))

α2(y − g3(x))
α3(y − g4(x))

α4h(x) ,
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where the functions gi(x) for i = 1, . . . , 4 are particular solutions of equation
(29). Applying the method we obtain that g4(x) = g3(x) = −

√
2 (3− 3x+ x2)/x ,

α2 = α1 , α3 = α4 = −2α1 . Moreover, g2(x) and h(x) are given in terms of g1(x)
by the following expressions

g2(x) = − (3− 3x+ x2) g1(x)

3− 3x+ x2 +
√

2 xg1(x)
,

h(x) = e
− 1

3

∫ (xg1(x)+
√

2 (3−3x+x2))2

x(3−3x+x2+
√

2 xg1(x))
dx
.

Therefore, a generalized nonlinear superposition principle is obtained from the first
integral

I(x, y) =
(y − g1(x))

(
y + (3−3x+x2) g1(x)

3−3x+x2+
√

2 xg1(x)

)
(y +

√
2 (3−3x+x2)

x
)2

e
− 1

3

∫ (xg1(x)+
√

2 (3−3x+x2))2

x(3−3x+x2+
√

2 xg1(x))
dx
,

where g1(x) is an arbitrary particular solution of equation (29). We conclude that
from the knowledge of only a particular solution we can construct the general
solution of system (28). On the other hand, since g1(x) is arbitrary we can
construct two different integrating factors of (28) of the form (8). Hence, taking
into account the results of Painlevé [14] described in the introduction, there exists
a change of variable rational in y which transforms equation (29) into a Riccati

equation. In this case the change of variable is given by u = (3−3x+x2)y2

3−3x+x2+
√

2 xy
which

transforms equation (29) into the Riccati equation

du

dx
=
u2x+ u(−36 + (x− 6)2x)− 2x(3 + (x− 3)x)2

3(3 + (x− 3)x)
.

However, the existence of this change of variables that transforms equation (29)
into a Riccati equation does not enable to conclude in an easy way that it is possible
to construct a generalized nonlinear superposition principle for equation (29) that
contains only one arbitrary particular solution of the system. Our algorithm allows
the determination of the form of this generalized nonlinear superposition principle
in a direct way employing the original variables of the system.
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104 Garćıa, Giacomini, and Giné
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Mathematics 708, Springer–Verlag, 1979.

[11] Lie, S. and Scheffers, G., “Vorlesungen über continuierliche Gruppen mit
geometrischen und anderen Anwendungen,” Teubner-Verlag, Leipzig, 1893.

[12] Odani, K., The limit cycle of the van der Pol equation is not algebraic, J.
Differential Equations 115 (1995), 146–152.

[13] —, The integration of polynomial Liénard systems by elementary functions,
Differential Equations Dynam. Systems 5 (1997), 347–354.
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Physique Théorique
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