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Topics in computational algebraic number theory

par Karim BELABAS

Résumé. Nous décrivons des algorithmes efficaces pour les opéra-
tions usuelles de la théorie algorithmique des corps de nombres,
en vue d’applications à la théorie du corps de classes. En partic-
ulier, nous traitons l’arithmétique élémentaire, l’approximation et
l’obtention d’uniformisantes, le problème du logarithme discret,
et le calcul de corps de classes via un élément primitif. Tout ces
algorithmes ont été implantés dans le système Pari/Gp.

Abstract. We describe practical algorithms from computational
algebraic number theory, with applications to class field theory.
These include basic arithmetic, approximation and uniformizers,
discrete logarithms and computation of class fields. All algorithms
have been implemented in the Pari/Gp system.
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1. Introduction and notations

LetK be a number field given by the minimal polynomial P of a primitive
element, so that K = Q[X]/(P ). Let OK its ring of integers, f = f0f∞ a
modulus of K, where f0 is an integral ideal and f∞ is a formal collection
of real Archimedean places (we write v | f∞ for v ∈ f∞). Let Clf(K) =
If(K)/Pf(K) denote the ray class group modulo f of K; that is, the quotient
group of non-zero fractional ideals coprime to f0, by principal ideals (x)
generated by x ≡ 1 mod∗f. The latter notation means that

• vp(x− 1) > vp(f0) for all prime divisors p of f0.
• σ(x) > 0 for all σ | f∞.

The ordinary class group corresponds to f0 = OK , f∞ = ∅ and is denoted
Cl(K).

Class field theory, in its classical form and modern computational incar-
nation1, describes all finite abelian extensions of K in terms of the groups
Clf(K). This description has a computational counterpart via Kummer the-
ory, developed in particular by Cohen [10] and Fieker [17], relying heavily
on efficient computation of the groups Clf(K) in the following sense:

Definition 1.1. a finite abelian group G is known algorithmically when its
Smith Normal Form (SNF)

G =
r⊕

i=1

(Z/diZ) gi, with d1 | · · · | dr in Z, and gi ∈ G,

is given, and we can solve the discrete logarithm problem in G. For G =
Clf(K), this means writing any a ∈ If(K) as a = (α)

∏r
i=1 g

ei
i , for some

uniquely defined (e1, . . . , er) ∈
∏r

i=1(Z/diZ) and (α) ∈ Pf(K).

In this note, we give practical versions of most of the tools from com-
putational algebraic number theory required to tackle these issues, with
an emphasis on realistic problems and scalability. In particular, we point

1Other formulations in terms of class formations, idèle class groups and infinite Galois theory
are not well suited to explicit computations, and are not treated here.
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out possible precomputations, strive to prevent numerical instability and
coefficient explosion, and to reduce memory usage. All our algorithms run
in deterministic polynomial time and space, except 7.2, 7.7 (discrete log
in Clf(K), which is at least as hard as the corresponding problem over fi-
nite fields) and 6.15 (randomized with expected polynomial running time).
All of them are also efficient in practice, sometimes more so than well-
known randomized variants. None of them is fundamentally new: many
of these ideas have been used elsewhere, e.g. in the computer systems
Kant/KASH [14] and Pari/Gp [29]. But, to our knowledge, they do not
appear in this form in the literature.

These techniques remove one bottleneck of computational class field the-
ory, namely coefficient explosion. Two major difficulties remain. First, in-
teger factorization, which is needed to compute the maximal order. This is
in a sense a lesser concern, since fields of arithmetic significance often have
smooth discriminants; or else their factorization may be known by con-
struction. Namely, Buchmann and Lenstra [6] give an efficient algorithm
to compute OK given the factorization of its discriminant disc(K), in fact
given its largest squarefree divisor. (The “obvious” algorithm requires the
factorization of the discriminant of P .)

And second, the computation of Cl(K) and O∗
K , for which one currently

requires the truth of the Generalized Riemann Hypothesis (GRH) in order
to obtain a practical randomized algorithm (see [9, §6.5]). The latter runs
in expected subexponential time if K is imaginary quadratic (see Hafner-
McCurley [22]); this holds for generalK under further natural but unproven
assumptions. Worse, should the GRH be wrong, no subexponential-time
procedure is known, that would check the correctness of the result. Even
then, this algorithm performs poorly on many families of number fields, and
of course when [K : Q] is large, say 50 or more. This unfortunately occurs
naturally, for instance when investigating class field towers, or higher class
groups from algebraic K-theory [4].

The first three sections introduce some further notations and define fun-
damental concepts like Archimedean embeddings, the T2 quadratic form
and LLL reduction. Section §5 deals with mundane chores, implementing
the basic arithmetic of K. Section §6 describes variations on the approxi-
mation theorem over K needed to implement efficient ideal arithmetic, in
particular two-element representation for ideals, and a crucial ingredient in
computations mod∗f. In Section §7, we introduce a representation of alge-
braic numbers as formal products, which are efficiently mapped to (OK/f)∗

using the tools developed in the previous sections. We demonstrate our
claims about coefficient explosion in the examples of this final section.
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All timings given were obtained using the Pari library version 2.2.5 on
a Pentium III (1GHz) architecture, running Linux-2.4.7; we allocate 10
MBytes RAM to the programs, unless mentioned otherwise.
Acknowledgements : It is hard to overestimate what we owe to Henri
Cohen’s books [9, 10], the state-of-the-art references on the subject. We
shall constantly refer to them, supplying implementation details and al-
gorithmic improvements as we go along. Neither would this paper exist
without Igor Schein’s insistence on computing “impossible” examples with
the Pari/Gp system, and it is a pleasure to acknowledge his contribution.
I also would like to thank Bill Allombert, Claus Fieker, Guillaume Hanrot
and Jürgen Klüners for enlightening discussions and correspondences. Fi-
nally, it is a pleasure to thank an anonymous referee for a wealth of useful
comments and the reference to [5].

2. Further notations and conventions

Let P a monic integral polynomial and K = Q[X]/(P ) = Q(θ), where
θ = X (mod P ). We let n = [K : Q] the absolute degree, (r1, r2) the
signature of K, and order the n embeddings of K in the usual way: σk is
real for 1 6 k 6 r1, and σk+r2 = σk for r1 < k 6 r1 + r2.

Definition 2.1. The R-algebra E := K ⊗Q R, which is isomorphic to
Rr1 × Cr2 , has an involution x 7→ x induced by complex conjugation. It is
a Euclidean space when endowed with the positive definite quadratic form
T2(x) := TrE/R(xx), with associated norm ‖x‖ :=

√
T2(x). We say that

x ∈ K is small when ‖x‖ is so.

If x ∈ K, we have explicitly

T2(x) =
n∑

k=1

|σk(x)|2 .

We write d(Λ, q) for the determinant of a lattice (Λ, q); in particular, we
have

(1) d(OK , T2)2 = |discK| .
Given our class-field theoretic goals, knowing the maximal order OK is

a prerequisite, and will enable us not to worry about denominators2. In
our present state of knowledge, obtaining the maximal order amounts to
finding a full factorization of discK, hence writing discP = f2

∏
pei

i , for
some integer f coprime to discK, and prime numbers pi. In this situation,
see [6, 20] for how to compute a basis. We shall fix a Z-basis (w1, . . . , wn)

2Low-level arithmetic in K could be handled using any order instead of OK , for instance if we
only wanted to factor polynomials over K (see [3]). Computing OK may be costly: as mentioned
in the introduction, it requires finding the largest squarefree divisor of disc K.
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of the maximal order OK . Then we may identify K with Qn: an element∑n
i=1 xiwi in K is represented as the column vector x := (x1, . . . , xn). In

fact, we store and use such a vector as a pair (dx, d) where d ∈ Z>0 and
dx ∈ Zn. The minimal such d does not depend on the chosen basis (wi),
but is more costly to obtain, so we do not insist that the exact denominator
be used, i.e. dx is not assumed to be primitive. For x in K, Mx denotes
the n by n matrix giving multiplication by x with respect to the basis (wi).
For reasons of efficiency, we shall impose that

• w1 = 1 (see §4.3),
• (wi) is LLL-reduced for T2, for some LLL parameter 1/4 < c < 1

(see §4).
Our choice of coordinates over the representatives arising from K =
Q[X]/(P ) is justified in §5.1.

The letter p denotes a rational prime number, and p/p is a prime ideal of
OK above p. We write Nα and Trα respectively for the absolute norm and
trace of α ∈ K. Finally, for x ∈ R, dxc := bx+ 1/2c is the integer nearest
to x; we extend this operator coordinatewise to vectors and matrices.

3. Archimedean embeddings

Definition 3.1. Let σ : K → Rr1 ×Cr2 be the embeddings vector defined
by

σ(x) := (σ1(x), . . . , σr1+r2(x)),

which fixes an isomorphism between E = K ⊗Q R and Rr1 × Cr2 .

We also map E to Rn via one of the following R-linear maps from Rr1 ×
Cr2 to Rr1 × Rr2 × Rr2 = Rn:

φ : (x,y) 7→ (x,Re(y), Im(y)),
ψ : (x,y) 7→ (x,Re(y) + Im(y),Re(y)− Im(y)).

The map ψ identifies the Euclidean spaces (E, T2) and (Rn, ‖ ‖22), and is
used in §4.2 to compute the LLL-reduced basis (wi). The map φ is slightly
less expensive to compute and is used in §3.2 to recognize algebraic integers
from their embeddings (ψ could be used instead).

We extend φ and ψ : Hom(Rn,Rr1 × Cr2) → End(Rn) by composition,
as well as to the associated matrix spaces.

3.1. Computation. Let σi : K → C be one of the n embeddings of K
and α ∈ K = Q[X]/(P ). Then σi(α) can be approximated by evaluating
a polynomial representative of α at (floating point approximations of) the
corresponding complex root of P , computed via a root-finding algorithm
with guaranteed error terms, such as Gourdon-Schönhage [21], or Uspen-
sky [30] for the real embeddings.
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Assume that floating point approximations (σ̂(wi))16i6n of the
(σ(wi))16i6n have been computed in this way to high accuracy. (If higher
accuracy is later required, refine the roots and cache the new values.) From
this point on, the embeddings of an arbitrary α ∈ K are computed as inte-
gral linear combinations of the (σ̂(wi)), possibly divided by the denominator
of α. In most applications (signatures, Shanks-Buchmann’s distance), we
can take α ∈ OK so no denominators arise. We shall note σ̂(α) and σ̂i(α)
the floating point approximations obtained in this way.

The second approach using precomputed embeddings is usually superior
to the initial one using the polynomial representation, since the latter may
involve unnecessary large denominators. A more subtle, and more impor-
tant, reason is that the defining polynomial P might be badly skewed, with
one large root for instance, whereas the LLL-reduced σ̂(wi) (see §4.2) have
comparable L2 norm. Thus computations involving the σ̂(wi) are more
stable than evaluation at the roots of P . Finally, in the applications, ‖α‖ is
usually small, hence α often has small coordinates. In general, coefficients
in the polynomial representation are larger, making the latter computation
slower and less stable.

In the absence of denominators, both approaches require n multiplica-
tions of floating point numbers by integers for a single embedding (and n
floating point additions). Polynomial evaluation may be sped up by mul-
tipoint evaluation if multiple embeddings are needed and is asymptotically
faster, since accuracy problems and larger bitsizes induce by denominators
can be dealt with by increasing mantissa lengths by a bounded amount
depending only on P .

3.2. Recognition of algebraic integers. Let α ∈ OK , known through
floating point approximations σ̂(α) of its embeddings σ(α); we want to re-
cover α. This situation occurs for instance when computing fundamental
units [9, Algorithm 6.5.8], or in the discrete log problem for Cl(K), cf. Al-
gorithm 7.2. In some situations, we are only interested in the characteristic
polynomial χα of α, such as when using Fincke-Pohst enumeration [19] to
find minimal primitive elements of K (α being primitive if and only if χα

is squarefree). The case of absolute norms (the constant term of χα) is of
particular importance and is treated in §5.2.

Let Y = σ(a) and W the matrix whose columns are the (σ(wj))16j6n;
Ŷ and Ŵ denote known floating point approximations of Y and W respec-
tively. Provided Ŷ is accurate enough, one recovers

χα =
n∏

i=1

(
X − σi(α)

)
,
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by computing an approximate characteristic polynomial

χ̂α =
n∏

i=1

(
X − σ̂i(α)

)
,

then rounding its coefficients to the nearest integers. This computation
keeps to R by first pairing complex conjugate roots (followed by a divide
and conquer product in R[X]). We can do better and recover α itself: if
α =

∑n
i=1 αiwi is represented by the column vector A = (αi) ∈ Zn, we

recover A from WA = Y as A = dφ(Ŵ )−1φ(Ŷ )c. Of course, it is crucial to
have reliable error bounds in the above to guarantee proper rounding.
Remark 3.2. Using φ, we keep computations to R and disregard redundant
information from conjugates, contrary to [9, Chapter 6], which inverts Ω :=
(σi(wj))16i,j6n in Mn(C). We could just as well use ψ instead, or more
generally compose φ with any automorphism of Rn. Using ψ would have
the slight theoretical advantage that the columns of ψ(Ŵ ) are LLL-reduced
for the L2 norm (see §4.2).

Remark 3.3. The matrix inversion φ(Ŵ )−1 is performed only once, until the
accuracy of Ŵ needs to be increased. The coordinates of α are then recov-
ered by a mere matrix multiplication, the accuracy of which is determined
by a priori estimates, using the known φ(Ŵ )−1 and φ(Ŷ ), or a preliminary
low precision multiplication with proper attention paid to rounding so as to
guarantee the upper bound. Since ‖φ(Y )‖2 6 ‖ψ(Y )‖2 = ‖α‖, the smaller
‖α‖, the better a priori estimates we get, and the easier it is to recognize
α.
Remark 3.4. The coefficients of χα are bounded by C ‖Ŷ ‖n∞, for some C > 0
depending only on K and (wi), whereas the vector of coordinates A is
bounded linearly in terms of Ŷ . So it may occur that Ŷ is accurate enough
to compute A, but not χα. In which case, one may use A for an algebraic
resultant computation or to recompute σ̂(α) to higher accuracy.
Remark 3.5. In many applications, it is advantageous to use non-Archime-
dean embeddings K → K ⊗Q Qp = ⊕p|pKp which is isomorphic to Qn

p as a
Qp-vector space. This cancels rounding errors, as well as stability problems
in the absence of divisions by p. In some applications (e.g., automorphisms
[1], factorization of polynomials [3, 18]), a single embedding K → Kp is
enough, provided an upper bound for ‖α‖ is available.

4. T2 and LLL reduction

We refer to [26, 9] for the definition and properties of LLL-reduced bases,
and the LLL reduction algorithm, simply called reduced bases and reduction
in the sequel. In particular, reduction depends on a parameter c ∈]1/4, 1[,
which is used to check the Lovász condition and determines the frequency
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of swaps in the LLL algorithm. A larger c means better guarantees for the
output basis, but higher running time bounds. We call c the LLL parameter
and α := 1/(c− 1/4) > 4/3 the LLL constant.

Proposition 4.1 ([9, Theorem 2.6.2]). Let (wi)16i6n a reduced basis of a
lattice (Λ, q) of rank n, for the LLL constant α. Let (w∗

i )16i6n the associ-
ated orthogonalized Gram-Schmidt basis, and linearly independent vectors
(bi)16i6n in Λ. For 2 6 i 6 n, we have q(w∗

i−1) 6 αq(w∗
i ); for 1 6 i 6 n,

we have

q(wi) 6 αi−1q(w∗
i ), and q(wi) 6 αn−1 max

16j6i
q(bj).

4.1. T2 and ‖ ‖. It is algorithmically useful to fix a basis (wi) which is
small with respect to T2. This ensures that an element with small coor-
dinates with respect to (wi) is small, and in particular has small abso-
lute norm. More precisely, we have |Nx|2/n 6 T2(x)/n by the arithmetic-
geometric mean inequality and

(2) n |Nx|2/n 6 T2

( n∑
i=1

xiwi

)
6
( n∑

i=1

x2
i

)( n∑
i=1

T2(wi)
)
.

If (wi) is reduced, Proposition 4.1 ensures that picking another basis may
improve the term

∑n
i=1 T2(wi) at most by a factor nαn−1.

4.2. Integral versus floating point reduction. We first need to com-
pute a reduced basis (wi)16i6n for OK , starting from an arbitrary basis
(bi)16i6n. When K is totally real, T2 is the natural trace pairing, whose
Gram matrix is integral and given by (Tr(bibj))16i,j6n; so we can use de
Weger’s integral reduction ([9, §2.6.3]). If K is not totally real, we have to
reduce floating point approximations of the embeddings. In fact we reduce
(ψ ◦ σ̂(bi))16i6n (see §3), which is a little faster and a lot stabler than using
the Gram matrix in this case, since Gram-Schmidt orthogonalization can
be replaced by Householder reflections or Givens rotations.

The LLL algorithm is better behaved and easier to control with exact
inputs, so we now explain how to use an integral algorithm3 to speed up
all further reductions with respect to T2. Let tRR be the Cholesky decom-
position of the Gram matrix of (T2, (wi)). In other words,

R = diag(‖w∗
1‖ , . . . , ‖w∗

n‖)× (µi,j)16i,j6n

is upper triangular, where (w∗
i ) is the orthogonalized basis associated to

(wi) and the µi,j are the Gram-Schmidt coefficients, both of which are
by-products of the reduction yielding (wi). Let

r := min
16i6n

‖w∗
i ‖ ,

3This does not prevent the implementation from using floating point numbers for efficiency.

But the stability and complexity of LLL are better understood for exact inputs (see [26, 25, 31]).
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which is the smallest diagonal entry of R. For e ∈ Z such that 2er > 1/2, let
R(e) := d2eRc. The condition on e ensures that R(e) has maximal rank. If
x =

∑n
i=1 xiwi ∈ K is represented by the column vector X = (xi)16i6n ∈

Qn, we have ‖x‖ = ‖RX‖2. Then T
(e)
2 (X) := ‖R(e)X‖22 is a convenient

integral approximation to 22eT2(X), which we substitute for T2 whenever
LLL reduction is called for. This is also applicable to the twisted variants
of T2 introduced in [9, Chapter 6] to randomize the search for smooth ideals
in subexponential class group algorithms.

In general, this method produces a basis which is not reduced with re-
spect to T2, but it should be a “nice” basis. In most applications (class
group algorithms, pseudo-reduction), we are only interested in the fact
that the first basis vector is not too large:

Proposition 4.2. Let Λ be a sublattice of OK and let (ai) (resp. (bi)) a
reduced basis for Λ with respect to T

(e)
2 (resp. T2), with LLL constant α.

The LLL bound states that

‖b1‖ 6 BLLL := α(n−1)/2d(Λ, T2)1/n.

Let ‖M‖2 := (
∑n

i,j=1 |mi,j |2)1/2 for M = (mi,j) ∈ Mn(R). Let S :=
(R(e))−1, then

(3) ‖a1‖ /BLLL 6

(
detR(e)

2ne detR

)1/n(
1 +

√
n(n+ 1)
2
√

2
‖S‖2

)
.

Proof. Let X ∈ Zn be the vector of coordinates of a1 on (wi) and Y :=
R(e)X. Since

d(Λ, T (e)
2 ) = [OK : Λ] detR(e) and d(Λ, T2) = [OK : Λ] detR,

the LLL bound applied to the T (e)
2 -reduced basis yields√

T
(e)
2 (X) = ‖Y ‖2 6 α(n−1)/2d(Λ, T (e)

2 )1/n = 2eBLLL

(
detR(e)

2ne detR

)1/n

.

We write R(e) = 2eR + ε, where ε ∈ Mn(R) is upper triangular such that

‖ε‖∞ 6 1/2, hence ‖ε‖2 6 1
2

√
n(n+1)

2 , and obtain 2eRX = Y −εSY . Taking
L2 norms, we obtain

2e ‖a1‖ 6 (1 + ‖εS‖2) ‖Y ‖2 ,
and we bound ‖εS‖2 6 ‖ε‖2 ‖S‖2 by Cauchy-Schwarz. �

Corollary 4.3. If 2er > 1, then

‖a1‖ /BLLL 6 1 +
Oα(1)n

2e
.
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Proof. For all 1 6 i 6 n, we have ‖w∗
i ‖ > α(1−i)/2 ‖wi‖ by the properties

of reduced bases. Since ‖wi‖ >
√
n (with equality iff wi is a root of unity),

we obtain
r = min

16i6n
‖w∗

i ‖ >
√
nα(1−n)/2,

and 1/r = Oα(1)n. Since R and R(e) are upper triangular one gets

detR(e) =
n∏

i=1

d2e ‖w∗
i ‖c 6

n∏
i=1

(2e ‖w∗
i ‖+ 1/2) 6 2ne detR

(
1 +

1
2e+1r

)n

.

Rewrite R = D+N and R(e) = D(e) +N (e), where D, D(e) are diagonal
and N , N (e) triangular nilpotent matrices. A non-zero entry n/d of ND−1,
where d > 0 is one of the diagonal coefficients ofD, is an off-diagonal Gram-
Schmidt coefficient of the size-reduced basis (wi)16i6n, hence |n/d| 6 1/2.
Since |n| 6 d/2 and 1 6 2er 6 2ed, the corresponding entry of Z :=
N (e)(D(e))−1 satisfies

|d2enc|
d2edc

6
2e |n|+ 1/2
2ed− 1/2

6
2e−1d+ 2e−1d

2e−1d
= 2.

It follows that the coefficients of (Idn +Z)−1 =
∑n−1

i=0 (−1)i−1Zi are O(1)n.
By analogous computations, coefficients of (D(e))−1 are O(1/(r2e)). Since
R = D(e)(Idn +Z), its inverse S is the product of the above two matrices,
and we bound its norm by Cauchy-Schwarz: ‖S‖2 = 1

2e ×Oα(1)n. �

Qualitatively, this expresses the obvious fact that enough significant bits
eventually give us a reduced basis. The point is that we get a bound for the
quality of the reduction, at least with respect to the smallest vector, which
is independent of the lattice being considered. In practice, we evaluate (3)
exactly during the precomputations, increasing e as long as it is deemed
unsatisfactory. When using T (e)

2 as suggested above, we can always reduce
the new basis with respect to T2 later if maximal reduction is desired,
expecting faster reduction and better stability due to the preprocessing
step.

4.3. Hermite Normal Form (HNF) and setting w1 = 1. We refer to
[9, §2.4] for definitions and algorithms related to the HNF representation.
For us, matrices in HNF are upper triangular, and “HNF of A modulo
z ∈ Z” means the HNF reduction of (A | z Idn), not modulo a multiple of
det(A) as in [9, Algorithm 2.4.8]. The algorithm is almost identical: simply
remove the instruction R← R/d in Step 4.

In the basis (wi), it is useful to impose that w1 = 1, in particular to
compute intersection of submodules of OK with Z, or as a prerequisite to
the extended Euclidean Algorithm 5.4. One possibility is to start from the
canonical basis (bi) for OK which is given in HNF with respect to the power
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basis (1, θ, . . . , θn−1); we have b1 = 1. Then reduce (bi) using a modified
LLL routine which prevents size-reduction on the vector corresponding ini-
tially to b1. Finally, put it back to the first position at the end of the LLL
algorithm. This does not affect the quality of the basis, since

‖1‖ =
√
n = min

x∈OK\{0}
‖x‖ .

Unfortunately, this basis is not necessarily reduced. Another approach is
as follows:

Proposition 4.4. Let (wi) a basis of a lattice (Λ, q) such that w1 is a
shortest non-zero vector of Λ. Then performing LLL reduction on (wi)
leaves w1 invariant provided the parameter c satisfies 1/4 < c 6 1/2.

Proof. Let ‖ ‖ be the norm associated to q. It is enough to prove that
w1 is never swapped with its size-reduced successor, say s. Let w∗

1 =
w1 and s∗ be the corresponding orthogonalized vectors. A swap occurs
if ‖s∗‖ < ‖w1‖

√
c− µ2, where the Gram-Schmidt coefficient µ = µ2,1

satisfies |µ| 6 1/2 (by definition of size-reduction) and s∗ = s−µw1. From
the latter, we obtain

‖s∗‖ = ‖s‖ − ‖µw1‖ > ‖w1‖ (1− |µ|)

since s is a non-zero vector of Λ. We get a contradiction if (1−|µ|)2 > c−µ2,
which translates to (2 |µ| − 1)2 + (1− 2c) > 0. �

5. Working in K

5.1. Multiplication in OK . In this section and the next, we let M(B)
be an upper bound for the time needed to multiply two B-bits integers
and we assume M(B + o(B)) = M(B)(1 + o(1)). See [24, 32] for details
about integer and polynomial arithmetic. In the rough estimates below we
only take into account multiplication time. We deal with elements of OK ,
leaving to the reader the generalization to arbitrary elements represented
as (equivalence classes of) pairs (x, d) = x/d, x ∈ OK , d ∈ Z>0.

5.1.1. Polynomial representation. The field K was defined as Q(θ), for
some θ ∈ OK . In this representation, integral elements may have denomi-
nators, the largest possible denominator D being the exponent of the addi-
tive group OK/Z[θ]. To avoid rational arithmetic, we handle content and
principal part separately.

Assume for the moment that D = 1. Then, x, y ∈ OK are repre-
sented by integral polynomials. If x, y, P ∈ Z[X] have B-bits coefficients,
then we compute xy in time 2n2M(B); and even n2M(B)(1 + o(1)) if
log2 ‖P‖∞ = o(B), so that Euclidean division by P is negligible. Divide
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and conquer polynomial arithmetic reduce this to O(nlog2 3M(B)). Assum-
ing FFT-based integer multiplication, segmentation4 further improves the
theoretical estimates to O(M(2Bn+ n log n)).

In general, one replaces B by B + log2D in the above estimates. In
particular, they still hold provided log2D = o(B). Recall that D depends
only on P , not on the multiplication operands.

5.1.2. Multiplication table. For 1 6 i, j, k 6 n, let m(i,j)
k ∈ Z such that

(4) wiwj =
n∑

k=1

m
(i,j)
k wk,

giving the multiplication in K with respect to the basis (wi). We call
M := (m(i,j)

k )i,j,k the multiplication table over OK . This table is computed
using the polynomial representation for elements in K = Q[X]/(P ), or
by multiplying Archimedean embeddings and recognizing the result (§3.1
and §3.2), which is much faster. Of course m(i,j)

k = m
(j,i)
k , and m(i,1)

k = δi,k
since w1 = 1, so only n(n − 1)/2 products need be computed in any case.
The matrix M has small integer entries, often single precision if (wi) is
reduced. In general, we have the following pessimistic bound:

Proposition 5.1. If (wi)16i6n is reduced with respect to T2 with LLL con-
stant α, then

T2(wi) 6 Ci = Ci(K,α) :=
(
n−(i−1)αn(n−1)/2 |discK|

)1/(n−i+1)
.

Furthermore, for all 1 6 i, j 6 n and 1 6 k 6 n, we have∣∣∣m(i,j)
k

∣∣∣ 6 αn(n−1)/4

√
n

Ci + Cj

2
6
α3n(n−1)/4

nn−(1/2)
|discK| .

Proof. The estimate Ci comes, on the one hand, from

‖w∗
i ‖

n−i
i∏

k=1

‖w∗
k‖ > (α−(i−1)/2 ‖wi‖)n−i

i∏
k=1

α−(k−1)/2 ‖wk‖ ,

and on the other hand, from

‖w∗
i ‖

n−i
i∏

k=1

‖w∗
k‖ 6

n−i∏
k=1

αk/2
n∏

k=1

‖w∗
k‖ .

4Also known as “Kronecker’s trick”, namely evaluation of x, y at a large power Rk of the

integer radix, integer multiplication, then reinterpretation of the result as z(Rk), for some unique
z ∈ Z[X].
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Since ‖wk‖ >
√
n for 1 6 k 6 n, this yields

n(i−1)/2 ‖wi‖n−i+1 6
i∏

k=1

α(k−1)/2
n−i∏
k=1

α(k+i−1)/2 ×
n∏

k=1

‖w∗
k‖

= αn(n−1)/4d(OK , T2).

Now, fix 1 6 i, j 6 n and let mk := m
(i,j)
k . For all 1 6 l 6 n, we write

n∑
k=1

mkσl(wk) = σl(wiwj),

and solve the associated linear system WX = Y in unknowns X =
(m1, . . . ,mn). Using Hadamard’s lemma, the cofactor of the entry of index
(l, k) of W is bounded by

n∏
k=1,k 6=l

‖wk‖ 6
1√
n
αn(n−1)/4 |detW | ,

by the properties of reduced bases and the lower bound ‖wl‖ >
√
n. Hence,

max
16k6n

|mk| 6
1√
n
αn(n−1)/4

n∑
l=1

|σl(wiwj)| .

Using LLL estimates and (1), we obtain
n∑

l=1

|σl(wiwj)| 6
1
2
(T2(wi) + T2(wj))

6 max
16k6n

T2(wk)

6

∏n
k=1 T2(wk)

(min16k6n T2(wk))
n−1 6

1
nn−1

αn(n−1)/2 |discK| .

A direct computation bounds Ci by the same quantity for 1 6 i 6 n: it
reduces to n 6 C1 which follows from the first part. �

For x, y ∈ OK , we use M to compute xy =
∑n

k=1 zkwk, where

zk :=
n∑

j=1

yj

n∑
i=1

xim
(i,j)
k ,

in n3 + n2 multiplications as written. This can be slightly improved by
taking into account that w1 = 1; also, as usual, a rough factor 2 is gained
for squarings.

Assuming the xi, yj , and m(i,j)
k xi are B-bits integers, the multiplication

table is an n3M(B)(1+o(1)) algorithm. This goes down to n2M(B)(1+o(1))
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if log2 ‖M‖∞ = o(B), since in this case the innermost sums have a negligible
computational cost.

5.1.3. Regular representation. Recall that Mx is the matrix giving the
multiplication by x ∈ K with respect to (wi). Since w1 = 1, we recover x
as the first column of Mx; also, x ∈ OK if and only if Mx has integral en-
tries. Mx is computed using the multiplication table M as above, then xy is
computed as Mxy in n2 integer multiplications, for an arbitrary y ∈ OK . It
is equivalent to precompute Mx then to obtain xy as Mxy, and to compute
directly xy using M . (Strictly speaking, the former is slightly more expen-
sive due to different flow control instructions and memory management.)
So Mx comes for free when the need to compute xy arises and neither Mx

nor My is cached.
Let x, y have B-bit coordinates. Provided log2 ‖M‖∞ + log2 n = o(B),

Mx has B+o(B)-bit entries, and the multiplication cost is n2M(B)(1+o(1)).

5.1.4. What and where do we multiply? In computational class field the-
ory, a huge number of arithmetic operations over K are performed, so it
is natural to allow expensive precomputations. We want a multiplication
method adapted to the following setup:

• The maximal order OK = ⊕n
i=1Zwi is known.

• The basis (wi) is reduced for T2.
• We expect to mostly multiply small algebraic integers x ∈ OK , hence

having small coordinates in the (wi) basis.

This implies that algebraic integers in polynomial representation have in
general larger bit complexity, due to the larger bit size of their compo-
nents, and the presence of denominators. This would not be the case had
we worked in other natural orders, like Z[X]/(P ), or with unadapted bases,
like the HNF representation over the power basis. In practice, OK is easy to
compute whenever disc(K) is smooth, which we will enforce in our exper-
imental study. Note that fields of arithmetic significance, e.g., built from
realistic ramification properties, usually satisfy this.

For a fair comparison, we assume that P ran through a polynomial reduc-
tion algorithm, such as [11]. This improves the polynomial representation
Q[X]/(P ) at a negligible initialization cost, given (wi) as above (comput-
ing the minimal polynomials of a few small linear combinations of the wi).
Namely, a polynomial P of small height, means faster Euclidean division
by P (alternatively, faster multiplication by a precomputed inverse).

5.1.5. Experimental study. We estimated the relative speed of the various
multiplication methods in the Pari library, determined experimentally over
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random integral elements

x =
n∑

i=1

xiwi, y =
n∑

i=1

yiwi,

satisfying |xi| , |yi| < 2B, in random number fields5 K of degree n and
smooth discriminant, for increasing values of n and B. Choosing elements
with small coordinates, then converting to polynomial representation, e.g.,
instead of the other way round, introduces a bias in our test, but we contend
that elements we want to multiply arise in this very way. Also, this section
aims at giving a concrete idea of typical behaviour in a realistic situation;
it is not a serious statistical study.

For each degree n, we generate 4 random fields K = Q[X]/(P ); all
numerical values given below are averaged over these 4 fields. Let D the
denominator of OK on the power basis, and M the multiplication table as
above; we obtain:

[K : Q] log2 |discK| log2D log2 ‖P‖∞ log2 ‖M‖∞
2 5.3 0 3.3 3.3
5 27. 2.2 5.5 4.4
10 73.8 0.50 4.7 5.4
20 192. 0.50 3.1 6.1
30 319. 533.6 40. 7.7
50 578.2 1459. 55. 7.9

So M has indeed very small entries, and we see that D gets quite large when
we do not choose arbitrary random P (building the fields as compositum
of fields of small discriminant, we restrict their ramification). Notice that
M is relatively unaffected. Consider the following operations:

A: compute xy as Mxy, assuming Mx is precomputed.
tab: compute xy using directly M .
pol: compute xy from polynomial representations,

omitting conversion time.
pc: convert x from polynomial to coordinate representation.
cp: convert x from coordinate to polynomial representation.

5When n 6 20, the fields K = Q[X]/(P ) are defined by random monic P ∈ Z[X], ‖P‖∞ 6 10,
constructed by picking small coefficients until P turns out to be irreducible. In addition we

impose that disc(P ) is relatively smooth: it can be written as D1D2 with p | D1 ⇒ p < 5.105

and |D2| < 1060, yielding an easy factorization of disc(P ). For n > 20, we built the fields

as compositum of random fields of smaller degree, which tends to produce large indices [OK :

Z[X]/(P )] (small ramification, large degree). In all cases, we apply a reduction algorithm [11] to
defining polynomials in order to minimize T2(θ). This was allowed to increase ‖P‖∞.
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For each computation X ∈ {tab,pol,pc,cp}, we give the relative time
tX/tA:

B = 10 B = 100 B = 1000 B = 10000

n tab pol tab pol tab pol tab pol

2 1.0 2.7 1.0 2.4 1.1 1.2 1.1 1.0
5 2.7 2.2 2.3 1.9 1.3 1.2 1.2 1.0
10 4.8 1.9 3.7 1.6 1.4 0.86 1.2 0.79
20 8.9 1.6 6.1 1.3 1.7 0.68 1.4 0.61

30 10. 8.0 6.9 5.0 2.0 1.5 1.4 0.70
50 22. 24. 14. 14. 3.9 2.5 1.8 0.68

B = 10 B = 100 B = 1000 B = 10000

n pc cp pc cp pc cp pc cp

2 3.2 2.4 2.1 1.5 0.27 0.17 0.041 0.0069
5 1.6 1.0 1.0 0.67 0.14 0.074 0.019 0.0064
10 1.1 0.74 0.71 0.49 0.099 0.058 0.014 0.011
20 1.0 0.58 0.56 0.35 0.078 0.054 0.024 0.028

30 2.0 1.6 1.2 1.6 0.25 0.73 0.050 0.16
50 7.2 6.5 4.0 5.0 0.52 1.6 0.066 0.35

The general trends are plain, and consistent with the complexity estimates:
• For fields defined by random polynomials (n 6 20), the denominator
D is close to 1. Polynomial multiplication (pol) is roughly twice
slower than the Mx method for small to moderate inputs, and needs
large values of B to overcome it, when M(B) becomes so large that
divide and conquer methods are used (the larger n, the earlier this
occurs). The multiplication table (tab) is roughly n/2 times slower
when B is small, and about as fast when B � 1.
• In the compositums of large degree, D is large. This has a marked

detrimental effect on polynomial multiplication, requiring huge val-
ues of B � log2D to make up for the increased coefficient size.

In short, converting to polynomial representation is the best option for
a one-shot multiplication in moderately large degrees, say n > 5, when the
bit size is large compared to log2D. When D is large, the multiplication
table becomes faster.

In any case, (A) is the preferred method of multiplication, when precom-
putations are possible (prime ideals and valuations, see §5.4.1), or more
than about [K : Q]/2 multiplications by the same Mx are needed, to amor-
tize its computation (ideal multiplication, see §5.3.2).

We shall not report on further experiments with larger polynomials P .
Suffice to say that, as expected, the polynomial representation becomes
relatively more costly, since M is mostly insensitive to the size of P .

5.2. Norms. Let x =
∑n

i=1 xiwi ∈ OK , (xi) ∈ Zn. If x has relatively
small norm, the fastest practical way to compute Nx seems to multiply
together the embeddings of x, pairing complex conjugates, then round the
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result. This requires that the embeddings of the (wi) be precomputed to
an accuracy of C significant bits (cf.§3.1), with

C = O(logNx) = O(n log ‖x‖).

Note that the exact required accuracy is cheaply determined by computing,
then bounding, Nx as a low accuracy floating point number. Note also
that a non trivial factor D > 1 of Nx may be known by construction, for
instance if x belongs to an ideal of known norm, as in §6.1.1 where D =
pf(p/p). In this case (Nx)/D can be computed instead, at lower accuracy
C − log2D, hence lower cost: we divide the approximation of Nx by D
before rounding. If the embeddings of x are not already known, computing
them has O(n2M(C)) bit complexity. Multiplying the n embeddings has
bit complexity O(nM(C)).

If S(X) is a representative of x inK = Q[X]/(P ), thenNx = ResX(P, S).
Computing a resultant over Z via a modular Euclidean algorithm using the
same upper bound for Nx has a better theoretical complexity, especially if
quadratic multiplication is used above, namely

O(n2C logC + C2),

using O(C) primes and classical algorithms (as opposed to asymptotically
fast ones). Nevertheless, it is usually slower if the xi are small, in particular
if a change of representation is necessary for x. In our implementations,
the subresultant algorithm (and its variants, like Ducos’s algorithm [15])
is even slower. If the embeddings are not known to sufficient accuracy,
one can either refine the approximation or compute a modular resultant,
depending on the context.
Remark 5.2. The referee suggested an interesting possibility, if one allows
Monte-Carlo methods (possibly giving a wrong result, with small prob-
ability)6. In this situation, one can compute modulo small primes and
use Chinese remainders without bounding a priori the necessary accuracy,
i.e. without trying to evaluate C, but stopping as soon as the result stabi-
lizes. It is also possible to compute Mx then Nx = detMx modulo small
primes and use Chinese remainders. This is an O(n3C logC + C2) algo-
rithm, which should be slower than a modular resultant if n gets large, but
avoids switching to polynomial representation.

6For instance, when factoring elements of small norms in order to find relations in Cl(K) for
the class group algorithm: if an incorrect norm is computed, then a relation may be missed, or an

expensive factorization into prime ideals may be attempted in vain. None of these are practical
concerns if errors occur with small probability.
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5.3. Ideals.

5.3.1. Representation. An integral ideal a is given by a matrix whose
columns, viewed as elements of OK , generate a as a Z-module. We do
not impose any special form for this matrix yet although, for efficiency rea-
sons, it is preferable that it be a basis, and that a ∈ N such that (a) = a∩Z
be readily available, either from the matrix, or from separate storage.

This matrix is often produced by building a Z-basis from larger gen-
erating sets, for instance when adding or multiplying ideals. An efficient
way to do this is the HNF algorithm modulo a. It has the added bene-
fit that the HNF representation is canonical, for a fixed (wi), with entries
bounded by a. A reduced basis is more expensive to produce, but has
in general smaller entries, which is important for some applications, e.g
pseudo-reduction, see §5.3.6. Using the techniques of this paper, it is a
waste to systematically reduce ideal bases.

5.3.2. Multiplication. Let a, b ∈ I(K) be integral ideals, given by HNF
matrices A and B. We describe a by a 2-element OK-generating set: a =
(a, π), with (a) = a ∩ Z and a suitable π (see §6.3). Then the product ab
is computed as the HNF of the 2n× n matrix (aA |MπB). If (b) = b ∩ Z,
the HNF can be computed modulo ab ∈ ab. Note that a ∩ Z is easily
read off from A since w1 = 1, namely |a| is the upper left entry of the
HNF matrix A. The generalization to fractional ideals represented by pairs
(α, a), α ∈ Q, a integral, is straightforward.

One can determine ab directly from the Z-generators of a and b, but we
need to build, then HNF-reduce, an n × n2 matrix, and this is about n/2
times slower.

5.3.3. Inversion. As in [9, §4.8.4], our ideal inversion rests on the duality

a−1 = (d−1a)∗ :=
{
x ∈ K,Tr(xd−1a) ⊂ Z

}
,

where d is the different of K and a is a non-zero fractional ideal. In terms
of the fixed basis (wi), let T = (Tr(wiwj))16i,j6n, X = (xi)16i6n repre-
senting x =

∑n
i=1 xiwi ∈ K, and M the matrix expressing a basis of a

submodule M of K of rank n. Then the equation Tr(xM) ⊂ Z translates
to X ∈ ImZ

tM−1T−1. In particular d−1 is generated by the elements as-
sociated to the columns of T−1. The following is an improved version of
[9, Algorithm 4.8.21] to compute the inverse of a general a, paying more
attention to denominators, and trivializing the involved matrix inversion:
Algorithm 5.3 (inversion)
Input: A non-zero integral ideal a, (a) = a ∩ Z, B = dT−1 ∈Mn(Z) where d
is the denominator of T−1, and the integral ideal b := dd−1 associated to B,
given in two-element form.
Output: The integral ideal aa−1.
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(1) Compute c = ab, using the two-element form of b. The result is given
by a matrix C in HNF.

(2) Compute D := C−1(aB) ∈ Mn(Z). Proceed as if back-substituting a
linear system, using the fact that C is triangular and that all divisions
are exact.

(3) Return the ideal represented by the transpose of D.

The extraneous factor d, introduced to ensure integrality, cancels when
solving the linear system in Step (2). In the original algorithm, |discK| =
Nd played the role of the exact denominator d, and C−1B was computed
using the inverse of TC, which is not triangular. If Na � d, it is more
efficient to reduce to two-element form a = aOK + αOK (§6.3) and use
[10, Lemma 2.3.20] to compute aa−1 = OK ∩ aα−1OK . The latter is done
by computing the intersection of Zn with the Z-module generated by the
columns of Maα−1 , via the HNF reduction of an n × n matrix (instead of
the 2n× 2n matrix associated to the intersection of two general ideals [10,
Algorithm 1.5.1]).

5.3.4. Reduction modulo an ideal. Let x ∈ OK and a be an integral ideal,
represented by the matrix of a Z-basis A. We denote x (mod a) the “small”
representative x−A

⌈
A−1x

⌋
of x modulo a. In practice, we choose A to be

either
• HNF reduced: the reduction can be streamlined using the fact that
A is upper triangular [10, Algorithm 1.4.12].
• reduced for the ordinary L2 norm, yielding smaller representatives.

We usually perform many reductions modulo a given ideal. So, in both
cases, data can be precomputed: in particular the initial reduction of A
to HNF or reduced form, and its inverse. So the fact that LLL is slower
than HNF modulo a ∩ Z should not deter us. But the reduction itself is
expensive: it performs n2 (resp. n2/2) multiplications using the reduced
(resp. HNF) representation.

The special case a = (z), z ∈ Z>0 is of particular importance; we can take
A = z Id, and x (mod z) is obtained by reducing modulo z the coordinates
of x (symmetric residue system), involving only n arithmetic operations.
To prevent coefficient explosion in the course of a computation, one should
reduce modulo a ∩ Z and only use reduction modulo a on the final result,
if at all.

5.3.5. Extended Euclidean algorithm. The following is an improved vari-
ant of [10, Algorithm 1.3.2], which is crucial in our approximation algo-
rithms, and more generally to algorithms over Dedekind domains (Chapter
1, loc. cit.). In this section we use the following notations: for a matrix X,
we write Xj its j-th column and xi,j its (i, j)-th entry; we denote by Ej

the j-th column of the n× n identity matrix.
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Algorithm 5.4 (Extended Gcd)
Input: a and b two coprime integral ideals, given by matrices A and B in HNF.
We specifically assume that w1 = 1.
Output: α ∈ a such that (1− α) ∈ b.

(1) Let za and zb be positive generators of a ∩ Z and b ∩ Z respectively.
(2) [Handle trivial case]. If zb = 0, return 1 if a = OK . Otherwise, output

an error message stating that a + b 6= OK and abort the algorithm.
(3) For j = 1, 2, . . . , n, we construct incrementally two matrices C and U ,

defined by their columns Cj , Uj ; columns Cj+1 and Uj+1 are accumu-
lators, discarded at the end of the loop body:

(a) [Initialize]. Let (Cj , Cj+1) := (Aj , Bj) and (Uj , Uj+1) := (Ej , 0).
The last n− j entries of Cj and Cj+1 are 0.

(b) [Zero out Cj+1]. For k = j, . . . , 2, 1, perform Subalgorithm 5.5.
During this step, the entries of C and U may be reduced modulo
zb at will.

(c) [Restore correct c1,1 if j 6= 1]. If j > 1, set k := 1, Cj+1 := B1,
Uj+1 := 0, and perform Subalgorithm 5.5.

(d) If c1,1 = 1, exit the loop and go to Step (5).

(4) Output an error message stating that a + b 6= OK and abort the algo-
rithm.

(5) Return α := AU1 (mod lcm(za, zb)). Note that lcm(za, zb) ∈ a ∪ b.

Sub-Algorithm 5.5 (Euclidean step)

(1) Using Euclid’s extended algorithm compute (u, v, d) such that

uck,j+1 + vck,k = d = gcd(ck,j+1, ck,k),

and |u|, |v| minimal. Let a := ck,j+1/d, and b := ck,k/d.
(2) Let (Ck, Cj+1) := (uCj+1 + vCk, aCj+1 − bCk). This replaces ck,k by

d and ck,j+1 by 0.
(3) Let (Uk, Uj+1) := (uUj+1 + vUk, aUj+1 − bUk).

Proof. This is essentially the naive HNF algorithm using Gaussian elimi-
nation via Euclidean steps, applied to (A | B). There are four differences:
first, we consider columns in a specific order, so that columns known to
have fewer non-zero entries, due to A and B being upper triangular, are
treated first. Second, we skip the final reduction phase that would ensure
that ck,k > ck,j for j > k. Third, the matrix U is the upper part of the
base change matrix that would normally be produced, only keeping track
of operations on A: at any time, all columns Cj can be written as αj + βj ,
with (αj , βj) ∈ a×b, such that αj = AUj . Here we use the fact that b is an
OK-module, so that zbwi ∈ b for any 1 6 i 6 n. Fourth, we allow reducing
C or U modulo zb, which only changes the βj .
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We only need to prove that if (a, b) = 1, then the condition in Step (3d)
is eventually satisfied, justifying the error message if it is not. By abuse
of notation, call Ai (resp. Bi) the generator of a (resp. b) corresponding to
the i-th column of A (resp. B). After Step (3b), c1,1 and zb generate the
ideal Ij := (A1, . . . , Aj , B1, . . . , Bj)∩Z. Hence, so does c1,1 after Step (3c).
Since (a, b) = 1, we see that In = Z and we are done. �

Cohen’s algorithm HNF-reduces the concatenation of A and B, obtaining
a matrix U ∈ GL(2n,Z), such that (A | B)U = (Idn | 0). It then splits the
first column of U as (uA | uB) to obtain α = AuA. Our variant computes
only part of the HNF (until 1 is found in a + b, in Step (3d)), considers
smaller matrices, and prevents coefficient explosion. For a concrete exam-
ple, take K the 7-th cyclotomic field, and a, b the two prime ideals above
2. Then Algorithm 5.4 experimentally performs 22 times faster than the
original algorithm, even though coefficient explosion does not occur.
Remark 5.6. This algorithm generalizes Cohen’s remark that if (za, zb) = 1,
then the extended Euclidean algorithm over Z immediately yields the result.
Our algorithm succeeds during the j-th loop if and only if 1 belongs to the
Z-module spanned by the first j generators of a and b. In some of our
applications, we never have (za, zb) = 1; for instance in Algorithm 6.3, this
gcd is the prime p.
Remarks 5.7.

(1) In Step (3c), the Euclidean step can be simplified since Cj+1, Uj+1

do not need to be updated.
(2) We could reduce the result modulo ab, but computing the product

would already dominate the running time, for a minor size gain.
(3) As most modular algorithms, Algorithm 5.4 is faster if we do not

perform reductions modulo zb systematically, but only reduce entries
which grow larger than a given threshold.

5.3.6. LLL pseudo-reduction. This notion was introduced by Buchmann
[7], and Cohen et al. [12]. Let A an integral ideal, and α ∈ A be the first
element of a reduced basis of the lattice (A, T2). By Proposition 4.1 and
(2), ‖α‖ and Nα are small; the latter is nevertheless a multiple of NA. We
rewrite A = α(A/α) where (A/α) is a fractional ideal, pseudo-reduced in
the terminology of [9]. Extracting the content of A/α, we obtain finally
A = aαa, where a ∈ Q, α ∈ OK and a ⊂ OK are both integral and
primitive. Assume A is given by a matrix of Z-generators A ∈Mn(Z). The
reduction is done in two steps:

• Reduce A in place with respect to the L2 norm.
• Reduce the result A′ with respect to an approximate T2 form as

defined is §4.2, that is reduce R(e)A′ with respect to the L2 norm,
for a suitably chosen e.
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We define a pseudo reduction map by red(A) = rede(A) := (a, α, a). This
is a purely algorithmic definition, depending on the precise way in which
α is found: none of the three components is intrinsically defined. This
construction generalizes in the obvious way to fractional ideals.

If we want Na to be as small as possible7, then e is chosen relatively
large, and the LLL parameter c ∈]1/4, 1[ is chosen close to 1, for optimal
reduction. In our applications, however, we are primarily interested in
preventing coefficient explosion, so we may skip the second step altogether
for the sake of speed. From (2), the corresponding α already has a relatively
small norm. In fact it is easy to prove that |Nα| /NA is bounded by a
constant depending only on (wi)16i6n and the LLL parameter c.

5.4. Prime ideals.

5.4.1. Uniformizers. Let p/p be a prime ideal. It is desirable to describe
p as

p = pOK + πOK ,

and we shall see below that it is useful to impose vp(π) = 1. This condition
is automatically satisfied if p/p is ramified; both π − p and π + p satisfy it
if π does not. Such a π is called a p-uniformizer for p. More generally:

Definition 5.8. Let f ∈ I(K), and p a prime ideal.
• An integer π ∈ OK is an f-uniformizer for p, if vp(π) = 1 and
vq(π) = 0, for all q | f, q 6= p. (The ideal f may or may not be
divisible by p.)
• Let OK,p := {x ∈ K, vq(x) > 0,∀q 6= p} be the ring of p-integers. A

p-integer τ ∈ OK,p is an anti-uniformizer for p, if vp(τ) = −1.

We shall see in §6.1 how to find a uniformizer. Anti-uniformizers are used
to invert p (see §5.4.2) and to compute valuations at p (see §5.4.3).

Proposition 5.9. Let p/p a prime ideal, π a p-uniformizer for p, and
τ0 ∈ OK such that πτ0 ≡ 0 (mod p), and p - τ0. Then τ = τ0/p is an
anti-uniformizer.

Proof. (simplifies [9, §4.8.3]) The conditions on τ0 are equivalent to vp(τ0) =
e(p/p)− 1, and vq(τ0) > e(q/p) for other prime divisors q of p. The result
follows. �

Given π, we compute such a τ0 as a lift of any non-zero solution ofMπX = 0
over Fn

p .

7In particular when we want a to be smooth with respect to a factor base {p, Np < y}. In
this case and if K/Q is not Galois, consider rather the original (A/α), which is often more friable

than its primitive part a. Namely, let p/p be a prime ideal; p−1 is smooth if Np < y, but pp−1

is not whenever there exists q | p with Nq > y.
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Remark 5.10. If we are allowed precomputations associated to p, the al-
gorithmic data we store is (p, e(p/p), f(p/p),Mπ,Mτ0), where e(p/p) and
f(p/p) are the inertia and residue degree respectively, π is a p-uniformizer,
and τ0 = pτ ∈ OK where τ is an anti-uniformizer for p. Note that π and τ0
are essentially defined modulo p, hence their coordinates can be taken in
] − p/2, p/2], except that the condition vp(π) = 1 requires that we extend
the range of the first coordinate of π to ]− p, p] if e(p/p) = 1. The entries
of Mπ and Mτ0 are correspondingly small.

5.4.2. Multiplication by pn. It is easy to compute pn, n ∈ Z, from the
above data; see [10, Proposition 2.3.15], which treats the case n > 0. The
general case is an exercise: let p = (p, π) and n0 = d|n| /e(p/p)e.

• If n > 0, then pn = (pn0 , πn)
• If n < 0, then pn0pn = (pn0 , τ

|n|
0 /p|n|−n0), where the division is exact

and both sides are integral.
As a consequence, it is simpler to multiply by pn than by a general ideal,
since the two-element representation is readily available. It is even simpler
to multiply by p±1 since Mπ and Mτ0 are precomputed.

5.4.3. Valuation of x ∈ K∗. For a fixed choice of anti-uniformizer τ =
τ0/p, we define the p-coprime part8 of x ∈ K∗ as cpp(x) := xτvp(x). First
we assume that x ∈ OK :
Algorithm 5.11 (valuation and coprime part)
Input: A prime ideal p/p, x ∈ OK \ {0}.
Output: v := vp(x) and y := cpp(x) ∈ OK .

(1) [Important special case]. If x ∈ Z, return v := e(p/p)w and y :=
(xp−w)cpp(p)w, where w := vp(x). Note that cpp(p) = pτ e(p/p) can
be precomputed.

(2) Let v := 0, y := x.
(3) [Multiply]. Let y′ := yτ0 ∈ OK , computed as Mτ0y.
(4) [Test]. If y′ 6≡ 0 (mod p), abort the algorithm and return v and y.
(5) Set y := y′/p.
(6) Set v := v + 1 and go to Step (3).

The general case x = y/d ∈ K∗, (y, d) ∈ OK × Z is straightforward: x has
valuation vp(y)− vp(d), and coprime part cpp(y)/cpp(d).
Remarks 5.12.

(1) The multiplication, divisibility test and actual division by p in
Step (3), (4) and (5) are done simultaneously: each coordinate of y′

is tested in turn, right after it is computed.

8We shall use that definition in §7.4. It is actually tailored for x ∈ OK : in this case, τ is

raised to a non-negative power, and cpp(x) ∈ OK ; using π−vp(x) for a uniformizer π would also

yield a p-unit, but may introduce denominators.
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(2) One can bound vp(x) 6 vp(Nx)/f(p/p), hoping for instance to no-
tice that vp(x) = 0. This is in general pointless since the norm
computation is more expensive than multiplication by Mτ0 and di-
vision by p, unless p � Nx, see §5.2. On the other hand if Nx
is known, or we want vp(x) for many different primes, this test is
useful.

This algorithm is suitable for small valuations, which is the case in our
applications, since we prevent coefficient explosion. If one expects v to be
large, Bernstein’s elegant binary search [5, Algorithm E] is more indicated,
applied as reduce(τ0, p, x):
Algorithm 5.13 (reduce)
Input: (t ∈ OK , q ∈ N>0, w ∈ OK \ {0}), such that t/q 6∈ OK .
Output: (v, w(t/q)v), where v > 0 is maximal such that w(t/q)v ∈ OK .

(1) If wt is not divisible by q, print (0, w) and stop.
(2) Let (v, y) := reduce(t2, q2, wt/q).
(3) If yt is divisible by q, print (2v + 2, yt/q), otherwise print (2v + 1, y).

5.4.4. Valuation of ideals. The valuation of an ideal is computed as the
minimum of the valuations of its generators. Algorithm 5.11 is run in par-
allel on all generators, and the computation stops as soon as one divisibility
test fails. We can operate modulo a suitable power of the underlying prime:
Algorithm 5.14 (valuation of a ⊂ OK)
Input: A prime ideal p/p, a non-zero primitive integral ideal a, given as a Z-
module by the matrix A ∈ Mn(Z). For X ∈ Mn(Z) we denote Xj the j-th
column of X for 1 6 j 6 n, identified with an element of OK .
Output: vp(a).

(1) Compute vmax := vp(a ∩ Z). If vmax = 0, abort the algorithm and
return 0.

(2) If Na is known or cheap to compute, e.g., A is in HNF, let

vmax := min(vmax, vp(Na)/f(p/p)).

(3) Set v := 0, B := A. While v < vmax, do the following:

(a) Let u := d(vmax − v)/e(p/p)e.
(b) For j = 1, 2, . . . , n:

(i) Let y′ := Mτ0(Bj mod pu).
(ii) If y′ 6≡ 0 (mod p), go to Step (4).
(iii) Set Bj := y′/p (multiplication by Mτ0 , test and division are

done simultaneously).

(c) Set v := v + 1.

(4) Return v.
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Proof. Obviously, vp(a) 6 vmax. So we can stop once we determine that
vp(Aj) > vmax for all 1 6 j 6 n. We now prove that in Step (3(b)i), we
can in fact reduce modulo bv := pvmax−v, not only modulo bv ∩ Z which is
(pu) by §5.4.2:

• If vp(Bj) > vp(bv) = vmax − v, then vp(Bj mod bv) > vmax − v.
• If vp(Bj) < vp(bv), then vp(Bj mod bv) = vp(Bj).

By induction, vp(Aj) < vmax implies vp(Bj) = vp(Aj)− v = vp(τ vAj). �

A general non-zero ideal a is uniquely written cb, b integral and primitive,
c ∈ Q; its valuation is given by vp(a) = vp(c) + vp(b).
Remarks 5.15.

(1) If there is a single prime p above p, computing vp(a) =
vp(Na)/f(p/p) is faster. If it is in fact inert, vp(a) = vp(a ∩ Z)
is even faster.

(2) If A = (ai,j)16i,j6n is in HNF, j = 1 is omitted from the main loop
since vp(A1) = vp(a ∩ Z) is already known. Also, Na needs not be
computed since

vp(Na) =
n∑

i=1

vp(ai,i).

As above, vp(a1,1) is already known.
(3) One can replace the columns of A by their primitive parts before

starting the main loop. The algorithm is more involved since indi-
vidual valuations need to be maintained, in case p divides some of
the contents. We leave the details to the reader.

(4) As shown in the proof, we could reduce modulo pvmax−v in
Step (3(b)i), but this would be exceedingly expensive. The last
remark of §5.3.5 about the advisability of systematic reduction also
applies here.

(5) [9, Algorithm 4.8.17] is more complicated and less efficient, since it
computes an HNF at each step, and uses no reduction.

(6) If a two-element form a = aOK + bOK is available, we compute
min(vp(a), vp(b)) instead, which is especially attractive if a ∈ Z. It
is tempting to compute such a two-element form with a ∈ Z in any
case, using Algorithm 6.13, if a does not have many small prime
ideal divisors (using Algorithm 6.15 for y > 2 requires computing
valuations). This may be worthwhile when v = vp(a) is not too
small: the expected cost is

1/
∏

vp(a)>v

(1− 1/Np)
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n×n HNF reductions modulo a, followed by the valuation of a single
element, compared to the valuation of n− 1 elements as above. For
an explicit example, take K the 11-th cyclotomic field, and p a
prime above 3, then Algorithm 5.14 applied to pv is faster than the
reduction to two element form for v 6 6.

(7) A more efficient, and deterministic, approach is to compute b :=
(a, pvmax) = pv, then v = vp(Nb)/f(p/p). Let π be a p-uniformizer
for p, vmax = vp(a∩Z) be as above and u := dvmax/e(p/p)e. Compute
y := πvmax (mod pu), then b is given by the HNF modulo pu of
(a | My). If many valuations are needed y, and in fact the HNF
of My modulo pu, can be precomputed for small values of vmax.
Experimentally, if we assume the HNF of My is precomputed, this
method is faster than Algorithm 5.14 whenever v > 0 and there is
more than one prime above p; if the HNF has to be computed, the
method is comparable to the reduction to two element form.

6. Approximation and two-element representation for ideals

6.1. Prime ideals and uniformizers. Let p be a prime number, factor-
ing into prime ideals as

pOK =
g∏

i=1

pei
i .

If p does not divide the index [OK : Z[θ]], Kummer’s criterion applies and
we easily compute the prime divisors of p in the form p = pOK + πOK ,
where π = T (θ) and T is (a lift to Z[X] of) an irreducible factor of P
over Fp[X]. If π is not a p-uniformizer, then e(p/p) = 1 and π ± p is a
p-uniformizer.

If p divides the index, the situation is more interesting. If a p-maximal
order was computed using the Round 4 algorithm, then the above infor-
mation about prime divisors of p is obtained as a by-product (see Ford et
al. [20, §6]). Otherwise, an alternative is Buchmann-Lenstra’s variant of
Berlekamp’s algorithm, which in principle yields the same information [9,
§6.2.2]. But its most popular version [9, §6.2.4] skips squarefree factor-
ization in order to avoid ideal arithmetic, and does not look for random
primitive elements. This variant does not readily produce uniformizers.

More precisely, let Ip =
∏g

i=1 pi be the radical of pOK . This radical is
computed as the Z-module generated by p and a lift of Ip/(p) = Ker(x →
xpk

) ⊂ OK/(p) for any k such that pk > [K : Q]. Alternatively, for
p > [K : Q], Ip/(p) is the p-trace-radical, i.e the kernel of the Fp-linear
map

OK/(p) → Hom(OK/(p),Fp)
x 7→ (y 7→ Tr(xy) mod p).
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Berlekamp’s algorithm splits the separable algebra OK/Ip given an oracle
computing roots of totally split polynomials in Fp[X]. From the computa-
tion of the simple factors OK/pi, it produces the pi/Ip as Fp-subspaces of
OK/Ip.

6.1.1. Näıve randomized algorithm. Let p be one of the pi given as above
by an Fp-basis of p/Ip ⊂ OK/Ip. In particular, the residue degree f(p/p)
is known: it is the codimension of p/Ip. On the other hand, e(p/p) is still
unknown at this point9. From that data, [9, Algorithm 4.7.10] proposes to
find a p-uniformizer for p by picking random elements x in p until Nx is
not divisible by pf(p/p)+1; then π = x is a p-uniformizer. This is sensible
assuming either p is not too small or that it has few prime divisors:

Lemma 6.1. An element chosen uniformly at random in p is a p-unifor-
mizer with probability

∏g
i=1(1− 1/Npi).

Proof. This follows from the inclusion-exclusion principle applied to the
sets Ai := (ppi)/Ip, which satisfy

#(∪i∈SAi) = #(p
∏
i∈S

pi/Ip) = #(p/Ip)/
∏
i∈S

Npi

for any S ⊂ [1, g]. In fact, π ∈ p is a p-uniformizer if and only if π 6∈
∪iAi. �

In the worst case, p is totally split and the probability becomes (1−1/p)n,
which is still relatively large assuming p is not too small; for instance if p >
n, this is greater than exp(−1− 1/n) > exp(−3/2) (see also Lemma 6.16).

Remark 6.2. One should check whether p divides Nx/pf(p/p), since the
latter should be easier to compute than Nx, see §5.2.

6.1.2. A practical deterministic algorithm. Cohen [10, Proposition 1.3.10]
gives a deterministic polynomial time procedure relying on the general ap-
proximation theorem, to compute a p-uniformizer. But this algorithm is
not very practical: it requires many ideal multiplications, each of which
requires computing, then HNF-reducing, n × n2 matrices, as well as com-
puting a base change matrix (realizing an HNF reduction) of dimension ng,
which may be as large as n2. Here is a practical variant:
Algorithm 6.3 (p-uniformizer, deterministic)
Input: {pi/Ip, 1 6 i 6 g}, given by Fp-bases.
Output: a p-uniformizer for p.

(1) [Compute Vp =
∏

pi 6=p pi as Z-module].

9We may later compute it as vp(p) using Algorithm 5.11, which requires an anti-uniformizer

τ , obtained from a p-uniformizer via Proposition 5.9.
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(a) Compute V :=
∏

pi 6=p pi/Ip as the intersection of the Fp vec-

tor spaces pi/Ip (not as a product of ideals: we cannot quickly
compute two-element representations).

(b) Let V ⊂ OK/(p) be the Fp-subspace generated by Ip/(p) and lifts

of an Fp-basis of V .
(c) Let Vp ⊂ OK be the Z-submodule generated by pOK and lifts of

generators of V (HNF reduction modulo p).

(2) [Compute p2 as Z-module].

(a) Compute a lift p of (p/Ip) to OK/(p) as above. Let (γ1, . . . , γk) ∈
Ok

K be a lift of a basis of p; here k = g − f(p/p).
(b) Compute p2, which is the Z-module generated by p2OK and the

k(k + 1)/2 products γiγj , i 6 j 6 k (the HNF reduction is done
modulo p2).

(3) Compute u ∈ p2 and v ∈ Vp such that u+ v = 1 using Algorithm 5.4.
(4) Find τ ∈ p \ p2.
(5) Let π := vτ + u (mod p). If π ∈ p2, set π := π + p. Return π.

Note that p/p is ramified if and only if p2 ∩ Z = (pZ) in Step (2b). If p/p
is unramified, then we can take π = p in Step (4); otherwise, at least one
of the γi does not belong to p2, and this is easy to test since the HNF for
p2 is known. The reduction modulo p in the last step ensures that a small
element is returned, and the test π ∈ p2 is only needed when e(p/p) = 1.

The most expensive part of Algorithm 6.3 is the computation of p2 in
Step (2b). It requires O(n2) multiplication in OK/(p2), for a bit complexity
of O(n4 log2 p), followed by an HNF reduction n × n(n + 1)/2 modulo p2,
for the same bit complexity. The computation of V has the same cost in
the worst case (n is replaced by dimOK/Ip =

∑g
i=1 f(pi/p) 6 n), but is

in practice much faster, and is amortized over several p. Namely, the set
of all Vpi is computed as follows: for i = 1, . . . , g − 1, let ai = p1 . . . pi and
bi = pi . . . pg, then Vpi is generated by pOK and ai−1bi+1, for a total of
3g − 4 multiplications (intersections) in OK/Ip, instead of the straightfor-
ward g(g − 1). Note that the obvious computation of Vp as Ipp−1 is more
expensive since ideal multiplication cannot make use of the two-element
representation.

6.1.3. A better deterministic algorithm. We favor a second variant, which
is still deterministic, but both simpler and faster than Algorithm 6.3. We
use the notations from the previous section.
Algorithm 6.4 (p-uniformizer, final version)
Input: {pi/Ip, 1 6 i 6 g}, and

{
V pi , 1 6 i 6 g

}
, all of them subspaces of

OK/(p), given by Fp-bases.
Output: a p-uniformizer for p.
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(1) [Compute (u, v) ∈ p× Vp such that u+ v = 1 (mod p)].
(a) Let (A | B) be the concatenation of the matrices giving the Fp-

bases of p and V p.
(b) Compute an inverse image

(
a
b

)
of 1 by (A | B), using Fp-linear

algebra in OK/(p).
(c) Let u, v be lifts to OK of Aa, Bb respectively (take symmetric

lifts modulo p).

(2) [Try τ = p]. At this point, we have vpi(u) = 0, for all pi 6= p, and
vp(u) > 1.

(a) Let x := u. If pf(p/p)+1 - Nx, return x.
(b) Let x := u+ p or u− p, whichever has first coordinate in ]− p, p].

If pf(p/p)+1 - Nx, return x.

(3) [p/p ramified, vp(u) > 2. Try τ = γi]. For τ = γ1, . . . , γk−1

(a) Let x := vτ + u (mod p).
(b) If pf(p/p)+1 - Nx, terminate the algorithm and return x.

(4) Return x := vγk + u (mod p).
Here, we produce u without computing p2. Also we use the fact that

u, v are essentially defined modulo p to compute them using Fp-linear al-
gebra instead of HNF reductions; we could also use an adapted version of
Algorithm 5.4.

Using a random τ ∈ p in Step (3a) yields a uniformizer iff τ 6∈ p2,
hence with probability 1 − Np−1 > 1/2. Our variant is deterministic,
requiring at most two norm computations when p/p is unramified, and at
most k+1 6 [K : Q] otherwise. As previously mentioned, knowing that p/p
is ramified in Step (3) enables us to reduce x modulo p, without losing the
p-uniformizer property. If we know in advance that p/p is unramified, for
instance if p - discK, the norm computation in Step (2b) can be skipped,
since x is necessarily a uniformizer at this point.

6.1.4. Comparison. This computation needs to be done at most once for
each of the prime divisors of the index [OK : Z[θ]], so the exact threshold
between the competing deterministic algorithms is unimportant. On the
other hand, it is crucial not to rely solely on the naive randomized algo-
rithm, as shown by the following example. Consider the field generated by
a root of

x30 − x29 + x28 − x27 + x26 + 743x25 − 1363x24 − 3597x23 − 22009x22 + 458737x21 +

2608403x20+6374653x19−1890565x18−112632611x17−467834081x16−1365580319x15−
1188283908x14+3831279180x13+28661663584x12+89106335984x11+226912479680x10+

443487548480x9 + 719797891328x8 + 946994403328x7 + 1015828094976x6 +

878645952512x5 +555353440256x4 +124983967744x3 +67515711488x2− 5234491392x+

400505700352
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which is the abelian field K of smallest conductor (namely 341) such that
2 splits completely in K and such that [K : Q] > 20. We allow for precom-
putations: maximal order, roots of P and embeddings of (wi) to a relative
accuracy of 160 digits, T2-reduction of the maximal order, preconditioning
multiplication in K. This takes 8.5s altogether, 65% of which are spent in
the LLL reduction, which is in fact not needed for this specific application.

Algorithm 6.4 computes all 30 prime divisors of 2 in less than 0.6s: 0.3s
are spent in Buchmann-Lenstra’s splitting, and 0.2s to find all 30 uniformiz-
ers, half of which spent computing the Vp. We used the embeddings to com-
pute the required norms (negligible time); using a modular resultant, the
norm computations now dominate the running time, which roughly doubles
to 1s. Using Algorithm 6.3, already about 8s are needed to compute the
various p2

i . Using the naive randomized algorithm, the expected number of
trials to compute a single uniformizer is 230, and takes a few days in prac-
tice. In smaller degrees, the speedup is less extreme: take the fixed field of
K by the Frobenius over 7, defined by the more decent-looking polynomial

x10 − x9 + 2x8 + 326x7 − 1559x6 − 7801x5 + 22580x4

− 47436x3 + 234144x2 + 2013120x + 3406336.

Then Algorithm 6.4 (experimentally, on average) still splits 2 about 30
times faster than the randomized algorithm (210 expected trials); at least
300 times faster if the latter uses a resultant algorithm to compute norms
(we tried Collins’s and Ducos’s subresultants and a modular resultant, as
implemented in the Pari library). So we would better not ignore this issue:
the same phenomenon would slow down all ideal multiplications whenever
small primes have many divisors in K. We shall give a general solution in
§6.3, once we have seen how to solve approximation problems.

6.2. Approximation.

6.2.1. Uniformizers. We first write explicitly algorithms to obtain suitable
uniformizers for prime ideals:
Algorithm 6.5 (f-uniformizer)
Input: an integral ideal f and a prime ideal p/p.
Output: an f-uniformizer for p.

(1) Compute a := fp−vp(f) and p2.
(2) Compute (u, v) ∈ p2 × a such that u+ v = 1, using Algorithm 5.4.
(3) Let π be a p-uniformizer for p. Return vπ + u (mod ap2).

The following variant is faster than Algorithm 6.5, but produces larger
uniformizers:
Algorithm 6.6 (f-uniformizer, using f ∩ Z)
Input: an integral ideal f, and a prime ideal p/p; (f) = f ∩ Z.
Output: an f -uniformizer, hence an f-uniformizer, for p

(1) Let a := fp−vp(f), m := p if e(p/p) > 1 and m := p2 otherwise.
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(2) Using the extended Euclidean algorithm over Z, find (u′, v′) ∈ Z of
minimal absolute value, such that u′m + v′a = 1. Let u := u′m and
v := v′a.

(3) Let π be a p-uniformizer for p. Return vπ + u (mod am).
Remark 6.7. In many applications, the factorization of f, hence of f ∩ Z, is
known. In this case, one may replace the definition of a (resp. a) in Step (1)
by the coprime square free kernel

a :=
∏

q | f, q 6= p
q prime

q, resp. a :=
∏

q | f , q 6= p
q prime

q.

The algorithm then operates on smaller objects and produces smaller uni-
formizers. The extra ideal multiplications needed to compute a make this
costly for Algorithm 6.5, but it is profitably used in Algorithm 6.6.

6.2.2. Approximation. We finally give improved algorithms for the Chi-
nese remainder and approximation theorems (see [10, §1.3.2]):
Algorithm 6.8 (Approximation theorem (weak form))
Input: a set S of prime ideals, and {ep} ∈ ZS .
Output: a ∈ K such that vp(a) = ep for p ∈ S, vp(a) > 0 for p 6∈ S.

(1) Let SQ := { p rational prime : ∃ p ∈ S, such that p | p }, and f :=∏
p∈SQ

p.

(2) For all p ∈ S, compute an f -uniformizer πp for p, using Algorithm 6.6.
(3) Set z :=

∏
p∈S π

ep
p ∈ K. Let d be the denominator of z (d = 1 unless

ep < 0 for some p). Write d = d1d2, di ∈ N, where (d2, f) = 1, and
d2 is maximal.

(4) Return zd2 (mod
∏

p∈S pep+1).

Proof. The valuation of z at any prime q dividing f is eq if q ∈ S and 0
otherwise. The same holds for the valuations of zd2, since (d2, f) = 1. If
vq(zd2) < 0, then q | d1; all prime divisors of d1 divide f by the maximality
of d2, hence q | f . Finally q ∈ S, as was to be shown. �

Remarks 6.9.

(1) The final reduction is included to somewhat prevent coefficient ex-
plosion in applications where the product z must be fully evaluated.
But the computation of the modulus is expensive compared to the
other steps. If acceptable, it is preferable to return the element
d2
∏

p∈S π
ep
p in Z[OK ], as an unevaluated product (see §7.1).
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(2) We can replace Step (1) by the following: start with f :=
∏

p∈S p;
then, for all p ∈ S such that ep < 0, multiply f by∏

q | p, q - f
q prime

q.

Then we compute f-uniformizers using Algorithm 6.5, and leave the
other steps unchanged. The algorithm operates with smaller uni-
formizers since f | f , at the expense of more complicated ideal op-
erations. The original version is faster and has comparable output
size, provided we do not remove the last reduction step.

Algorithm 6.10 (Chinese remainder theorem)
Input: a set S of pairwise coprime integral ideals and {xa} ∈ OS

K .
Output: a ∈ OK such that a ≡ xa (mod a) for all a ∈ S.

(1) Compute f :=
∏

a∈S a.
(2) For all a ∈ S, find (ua, va) ∈ a × f/a such that ua + va = 1, using

Algorithm 5.4.
(3) Return

∑
a∈S vaxa (mod f).

Remarks 6.11.
(1) Recall that it is simpler to multiply by pn, n ∈ Z than by a general

ideal (§5.4.2). In most applications, the elements of S are powers of
prime ideals.

(2) [10, Proposition 1.3.8] computes the HNF of the concatenation of
the matrices associated to all ideals f/a. This produces all va with a
single HNF reduction instead of #S reductions in our variant. But
the latter are modular, operate on smaller matrices (n×n instead of
n#S×n#S), and allow for early abort. Hence using Algorithm 5.4
as above is more efficient, in time and space.

Algorithm 6.12 (Approximation theorem (strong form))
Input: a set S of prime ideals, {ep} ∈ ZS , and {xp} ∈ KS

Output: y ∈ K such that vp(y − xp) > ep for p ∈ S, vp(y) > 0 for p 6∈ S.

(1) For p ∈ S, p | p, make sure the denominator d of xp is a power of p:

write d = d0p
k, (d0, p) = 1 and replace xp by (d−1

0 mod pep+vp(d)) ×
(d0xp).

(2) Let d be the common denominator of all xp (the lcm of the pk above).
For all p ∈ S replace xp by dxp, ep by ep + vp(d).

(3) If any ep is 6 0, remove p from S.
(4) Add to S the p | d, p 6∈ S. For all such p, set ep := vp(d), xp := 0.
(5) Using Algorithm 6.10, find y solving the Chinese Remainder problem

given by {pep} and {xp}.
(6) Return y/d.
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6.3. Two-element representation. Obtaining two-element OK-genera-
ting sets for an ideal a is crucial to efficiently multiply by a as explained
in §5.3.2. We have already seen in the case of prime ideals that the naive
randomized method, although in general fast, is not suitable over arbitrary
number fields. It is straightforward to deduce an efficient deterministic
procedure from Algorithm 6.8, provided a is easily factored.

6.3.1. Practical randomized variant. The naive randomized algorithm
(cf. [10, Algorithm 1.3.15]) is as follows:
Algorithm 6.13 (Two-element form for general ideals, naive version)
Input: an integral ideal A, given by an HNF matrix A, (a) = A ∩ Z.
Output: π such that A = aOK + πOK , or fail.

(1) Pick π uniformly at random in A/aOK .
(2) If the HNF of Mπ modulo a is equal to A (it is enough to check the

diagonal elements), return π. Otherwise return fail.

Lemma 6.14. This algorithms succeeds with probability∏
p : vp(a)>vp(A)

(1− 1/Np) >
∏
p|a

(1− 1/Np).

Proof. Analogous to Lemma 6.1. �

We modified [10, Algorithm 1.3.15] in two respects. We removed its first
step (LLL-reduce the HNF basis) since we only want random elements in the
ideal: their size does not play any role. Second, we pick random elements
in A/aOK instead of enforcing arbitrary limits on their coordinates, which
ruins the probabilistic analysis without motivation. Reduction modulo a
takes care of size increases introduced by these modifications. Combining
this with our previous work, we obtain a robust general-purpose method:
Algorithm 6.15 (Two-element form for general ideals)
Input: a primitive integral ideal A, a real parameter y > 2.
Output: π such that A = aOK + πOK , (a) = A ∩ Z.

(1) [partial split]. Let a ∈ N such that (a) = A ∩ Z.

(a) Let

SQ := {p < y : p | a} , and
S := {prime ideals dividing of p ∈ SQ} .

(b) Let

a0 :=
∏

p∈SQ

pvp(a), and a1 := a/a0.

By definition, (a0, a1) = 1.
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(c) Write A = A0A1, where

A0 :=
∏
p∈S

pvp(A) = (A, a0) and A1 := A
∏
p∈S

p−vp(A) = (A, a1),

and only A1 needs to be explicitly computed, as the given gcd: a
mere HNF reduction modulo a1. By construction, (A0,A1) = 1
and (ai) = Ai ∩ Z.

(2) [find partial uniformizers].

(a) Find π0 ∈ OK such that (a0, π0) = A0. Algorithm 6.13 succeeds
with probability ∏

p∈S
vp(a0)>vp(A0)

(1− 1/Np)

If this is too small, use Algorithm 6.8 to find π0 ∈ Z[OK ] such
that vp(π0) = vp(A) = vp(A0) for all p ∈ S, then evaluate π0

modulo a0.
(b) Using Algorithm 6.13, find π1 such that (a1, π1) = A1.

(3) Using the extended Euclidean algorithm over Z, find v0, v1 ∈ Z solving
the Bezout equation a0v0 + a1v1 = 1. Set ui := aivi ∈ Ai ∩ Z.

(4) Let π′0 := π0u1 + u0, π
′
1 := π1u0 + u1 and return π′0π

′
1 modulo a.

Proof. Since π′i ≡ πi (mod aiOK) and π′i ≡ 1 (mod a1−iOK), we have
Ai = aiOK +π′iOK and (π′i,A1−i) = 1 for i ∈ {0, 1}. We already know that
(a0,A1) = (a1,A0) = 1. It follows that a0a1OK +π′0π

′
1OK = A0A1 = A. �

Lemma 6.16. Let C := n log a
y log y . In Step (2b), a random element π1 ∈

A1/a1OK satisfies A1 = a1OK + π1OK with probability greater than
exp(−C − C/y) > exp(−3C/2).

Proof. Let C1 := n log a1

y log y 6 C. We use the lower bound from Lemma 6.14
and∏
p|a1

(1− 1/Np) > (1− 1/y)n logy a1 > exp(−C1 − C1/y) > exp(−C − C/y).

The middle inequality follows from the rough bound (1−x) > exp(−x−x2),
valid for all 0 6 x 6 1/2 for instance. �

Remarks 6.17.
(1) Choosing y = 2 amounts to using the naive algorithm. Picking a

larger y means we use the safe deterministic algorithm to handle the
dangerous part A0 of A, which is easy to factor, and the fast ran-
domized one to avoid factoring A1 completely, or wasting too much
time computing valuations. The initial steps are cheap, provided
small primes and their prime divisors are precomputed.
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(2) We can fix some C > 0 and choose y such that Cy log y = n log a,
which bounds from below the probability of success in Step (2b) by
a positive constant by Lemma 6.16. Since this y is polynomially
bounded in terms of n and log a, all the extra steps linked to A0 are
done in polynomial time. Since each iteration of Algorithm 6.13 is in
polynomial time, the resulting algorithm has expected polynomial
running time.

(3) This choice of y assumes that all small primes split completely, which
is quite pessimistic. A practical alternative is to run the naive algo-
rithm for a few trials. If it does not succeed, we split the computation
using an incremental criterion instead of a worst case bound: factor
out a set S of prime divisors of A ∩ Z until

∏
p∈S(1− 1/Np) < 1/2,

say, defining ideals A0 and A1 as above. Then recursively apply
the same strategy to A1, improving our chances by a factor greater
than 2 after each splitting. To avoid spending exponential time in
the trial division, we can compute a worst case y as above and abort
trial division once all rational primes less than y have been removed.

(4) Proposition 1.3.10 (loc. cit.), based on the approximation theorem,
is impractical: it requires the full factorization of A, costly ideal
multiplications (via HNF reduction of n × n2 matrices), as well as
computing a base change matrix of dimension n#S where S is the
set of primes dividing A.

(5) The usual form of the two-element problem is: given A and an
arbitrary a ∈ A, find π such that A = aOK +πOK . The above form
is the one needed in practice and we leave this generalization to the
reader.

6.3.2. Deterministic polynomial time algorithm. From the preceding dis-
cussion, Algorithm 6.15 can be modified to run in deterministic polynomial
time if the factorization of A is known. As it stands, because of our use
of Algorithm 6.13, it is randomized, with expected polynomial running
time. As suggested in [10, p. 23], it can be modified to run in deterministic
polynomial time using factor refinement (see Bach, Driscoll and Shallit [2],
Buchmann, Eisenbrand [8], and Bernstein [5]) as follows: given a ∈ A,
factor (a) and A into pairwise coprime ideals. One can refine these factor-
izations in deterministic polynomial time, so as to find a possibly larger
finite coprime base {qi, i ∈ I} such that

A =
∏
i∈I

qei
i , (a) =

∏
i∈I

q
fi
i ,

as well as elements xi ∈ qei
i such that (xi/q

ei
i , qi) = 1. Namely, if qk is a

term in the factorization of A, given by a Z-basis, one of the n generators of
qk does not belong to qk+1, say x. Either (x/qk, q) = 1 and x is a suitable
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element, or this splits q and we may refine the factorization. Let π be a
solution of the Chinese remainder problem associated to {qei+1

i , i ∈ I} and
{xi, i ∈ I}, found using Algorithm 6.10; then A = aOK + πOK .

We can improve this algorithm by picking xi = a whenever ei = fi, but
it remains impractical if A cannot be factored: it requires many ideal multi-
plications, using only Z-generators (or solving recursively two-element-form
subproblems). We would expect each of these to be slower than the whole
run of Algorithm 6.13 on A1 in Algorithm 6.15.

7. Another representation for ideals and applications

7.1. The group ring representation. One of our goals is to compute
ray class groups, as in [10, Algorithm 4.3.1]. As it stands, if Cl(K) =
⊕r

i=1(Z/diZ)gi, this algorithm requires computing αi ∈ K∗ such that (αi) =
gdi
i for all 1 6 i 6 r, and this is quite wasteful if the class group has large

exponent.
It is natural to represent I(K) as Q∗×I(K)/Q∗, as we have done, where

(c, I) represents the ideal cI and I is primitive. Since it is less expensive to
multiply principal ideals than general ideals, we could go one step further
and represent I(K) as (K∗/U(K)) × Cl(K) for some fixed choice of rep-
resentatives for K∗ modulo units and for classes of Cl(K); unfortunately,
obtaining this representation is much harder than ordinary multiplication.
Besides, principal ideals also become large, when raised to a large power.

To improve on these aspects, we use the following representation for
ideals:

I(K) = (Z[OK ]× I(K)) /∼

=

{(∏
i

αei
i , a

)
, αi ∈ OK , ei ∈ Z, a ∈ I(K)

}
/ ∼,

where the first component is a formal product, and ∼ is the obvious equiv-
alence relation: (

∏
i α

ei
i , a) represents the ideal which is the product of the

two components. None of the individual components are well defined, only
their product is. For efficiency reasons, we shall always choose a integral
and primitive. Multiplication is trivial:
Algorithm 7.1
Input: two ideals (

∏
i α

ei
i , a) and (

∏
j β

fj

j , b)
Output: their product

(1) Compute (c, γ, c) := red(ab), such that ab = cγc, and where c = x/y,
x, y ∈ Z.

(2) Output (xy−1γ
∏

i α
ei
i

∏
j β

fj

j , c), where the first component is a mere
concatenation of the factors.
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The precise pseudo-reduction variant used above is irrelevant. Inversion,
hence division, is equally easy. The main advantage of this representation
is that it is easy to compute large products of ideals, without discarding
the principal part, or suffering from coefficient explosion: we always map
Z[OK ] to a sensible domain before evaluating the formal component. The
catch is that testing for equality in a deterministic way becomes non trivial,
but we shall never need it.

7.2. Discrete logarithms in Cl(K). We want to compute discrete loga-
rithms in the class group Cl(K), as in [9, §6.5.5]. It is easier, and sufficient
for most applications as we will shortly see, to obtain the principal part as
an element in the group ring Z[OK ] as follows:
Algorithm 7.2 (Discrete log in Cl(K))
Input: An ideal I ∈ I(K), possibly given as a product of ideals. We are given
Cl(K) = ⊕r

i=1(Z/diZ)gi.

Output: (fj) and β ∈ Z[OK ], such that I = β
∏

j g
fj

j .

(1) Compute I as (α, a), α ∈ Z[OK ], a ∈ I(K), using repeatedly Algo-
rithm 7.1, if I was given in factored form.

(2) Solve the discrete logarithm problem for the small ideal a in Cl(K) as
a = (τ)

∏
i g

ei
i , for some yet unknown principal ideal (τ). (This is done

by multiplying a by random products of prime ideals in the factor base
used to compute the class group, then pseudo-reducing as explained in
§5.3.6, until the ideal component of the reduction is smooth.)

(3) Using again Algorithm 7.1, compute a(
∏

i g
ei
i )−1, as (β, b).

(4) Realize the small principal ideal b as (x), using the same method as
in Step (2), but this time computing logarithmic distance components,
which yield approximate Archimedean embeddings of x, from which x
can be recovered algebraically (see [9, Algorithm 6.5.10]).

(5) Output (ei) and τ := (αβx) ∈ Z[OK ].
Remarks 7.3.

(1) If the generators (gi) are smooth with respect to the factor base, then
it is not necessary to “smooth out” b in Step (4), since the result
of Step (2) can be re-used. The original generators produced by
Buchmann’s algorithm satisfy this property, but arbitrary reduced
representatives may not.

(2) Since x is defined modulo units, one may reduce the logarithmic
Archimedean components of x modulo the logarithmic embeddings
for the units as in Algorithm 7.8, Step (3) (setting ` = 1) in order
to get a possibly smaller representative in Step (4).

(3) [9, Algorithm 6.5.10] adds logarithmic Archimedean components in-
stead of accumulating algebraic elements in the group ring. The
above variant is more practical when the class number is large. In
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particular, we do not need to recognize algebraic integers of huge
height at the end of the computation, which can then be done at a
lower precision (determined using a fast preliminary floating point
computation, which is in general enough to determine x directly).

(4) When the generator is large, the Z[OK ] representation is more com-
pact than the expanded form. Let h be the class number; the number
of terms in the group ring representation for the principal part of∏N

j=1 I
fj

j arising from the above algorithm is

O(log h+
N∑

j=1

log(fj)) = O(log |disc(K)|+
N∑

j=1

log(fj)).

(5) Even if we are interested in computations in Clf(K) it makes sense to
compute as above instead of reducing mod∗f, which would also pre-
vent coefficient explosion. Indeed, we may need to vary the modulus,
for instance when computing the conductor of an abelian extension
using [10, Algorithm 4.4.2], or to study various class fields over K.

We now use the group ring representation of elements for the basic opera-
tions of computational class field theory.

7.3. Signatures.

Definition 7.4. Let f = f0f∞ be a modulus and x ∈ K∗. The signature of
x with respect to f is

s(x, f) := {sign(v(x)), v | f∞} ∈ {−1, 1}f∞ .

For x =
∏

i α
ei
i ∈ Z[OK ], this is computed as

s(x, f) =
∏

i : ei odd

s(αi, f),

where s(α, f) is obtained as in §3.1 for α ∈ OK , using precomputed floating
point approximations of the v(wi), v | f∞. Note that x often originates
from a binary powering algorithm, in which case most ei are even. Also
the height of each individual αi is a priori much smaller than the height of
their product, hence their signature is evaluated in lower precision. More
precisely, low precision approximations are used first, increasing the pre-
cision of the computation until signs can be reliably decided, or until the
precision of the cached data is reached, in which case it is computed to a
higher accuracy.
Remark 7.5. It is possible to compute the signature of α ∈ OK algebraically,
assuming we are given elements (βw) ∈ Of∞

K such that sign(v(βw)) =
(−1)δv,w , for all v, w | f∞, for instance from [10, Algorithm 4.2.20] with
m0 = OK . Namely, Sturm or Uspensky’s algorithm (see [30]) compute the
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number N of real roots of the characteristic polynomial of α in [0,∞). The
characteristic polynomial of αβv has N ± 1 real roots in [0,∞) according
to whether sign(v(α)) = ∓1.

7.4. Finding representatives coprime to f. In order to compute dis-
crete logarithms in Clf(K), we assume that f0 =

∏
p pnp , the finite part of

the modulus, is given in factored form, and that the discrete log problem
is solved in all residue fields OK/p for p | f, which is the case if Np − 1 is
smooth for instance.

We need to map x ∈ Z[OK ] to (OK/f0)∗. This is not completely obvious
since nothing guarantees that the individual components in our representa-
tion (α, a) are coprime to f0, even though they originate from products
of elements in If(K). It is quite easy to recover that situation, using
the uniformizers from §6.1, associated to the prime divisors of f0. Let
a =

∏
i α

ei
i ∈ Z[OK ] represent an element of K coprime to f. To compute

its image in (OK/f)∗ it is enough to compute it in each (OK/p
np)∗. So

consider p as above and τ an anti-uniformizer for p. Recall that we de-
fine cpp(x) := xτvp(x), which is integral if x ∈ OK , and computed using
Algorithm 5.11. Since vp(a) = 0, one has∏

i

cpp(αi)ei = τ vp(a)
∏

i

αei
i = a and (cpp(αi), p) = 1,∀i.

Now the reduction can be computed in the obvious way, reducing each ei
modulo the exponent of (OK/p

np)∗ first. If this exponent is small, we use
non-negative residues so that no modular inversion is needed. Otherwise,
we use a symmetric residue system and split the product into positive and
negative powers, so that at most one inversion is needed. Of course, we
reduce modulo pnp , or rather pnp ∩ Z, along the way to prevent coefficient
explosion.
Remarks 7.6.

(1) Although we may need to vary f as mentioned in §7 [Remark 5], its
prime divisors lie in a fixed set given with the problem, for instance
the divisors of the modulus used to define the extension in the first
place. Hence most of the needed data can be precomputed.

(2) α ∈ Z is a frequent special case e.g., arising from denominators. Let
v = vp(α); the above algorithm replaces α by (αp−v)cpp(p)v, where
both factors are integral and coprime to p. We regroup all powers
of cpp(p), and include them as a whole.

(3) This procedure solves trivially the problem of mapping x ∈ K∗,
(x, p) = 1 to (OK/p

n)∗, by writing x = (xd)d−1, if d is the denomi-
nator of x. Compared to [10, Algorithm 4.2.22], this local variant is
simpler and efficiently prevents coefficient explosion.
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The above method can be directly applied to (OK/f)∗, if we make the anti-
uniformizers coprime to f using the techniques of §6.2.1. This is slower
than the local algorithm, but turns an arbitrary (α, a) ∈ Z[OK ] × I(K),
representing an ideal coprime to f, into (β, b) ≡ (α, a) mod∗f, where all
components are integral and coprime to f. The details are left to the reader.

7.5. Discrete logarithms in Clf(K). We adapt [10, Algorithms 4.3.1 &
4.3.2], noting in passing that concerns about generators size have evapo-
rated, so that the techniques of [10, §4.3.2] are not needed anymore in our
context.
Algorithm 7.7 (Discrete logs in Clf(K))
Input: An ideal (α, a), where (αa, f) = 1. We are given

Cl(K) = ⊕r
i=1(Z/diZ)gi, and Clf(K) = ⊕rf

j=1(Z/DjZ)Gj ,

as well as elements γi ∈ Z[OK ] such that (γigi, f) = 1, computed using
Algorithm 6.8 (without final reduction).

Output: (fj) and β ∈ Z[OK ], β = 1 mod∗f, such that αa = β
∏rf

j=1G
fj

j .

(1) [Work in Cl(K)]. Using Algorithm 7.2, write a = τ
∏r

i=1 g
ei
i , where

τ ∈ Z[OK ].
(2) [Work in (OK/f)∗]. Map ατ

∏r
i=1 γ

−ei
i , which would be coprime to

f in expanded form, to each (OK/p
np)∗ for pnp || f, and compute its

discrete log in (OK/f)∗.
(3) Glue the above results to get the discrete log in Clf(K) as in [10,

Algorithm 4.3.2]. As usual, we do not evaluate the principal part (β ≡
1 mod∗f) of the discrete logarithm, and give it in Z[OK ].

The data linked to the γi is precomputed; this includes their signatures,
and the cpp(γi) from the previous section for each p | f.

7.6. Computing class fields. Cohen [10, Chapter 5] explains how to use
Kummer theory in order to compute the class field associated to a given
subgroup of Clf(K). Using a theorem of Hecke on ramification in Kummer
extensions of prime degree `, he restricts to a small list of S-units, among
which the defining element lies. This method only applies to extensions
whose degree is square free over K: general extensions have to be built in
successive steps. Fieker’s algorithm [17] also uses Kummer theory, but in
a more elegant way, exploiting properties of the Artin map, and does not
restrict the relative degree of the extension.

Both methods let Gal(K(ζ`)/K) operate on various objects (S-units,
ideal classes) to eventually generate defining elements for class fields. All
computations can be done using the Z[OK ] representation, in particular,
the Galois actions are computed componentwise. Now the generating el-
ement we obtain in Z[OK ] needs to be completely evaluated to produce
the required defining polynomial. We make explicit this final evaluation,
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using the fact that these elements are defined modulo `-th powers to avoid
coefficient explosion:
Algorithm 7.8 (Reduction modulo (K∗)`)
Input: γ =

∏
i γ

ei
i ∈ Z[OK ], ` > 2 an integer.

Output: β = γ mod (K∗)`, β ∈ OK .

(1) [exponent reduction]. Reduce all ei modulo ` (to [0, `−1]), and remove
the components with 0 exponent. Let γ′ be the resulting group ring
element.

(2) [reduce approximate `-th root ideal].

(a) Partially factor each γi into prime ideals (factor Nγi by trial divi-
sion up to some bound) and write (γ′) =

∏
I I

eI , where I is prime
or has large norm.

(b) Compute (γ, J) :=
∏

I I
beI/`c using repeatedly Algorithm 7.1.

(c) Let γ′′ := γ′γ−` ∈ Z[OK ]: its expansion would be in OK and
should be relatively small.

(3) [reduce mod units]. Let r := r1 + r2 − 1, (ηi)16i6r a system of
fundamental units in O∗

K , and let Λ(x) := (log |x|σk
)16k6r+1 ∈ Rr+1

denote the Dirichlet embeddings of x ∈ K. For the LLL constant α,
LLL-reduce the matrix(

0 . . . 0 C
`Λ(η1) . . . `Λ(ηr) Λ(γ′′)

)
,

where C is a large enough constant:

C > αr/2M, with M := ` max
16i6r

‖Λ(ηi)‖2.

(4) The last vector in the LLL base change matrix has the form u =
(u1, . . . , ur,±1)t. If its last coordinate is negative, negate u.

(5) Expand β := γ′′
∏

i η
`ui
i ∈ OK , either by direct recognition from its

embeddings if the accuracy is sufficient, or using modular techniques
and chinese remaindering together with the bound on the embeddings
obtained from the floating point computation.

Proof. The only non-obvious part is the assertion in Step (4). Let
(bi)16i6r+1 be the reduced basis obtained in Step (3). The first r vec-
tors of the original basis of our rank r+1 lattice are smaller than M , hence
‖bi‖2 6 αr/2M < C for 1 6 i 6 r by Proposition 4.1. This implies that the
first coordinate of bi is 0 for i 6 r, and the assertion follows. �

Note that (Λ(η1), . . . ,Λ(ηr)) is a by-product of the class group algorithm
([9, §6.5]), and is reduced once and for all. Step (2) is similar to Mont-
gomery’s square root for the Number Field Sieve [27, 16], generalized to
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`-th powers and inexact root extraction10. We then make explicit use of
our knowledge of the maximal order and its units.
Remark 7.9. In the context of class field computations using Kummer the-
ory, the γi are completely factored in Step (2a), since all components of γ
are S-units for an explicit set S contained in the set of prime divisors of `f.
In Step (2c), we then have∣∣Nγ′′∣∣ 6 NJ

∏
p|`f

(Np)`−1 6 NJ ·N(`f)`−1,

where NJ is bounded be a constant depending only on K. Nevertheless,
‖γ′′‖ may still be large.
Remark 7.10. We could further borrow from Montgomery the idea of al-
lowing negative exponents in Step (1) so as to foster cancellations if the
support of γ is small, as is the case in both NFS and class field compu-
tations (see Nguyen [28] for various such strategies). Since the support of
γ is so much smaller in our case than in NFS, it does not seem worth the
effort.

7.7. Examples. We implemented the methods explained in this section in
the Pari library, as the routine rnfkummer, which uses Cohen’s method11.

7.7.1. A simple example. For the very simple example in [10, §5.6.2], us-
ing fully evaluated elements yields an absolute equation with “rather large
coefficients (typically 15 digits), and very large discriminant (typically 2000
decimal digits)”[loc. cit.]. Our implementation using formal products pro-
duces in 2s the already nice-looking relative equation

X3 + (6z4 − 18z3 + 6z2 − 18z − 12)X + (4z5 − 30z4 − 32z2 − 24z − 4),

without applying any reduction algorithm besides the reduction modulo
third powers from Algorithm 7.8; the absolute norm of its discriminant
has 22 decimal digits. The corresponding absolute equation has L2 norm
≈ 3.106, a discriminant of 178 decimal digits and is trivial to reduce using
[11], since the field discriminant is completely factored.

7.7.2. A difficult example. When the class group of K(ζ`) is large, com-
putations using fully evaluated elements are impossible due to coefficient
explosion. We shall see they are extremely fast using the factored represen-
tation, once the class group and units of K(ζ`) are computed. The latter
remains the bottleneck of all methods using Kummer theory.

10If, as in NFS, we want to compute an exact `-th root, we accumulate separately the `-th
powers discarded above. In NFS, one is interested in an `-th root modulo a fixed integer and

coefficient explosion does not occur when expanding this result.
11This code is included in Pari/Gp version 2.2.4 and onward.
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The following problem was contributed by Schein: compute the Hilbert
class field of K = Q(

√
181433), which is a degree ` = 5 extension. Alas,

the computed class group12 of K(ζ`) has type Z/3620Z × Z/20Z, so fully
evaluated algebraic numbers are useless here: many of the ones we need
to manipulate incorporate 3620-th (or worse) powers. Working with float-
ing point embeddings in discrete log computations implementing [9, Algo-
rithm 6.5.10] requires about 105 decimal digits of accuracy. This is imprac-
tical.

Computing tentative class group and units for K(ζ`), a randomized pro-
cess, takes between 40s and 2 min depending on the chosen random seed.
Using the techniques of this section, manipulating the same huge elements
in a different form, we quickly produce a relative polynomial P ∈ K[X],
supposedly defining the Hilbert class field of K (15 seconds). This P is still
large: NK/Q(disc(P )) has 2628 decimal digits. We compute the absolute
extension (< 10ms), use a polynomial reduction algorithm (1min 45s) and
search for subfields [23] (< 10ms) to eventually produce the polynomial

X5 −X4 − 77X3 − 71X2 + 360X − 169

which is easily seen to define the required unramified extension of K. For
instance, it is enough to notice that the quintic field it generates is totally
real and has discriminant disc(K)2.

The Stark units algorithm of Cohen-Roblot [13] produces a relative poly-
nomial of comparable size (the norm of its discriminant has 2485 decimal
digits), but is more cumbersome: it requires about 45 minutes computa-
tional time, using 600 MBytes RAM in the Pari implementation (one can
dispense with precomputations and reduce memory usage to our default 10
MBytes, roughly tripling running times).
Remark 7.11. To compute a class field of relative degree

∏
p p

ep , the meth-
ods of Cohen and Fieker both spend most of their time determining tenta-
tive class groups and units for the K(ζpep ). In addition, Cohen’s method
also needs to compute the invariants of the K(ζpi) for 1 6 i < ep, but
these are smaller degree fields, a priori easier to handle. So it might still
be competitive in the general case.

12This part of the computation uses heuristic bounds and does not yield a proven result,
even assuming the GRH. For this reason, our class field algorithms are of Monte-Carlo type

(randomized, with possibly wrong result). This is harmless in practice since the final defining
polynomial is easy to check.
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Qp. J. Théor. Nombres Bordeaux 14 (2002), no. 1, 151–169.
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