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Abstract. Let g be a locally finite Lie algebra over a field of char-

acteristic zero which is a direct limit of finite-dimensional simple ones. In

this short note it is shown that each invariant symmetric bilinear form on g
is invariant under all derivations and that each such form defines a natural

embedding der g ↪→ g∗ . The latter embedding is used to determine der g

explicitly for all locally finite split simple Lie algebras.
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Introduction

Let F be a field of characteristic zero and g an F -Lie algebra which is a directed
union of simple finite-dimensional Lie algebras. This means that g = lim

−→
gj is

the direct limit of a family (gj)j∈J of finite-dimensional simple Lie algebras gj

which are subalgebras of g and the directed order ≤ on the index set J is given
by j ≤ k if gj ≤ gk .

In this note we study the Lie algebra of derivations of g . The main
results are that each invariant symmetric bilinear form on g is invariant under
all derivations and that each such form defines a natural embedding der g ↪→
g∗ . The latter embedding is used to determine der g explicitly for all locally
finite split simple Lie algebras. According to [NS01], every such Lie algebra is
isomorphic to a Lie algebra of the form slI(F), oI,I(F) or spI(F), which are
defined as follows.

Let I be a set. We write MI(F) ∼= FI×I for the set of all I × I -
matrices with entries in F , MI(F)rc−fin ⊆MI(F) for the set of all I×I -matrices
with at most finitely many non-zero entries in each row and each column, and
glI(F) for the subspace consisting of all matrices with at most finitely many
non-zero entries. Note that the column-finite matrices correspond to the linear
endomorphisms of the free vector space F(I) over I with respect to the canonical
basis. The additional requirement of row-finiteness means that also the transpose
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matrix defines an endomorphism of F(I) , i.e., the adjoint endomorphism of the
dual space FI preserves the subspace F(I) .

The matrix product xy is defined if at least one factor is in glI(F) and
the other is in MI(F). In particular glI(F) thus inherits the structure of locally
finite Lie algebra via [x, y] := xy − yx and

slI(F) := {x ∈ glI(F): trx = 0}

is a hyperplane ideal which is a simple Lie algebra.
To define the Lie algebras oI,I(F) and spI(F), we put 2I := I∪̇ − I ,

where −I denotes a copy of I whose elements are denoted by −i , i ∈ I , and
consider the 2I × 2I -matrices

Q1 :=
∑
i∈I

Ei,−i + E−i,i and Q2 =
∑
i∈I

Ei,−i − E−i,i.

We then define

oI,I(F) := {x ∈ gl2I(F) : x>Q1 +Q1x = 0}

and

spI(F) := {x ∈ gl2I(F) : x>Q2 +Q2x = 0}.

For these Lie algebras we show that

der(slI(F)) ∼= MI(F)rc−fin/F1,

der(oI,I(F)) ∼= {A ∈MI(F)rc−fin:x>Q1 +Q1x = 0},

and

der(spI(F)) ∼= {A ∈MI(F)rc−fin:x>Q2 +Q2x = 0}.

We are grateful to Y. Yoshii whose question concerning the derivations
of locally finite split simple Lie algebras inspired the present note. In [MY05]
only those derivations commuting with the standard Cartan subalgebras have
been considered, and it has been shown that they can be written as brackets
with infinite diagonal matrices. The result above describes all derivations.

The description of der g given in the present paper complements the
description by H. Strade in [Str99, Th. 2.1]. It provides additional information
that leads for the split case to the aforementioned description by infinite matrices.

There is also a description of the automorphisms of the infinite-dimen-
sional locally finite split simple Lie algebras due to N. Stumme ([Stu01]) which
is formally quite similar to our description of the derivations.
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I. Derivations and projective limits

Lemma I.1. Let D ∈ der g . Then there exists for each j ∈ J a unique element
xj ∈ [gj , g] with D |gj

= adxj |gj
.

Proof. Fix j ∈ J . First we observe that g is a locally finite gj -module, hence
semisimple. It follows in particular that

(1.1) g = zg(gj)⊕ [gj , g]

and that H1(gj , g) = {0} ([Ne03, Lemma A.3]). Since D |gj
is a 1-cocycle in

Z1(gj , g), we see that there exists an x ∈ g with D |gj
= −dgj

x = adx |gj
.

Clearly x is determined by this property up to an element of the centralizer
zg(gj) of gj in g , so that (1.1) shows that x is unique if we require it to be
contained in the complement [gj , g] of zg(gj).

For gj ⊆ gk we have zg(gk) ⊆ zg(gj) and [gj , g] ⊆ [gk, g]. Let

pjk: [gk, g] → [gj , g]

denote the linear projection with kernel z[gk,g](gj). Then the uniqueness assertion
of Lemma I.1 implies that

pjk(xk) = xj ,

which leads to

(1.2) der(g) ∼= lim
←−

[gj , g] =
{

(xj)j∈J ∈
∏
j∈J

[gj , g]: pjk(xk) = xj for j ≤ k
}
.

Here we associate to (xj)j∈J ∈ lim
←−

[gj , g] the unique derivation D with

D |gj
= adxj |gj

, j ∈ J.

Proposition I.2. Every invariant symmetric bilinear form κ on g is invari-
ant under all derivations of g .

Proof. Let D ∈ der g and x, y ∈ g . Pick a subalgebra gj containing x , y
and an element z ∈ g with D |gj

= ad z |gj
(Lemma I.1). Then

κ(D.x, y) + κ(x,D.y) = κ([z, x], y) + κ(x, [z, y]) = 0.

Assume now that there is a non-degenerate invariant symmetric bilinear
form κ on g and write

η: g → g∗, η(x)(y) := κ(x, y)

for the corresponding equivariant embedding of g into g∗ .
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For each j ∈ J the decomposition g = zg(gj) ⊕ [gj , g] is orthogonal
because for x ∈ gj , y ∈ g and z ∈ zg(gj) we have

κ([x, y], z) = −κ(y, [x, z]) = 0.

¿From gj ⊆ [gj , g] we thus derive that for each element xk ∈ [gk, g] with
pjk(xk) = xj we have

η(xk) |gj = η(xj) |gj .

This shows that each tuple (xj)j∈J ∈ lim
←−

[gj , g] defines an element ψ((xj)) ∈ g∗

satisfying
ψ((xj)) |gj

= η(xj) |gj
for each j ∈ J.

Combining this observation with the isomorphy der g ∼= lim
←−

[gj , g] , we
see that for each derivation D ∈ der g there exists a unique element αD ∈ g∗

satisfying

η(D.x)(y) = κ(D.x, y) = κ([xj , x], y) = κ(xj , [x, y]) = η(xj)([x, y]) = αD([x, y])

whenever x ∈ gj . We conclude that

η(D.x) = αD ◦ adx for all x ∈ g.

Theorem I.3. Let I be a set, MI(F)rc−fin the Lie algebra of row- and column-
finite I × I -matrices and 1 = (δij) the identity matrix. Then

der(slI(F)) ∼= MI(F)rc−fin/F1,

der(oI,I(F)) ∼= {A ∈MI(F)rc−fin:x>Q1 +Q1x = 0},

and
der(spI(F)) ∼= {A ∈MI(F)rc−fin:x>Q2 +Q2x = 0}.

Proof. First we consider g := slI(F). Then κ(x, y) := tr(xy) is a non-
degenerate invariant bilinear form on g and the larger Lie algebra glI(F) of
all finite I × I -matrices. From the trace form we obtain the isomorphism
glI(F)∗ ∼= FI×I = MI(F), and therefore g∗ ∼= MI(F)/F1.

Let D ∈ der g . Then the linear functional αD ∈ g∗ can be written as
αD(x) = tr(Ax) for a matrix A ∈MI(F) which is unique modulo F1 . Then we
have for x, y ∈ g :

(1.3) tr(D.x · y) = η(D.x)(y) = αD([x, y]) = tr(A[x, y]) = tr([A, x]y).

Here we use that for each x ∈ glI(F) and each matrix A ∈ MI(F) the com-
mutator [A, x] := Ax − xA is a well-defined element of MI(F) satisfying the
equation tr(A[x, y]) = tr([A, x]y), which has to be verified only for matrix units
Eij ∈ glI(F):

tr(A[Eij , Ekl]) = tr(A(δjkEil − δliEkj)) = δjkali − δliajk = tr([A,Eij ]Ekl).
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Equation (1.3) shows that

(1.4) D.x = [A, x] for all x ∈ slI(F).

The condition [A, slI(F)] ⊆ slI(F) implies that for each fixed pair (i, j)
with i 6= j , the expression δjkali − δliajk is nonzero for only finitely many pairs
(k, l). It follows that A ∈MI(F)rc−fin .

If, conversely, A ∈MI(F)rc−fin , then [A, glI(F)] ⊆ glI(F), and

tr([A,Eij ]) = aji − aji = 0

implies that [A, glI(F)] ⊆ slI(F). We conclude that der g can be identified with
the quotient MI(F)rc−fin/F1 .

Now let g ∈ {oI,I(F), spI(F)} and recall that this Lie algebra can be
written as

g = {x ∈ gl2I(F):x>Q+Qx = 0} = {x ∈ gl2I(F):x> = −QxQ−1}

for some Q ∈M2I(F) with Q−1 ∈ {±Q} . Then we obtain for κ(x, y) = tr(xy)

g∗ ∼= {x ∈M2I(F):x> = −QxQ−1} = {x ∈M2I(F):x>Q+Qx = 0},

and from this that der(g) ∼= {x ∈M2I(F)rc−fin:x>Q+Qx = 0}.

II. Invariant bilinear forms

In the preceding section we have used an invariant symmetric bilinear
form κ on g to embed der g into g∗ . For the Lie algebras in Theorem I.3 we
took κ to be the trace form. In the present section we show that such a form
always exists.

Proposition II.1. There exists a nondegenerate invariant symmetric bilinear
form κ: g× g → F .

Proof. Fix j0 ∈ J and let κj0 denote the Cartan–Killing form of the simple
Lie algebra gj0 . Since κj0 is nondegenerate and in particular nonzero, there
exists an element x0 ∈ gj0 with κj0(x0, x0) 6= 0. For j0 ≤ j the adjoint
representation of gj0 on gj is faithful, and the restriction of the Cartan–Killing
form κj of gj to gj0 is the corresponding trace form, hence nonzero by Cartan’s
Criterion because gj0 is simple.

Let F denote the algebraic closure of the field F . We recall from the
finite-dimensional theory that the form κF

j0
obtained by scalar extension is the

Killing form of the F -Lie algebra gF
j0

:= F ⊗F gj0 and that any other invariant
symmetric bilinear form with values in F is a scalar multiple of this form. It
follows that for j ≥ j0 the restriction of κF

j to gF
j0

is a nonzero scalar multiple

of κF
j0

, which implies that κj(x0, x0) = κF
j (x0, x0) 6= 0.
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For µj := κj0(x0, x0)κj(x0, x0)−1 ∈ F we thus obtain a unique nonde-
generate invariant bilinear form µjκj on gj whose restriction to gj0 coincides
with κj0 .

For j ≤ k we then have µjκ
F
j |gj0

= µkκ
F
k |gj0

, so that the uniqueness

assertion on gF
j implies µjκ

F
j = µkκ

F
k |gj

and therefore µjκj = µkκk |gj
. We

conclude that the collection of the forms (µjκj)j≥j0 defines a symmetric invariant
bilinear form κ on g .

Proposition II.2. If all the Lie algebras gj are split over F , then κ is unique
up to a scalar factor in F . The same conclusion holds if F is algebraically closed.

Proof. Let κ′ be an F -valued invariant symmetric bilinear form on g . Then
there exists a j ≥ j0 (notation as in the proof of Proposition II.1) such that the
restriction κ′j of κ′ to gj is nonzero, hence nondegenerate.

Since gj is split, its centroid Endad gj
(gj) is F idgj

, which implies that
there exists a νj ∈ F with κ′j = νjκ on gj . If F is algebraically closed, Schur’s
lemma also implies that the centroid of gj is F , and the same conclusion holds.

Then, for each k ≥ j the two forms νjκ and κ′ are nonzero invariant
and symmetric on gk , so that the assumption that gk is split implies that they
coincide. We conclude that κ′ = νjκ .
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