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A Dynamical Approach
to Compactify the Three Dimensional Lorentz Group
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Abstract. The Lorentz group acts on the projectivized light cone in the
three dimensional Lorentz space as the group G of Mdobius transformations of
the circle. We find the closure of G in the space of all measurable functions of
the circle into itself, obtaining a compactification of it as an open dense subset
of the three-sphere, with a dynamical meaning related to generalized flows.
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The canonical action of the Lorentz group O, (1,2) on the projectivized light
cone in the three dimensional Lorentz space is equivalent to the action of the
group G on the circle S* = {z € C||z| =1}, where G consists of the Mobius
transformations of the extended plane preserving the circle. The group G is
isomorphic to PSU (1,1) and PSI(2,R). In this note we compactify G as an
open dense subset of the three-sphere, with a dynamical motivation.

The group G consists of maps of the form uT,, where u € S! and

T.(z)= 2

1+ az
for « € C, |a] <1 and all z € S'. The map S' x A — G, (u,a) — uT, is a
diffeomorphism. Although we are interested in the action of G on the circle, we
recall that if the unit disc A = {z € C | |z| < 1} carries the canonical Poincaré
metric of constant negative curvature —1 and « # 0, then T, is the transvection
translating the geodesic with end points +a/ |a, sending 0 to a.

Dynamical motivation. If ¢t € R,|t| < 1, then T; fixes 1,—1 € S! and if
z€ S 2 # —1, then

lim 73 (2) = 1.

Am L (2)
One can imagine that all particles of the circle (except —1) moving according to
T; concentrate in the point 1 at ¢t = 1. It is natural to think that a particle coming
to the point 1 at ¢t = 1 from the upper half of the circle, will continue its way
into the lower part of the circle for £ > 1 (notice that T; does not make sense for
|t| > 1) and similarly for a particle coming to the point 1 from the lower part of
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the circle. This can be rendered precise with the compactification of G described
in Theorem 1.1 below (see Proposition 1.3).

Let F = {f:S'"— S'| f is measurable} / ~, where f ~ g if and only if
f and g coincide except on a set of measure zero, equipped with the distance

D)= [ d(F () (2) ds (o),

being s is an arc length parameter and d the associated distance on S! (we
think of each function as representing its equivalence class). Let S* be the three
dimensional sphere realized as the Lie group of unit vectors in the quaternions
H = C + Cj. We recall that if ¢ is an imaginary cuaternion with |¢| = 1, then
exp (tq) = cost + (sint) q. For v € S, let ¢, denote the constant map in F with
value v.

1. The Main Theorem

Theorem 1.1. The frontier of G in F consists of the constant functions.

Moreover, if one considers on the closure G of G the relative topology from F,
then the map F : G — S® defined by

F(uT,) = uexp (507),  F(e) =vj,

is a homeomorphism and F|,: G — S® determines a submanifold.

Proof. Clearly G is a subset of F. If u € S, let m, denote multiplication by
u. By abuse of notation we write T,,m, = T,u. Notice that uT, = T,,u for any
ue S, aeA. Let a,, and u, be sequences in A and S!, respectively. Suppose
first that o, — a € S! as n — co. We show that

To, Uy — Co in F as n — oo. (1)

Indeed, since ds is invariant by rotations, then D (Ty, u,,cq) = D (Ty, , ¢o). This
sequence converges to zero as n — oo by the Bounded Convergence Theorem,
since lim, .o Ty, (2) = «a for any z # —a (d and the euclidean distance are
equivalent). In particular constant functions are in the frontier of G. On the
other hand, if v, — v and a,, — a € A, then T, u, — T,u pointwise, and hence
in F, again by the Bounded Convergence Theorem. Moreover, by the preceding,
it T,,, u, converges to f in F, then f € G or is constant, since by the compactness
of A x S there exists a subsequence of (av,, u,) converging in it. Then the frontier
consist only of constant functions. Now, F' is a bijection since a straightforward
computation shows that F~': S3 — G is given by

cw ifv =0,
Fllot+wj)=< m, ifw=0 (2)
Tou ifv#0# w,

for v,w € C, |v]* + |w|* =1, where v = v/ |v| and o = 2 arccos (|v]) ]
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Hence F~! is smooth at v+wj € S? with v # 0 # w. Since F|, is smooth
and injective, to show that F|, is an embedding it suffices to see that F~! is
smooth at v € S* C S3. This will follow from the Inverse Function Theorem if we
check that

dF,,, : 1T, G — 7,583

is an isomorphism. We can identify T,,,G = T(,0) (S' x A) = T,5' & T,A =
Riv & C and also T,5% = Riv @ Cj, the orthogonal complement of v in H. We
compute

tai T LT
ve exp (t—zy) =0 (3:2 + —Zj) .

d 4 d
dF, (ziv,z) = pr F (vemth) = — 5 5

. dt

0

Hence, dF, is an isomorphism.

In order to verify that F~! is continuous at wj we consider the map
F:G — S* F = R;oF (R; denotes right multiplication by j), which, by
the preceding, is a diffeomorphism onto its image S® — S'. We have to show
that F~' o I is continuous at u € S'. Clearly, F (m,) = uj. If a # 0, we
compute F (uT,) = v + wj, where v = —far Sin (3 ]al) and w = ucos (5 |of).
Since cos 6 = sin (% — 9) for all #, we have by (2) that

F7H(F (uTa)) = Tua-jap) (—ue/ [af), (3)

which by (1) converges to ¢, = (F~*oF)(m,) as o — 0. Finally, since S* is
compact and Hausdorff, F~! is a homeomorphism. [ ]

Remark. If u, = €™ with z, = 1/2,1/4,2/4,3/4,1/8,2/8,3/8,..., then
Ty_1/nmy, converges to ¢; in F but it does not converge pointwise on a dense
subset of S!. This distinguishes our approach from that of Topological Dynamics.

Proposition 1.2.  The canonical action of G x G on G, (g,h).f = gfh™!,
extends to a continuous action of G x G on S* via Fl, : G — S*. If we call
K = S' C G, the restricted action of K x K on S? is given by A (u,v, 2z + 227) =
u (021 + 227) -

Proof.  We define an action A of G x G on G by

A(g,h, f)=gfh™', A(g,h,c,) = cg,

for g,h, f € G, v € S'. Since F : G — S® is a homeomorphism, we have to show
that A is continuous. Suppose that f, € G,v, € S' are sequences converging to
¢, € G, and gy, h, are sequences in G converging to g,h € G, respectively. By
arguments similar to those used in the proof of Theorem 1.1, g, f,h,' and ¢4,
both converge to cg, in F.
Next we verify the second assertion. We have to show that the following
diagram is commutative.
KxKxG A, G
| (id e, F) | F

KxKxS3 A, g3
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For w,v,w € S',a € A, we compute
(FoA)(u,v,cy) =F (cyw) = uwj = A (u,v,wj) = A(u,v, F (cy)) .

Besides, (F o A) (u,v,wT,) = F(wwl,) = F(uvwil,,) = A(u,v, F (wTy)),
since exp (gﬁj) = cos (g |6|) + sin (g |6]) ‘%j for any 5 € A. n

Next we make precise the comment at the beginning of the article concerning
moving particles in the circle.

Proposition 1.3.  If G is endowed with the differentiable structure and the
Riemannian metric induced from S3 wia the homeomorphism F, then the curve
v:R — G defined by

(s) = (1) Tygp if |s—2k| <1, keZ
T Cl1yt ifs=20+1,0€Z

is a complete geodesic in G. Moreover, if z # +1, then the curve 7, (s) := v (s) (2)
in S, describing the motion of the particle z under v (s), is continuous with
period 4 and runs n times around the circle in any interval of time of length 4n
(clockwise if Re z > 0 and counterclockwise if Re z <0).

Proof. A straightforward computation shows that F(y(s)) = exp(3sj). Hence
v is a geodesic. The remaining facts are easily verified. [ |

Remarks. a) We recall that a Fermi coordinate system ¢ along a geodesic 7 in
a Riemannian manifold of dimension n 4 1 is given by

d) (ta tla R )tn> - EXp ¥(t) (Zizltivi (t)> )

where Exp denotes the geodesic exponential map and {v;} is a parallel orthonormal
frame along 7 orthogonal to 4/ (t) at any t. Notice that since G is diffeomorphic
to S' x A via uT, — (u, ), if one looks just for a compactification of G as an
open dense subset of the three-sphere, without extra properties, the simplest way
is by using a slight modification of Fermi coordinates along the geodesic s — e
in 5% F(uTl,) = Exp, (5cj), where u € S* C 5% The maps F and F do
not coincide on G, since the mapping s +— m.:s is not a one-parameter subgroup
of transvections translating that geodesic (their differentials do not realize the
parallel transport along it).

b) The situations of particles concentrating in a point or a point spreading
instantaneously onto the whole space, is present in the literature in a different
context, the study of volume preserving flows by geometric means, with the notions
of polymorphisms [8] and generalized flows [3]. An overview of the subject can be
found in [1].

For the sake of connectedness of mathematics we cite [4, 9]. Finally, we
comment on the compactifications known to us of classical groups whose identity
component is isomorphic to GG or its double covering. The classical one is obtained
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as follows: Let SI(2,C) = SU(2) AN be an Iwasawa decomposition. Since
SU (1,1) intersects AN only at the identity, its projection P to SU (2) = S3
is an embedding, which is given explicitly by

P(u Q_])z U—FU]., (u,v € C, |ul* = o> =1).
v U |u+vj

The image of P is the interior of the solid torus {u +vj € S® | |v| < |u|}. If one
wants SU (1,1) to be dense in its compactification, one can consider for instance
po P instead of P, where p:S® — S3/{1,5} is the canonical projection. In this
case, the frontier of the image of SU (1,1) is a torus.

On the other hand, recently, H. He, based on suggestions of D. Vogan,
obtained a general method to compactify the classical simple Lie groups [5, 6] (see
also [2, 7]). The groups O (1,2) and SI(2,R) = Sp(2,R) are embedded as open
dense subsets of O (3) and of a manifold double covered by S? x S!, respectively.
In both cases the frontier is a surface.
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