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Average order in cyclic groups

par Joachim von zur GATHEN, Arnold KNOPFMACHER,

Florian LUCA, Lutz G. LUCHT et Igor E. SHPARLINSKI

Résumé. Pour chaque entier naturel n, nous déterminons l’ordre
moyen α(n) des éléments du groupe cyclique d’ordre n. Nous mon-
trons que plus de la moitié de la contribution à α(n) provient des
ϕ(n) éléments primitifs d’ordre n. Il est par conséquent intéressant
d’étudier également la fonction β(n) = α(n)/ϕ(n). Nous détermi-
nons le comportement moyen de α, β, 1/β et considérons aussi
ces fonctions dans le cas du groupe multiplicatif d’un corps fini.

Abstract. For each natural number n we determine the average
order α(n) of the elements in a cyclic group of order n. We show
that more than half of the contribution to α(n) comes from the
ϕ(n) primitive elements of order n. It is therefore of interest to
study also the function β(n) = α(n)/ϕ(n). We determine the
mean behavior of α, β, 1/β, and also consider these functions in
the multiplicative groups of finite fields.

Section 1. Introduction

For a positive integer n, we determine the average order α(n) of the
elements in the additive cyclic group Zn of order n. The major contribution
to α(n) is from the ϕ(n) primitive elements in Zn, each of order n. We show
that, in fact, the other elements never contribute more than the primitive
ones do.

More precisely, we consider the relative version β(n) = α(n)/ϕ(n). With

A =
ζ(2)ζ(3)

ζ(6)
=

315 ζ(3)
2π4

≈ 1.94359 64368

we have for n ≥ 2:

1 = lim inf
n−→∞

β(n) < β(n) < lim sup
n−→∞

β(n) = A.

We also determine the mean behavior of α, β, and 1/β, and discuss the
average order of elements in the multiplicative groups of finite fields. The
lower bounds for β are different for even and for odd characteristic.

Manuscrit reçu le 19 avril 2002.
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The original motivation for this research was the usage of groups in
cryptography. Here one looks for cyclic groups of large order (preferably a
prime number). If we take a finite field and pick a random element from
it, how large can we expect its order to be? Intuition says that one should
avoid fields whose multiplicative group order is largely made up from small
prime factors. The results of this paper put this intuition on a firm basis.

Section 2. The average order

For a ∈ Zn, we denote by ord(a) its order in the additive group Zn.
Then ord(a) divides n, and for each divisor d of n, there are exactly ϕ(d)
elements in Zn of order d. Thus the average order in Zn is

α(n) =
1
n

∑
a∈Zn

ord(a) =
1
n

∑
d|n

dϕ(d).

The main contribution is the term with d = n, and we normalize by it:

β(n) =
α(n)
ϕ(n)

.

Since 1/n and ϕ(n) are multiplicative functions of n, so is their Dirichlet
convolution α(n) (see Apostol 1976, Theorem 2.14), and also β(n). We first
determine their values in the case of a prime power.

Lemma 2.1. Let p be a prime and k ≥ 1 an integer. Then

α(pk) =
pk+1

p + 1
+

1
pk(p + 1)

, β(pk) = 1 +
1

p2 − 1

(
1 +

1
p2k−1

)
.

In particular β(1) = 1 < β(pk+1) < β(pk) ≤ β(p) = 1 + 1/(p2 − p).

Proof. We have

α(pk) =
1
pk

∑
0≤i≤k

piϕ(pi) =
1
pk

(
1 +

∑
1≤i≤k

(p− 1) · p2i−1

)

=
p2k+1 + 1
pk(p + 1)

,

β(pk) =
p2k+1 + 1

pk(p + 1)(p− 1)pk−1
= 1 +

1
p2 − 1

(
1 +

1
p2k−1

)
. �

Theorem 2.2. For an integer n ≥ 2, we have the following inequalities.

(i) 1 ≤
∏
p|n

(
1 +

1
p2 − 1

)
< β(n) ≤

∏
p|n

(
1 +

1
p(p− 1)

)
< A.

(ii) 1 = lim inf
n−→∞

β(n) < β(n) < lim sup
n−→∞

β(n) = A.
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Proof. We have∏
p prime

(
1 +

1
p(p− 1)

)
=

∏
p prime

1− p−1 + p−2

1− p−1

=
∏

p prime

1− p−6

(1− p−2)(1− p−3)
=

ζ(2)ζ(3)
ζ(6)

= A.

Claim (i) now follows from the multiplicativity of β and the lemma. For
(ii), we clearly have 1 < β(n) < A for all n ≥ 2. When n ranges through
the primes, then β(n) = 1 + 1

n(n−1) tends to 1, and when nk is the product
of the first k primes, then limk→∞ β(nk) = A. �
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Figure 2.1. Relative average order β(n) for n ≤ 1000.

Figure 2.1 shows the behavior of β(n) for n ≤ 1000. The visible bands
at 1 = β(1), 1.5 = β(2), 1.17 ≈ β(3), for example, are created by numbers
of the form n = kp with small k and p either prime or having only large
prime factors, namely k = 1, 2, 3 for the bands mentioned.

We have seen that α(n) is firmly wedged between ϕ(n) and A · ϕ(n).
Since lim infn→∞ ϕ(n)/n = 0, we also have

lim inf
n→∞

α(n)/n = 0.

Theorem 4.4 below shows that this lower limit is even obtained on subse-
quences corresponding to the multiplicative groups of finite fields.
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Our upper limit A occurs in several other contexts. Kendall & Rankin
(1947), Section 3, consider the number of divisors of n that are divisible
by the squarefree part of n, and show that its asymptotic mean value is
A. Knopfmacher (1973) gives a more precise description of the mean value,
and Knopfmacher (1972), Theorem 3.1 (vi), presents a generalization. The
moments of this function are studied in Knopfmacher & Ridley (1974),
Theorem 4.4. LeVeque (1977), Problem 6.5, determines A as the sum given
in (3.7) below, and shows that the asymptotic mean of 1/ϕ is Ax−1 log x.
The constant A also appears in Bateman (1972), Montgomery (1970), and
Riesel & Vaughan (1983).

Throughout the paper, log x is the natural logarithm of x.

Section 3. The mean average order

In this section, we determine the mean of the averaging functions α and
β, and of γ = 1/β. A pleasant feature, due to double averaging, is that the
error terms become rather small. We denote the average of an arithmetic
function g by ḡ—not to be confused with complex conjugation:

ḡ(x) =
1
x

∑
1≤n≤x

g(n)

for x ≥ 1. There is a well-developed theory with many general results
about the existence of means of arithmetic functions, see Elliott (1985);
Indlekofer (1980, 1981); Postnikov (1988). However, those general results
do not imply the specific statements of this work.

The average ᾱ is connected to the constant

Cα =
ζ(3)
2ζ(2)

=
3ζ(3)
π2

≈ 0.36538 14847.

Theorem 3.1. The mean ᾱ of α satisfies

ᾱ(x) = Cαx + O((log x)2/3(loglog x)4/3) for x ≥ 3.

Proof. We have

ᾱ(x) =
1
x

∑
1≤n≤x

α(n) =
1
x

∑
1≤n≤x

1
n

∑
d|n

dϕ(d) =
1
x

∑
1≤k≤x

1
k

∑
d≤x/k

ϕ(d).

Walfisz (1963), Chapter IV, proves via exponential sum estimates that∣∣∣ϕ̄(x)− x

2ζ(2)

∣∣∣ ≤ c (log x)2/3(loglog x)4/3 for x ≥ 3,

with some constant c. Now from∑
x<k

1
k3

≤
∫ ∞

x−1

dt

t3
=

1
2(x− 1)2
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we obtain

|ᾱ(x)− Cαx| =
∣∣∣∣1x ∑

1≤k≤x

1
k

∑
1≤d≤x/k

ϕ(d)− 1
x

∑
1≤k≤x

1
k
· x2

2ζ(2)k2

+
1
x

∑
1≤k≤x

1
k
· x2

2ζ(2)k2
− ζ(3)x

2ζ(2)

∣∣∣∣
<

1
x

∑
1≤k≤x

1
k
· x

k
· c (log x)2/3(loglog x)4/3 +

x

2ζ(2)

∑
x<k

1
k3

≤ c ζ(2)(log x)2/3(loglog x)4/3 +
x

4ζ(2)(x− 1)2
. �

Montgomery (1987) has shown that the error in the estimate for ϕ̄(x) is
not O((loglog x)1/2), and conjectured that its maximum order is loglog x.

We also have an explicit but worse error bound, both for ϕ̄ and for ᾱ.

Lemma 3.2. For x ≥ 1, we have

(i)
∣∣∣ϕ̄(x)− x

2ζ(2)

∣∣∣ < 2 + log x,

(ii)
∣∣ᾱ(x)− Cαx

∣∣ < 4 + ζ(2) log x.

Proof. It is easily verified that (i) holds for 1 ≤ x < 2. We let x ≥ 2,
and observe that ∑

1≤d≤x

µ(d)
⌊x

d

⌋
= 1

for x ≥ 1, see (Apostol 1976, Theorem 3.12). It follows that

ϕ̄(x) =
1
2x

∑
1≤d≤x

µ(d)
(⌊x

d

⌋2
+

⌊x

d

⌋)
=

1
2x

∑
1≤d≤x

µ(d)
⌊x

d

⌋2
+

1
2x

=
x

2

∑
1≤d≤x

µ(d)
d2

− 1
2x

∑
1≤d≤x

µ(d)
(x

d
−

⌊x

d

⌋) (x

d
+

⌊x

d

⌋)
+

1
2x

.

Hence
ϕ̄(x)− x

2ζ(2)
= R(x)

with

|R(x)| =

∣∣∣∣∣∣−x

2

∑
d>x

µ(d)
d2

− 1
2x

∑
1≤d≤x

µ(d)
(x

d
−

⌊x

d

⌋) (x

d
+

⌊x

d

⌋)
+

1
2x

∣∣∣∣∣∣
≤ x

2

∑
d>x

1
d2

+
∑

1≤d≤x

1
d

+
1
2x

.
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By inserting the estimates∑
d>x

1
d2

≤
∫ ∞

bxc

dt

t2
=

1
bxc

,
∑

1≤d≤x

1
d
≤ 1 +

∫ x

1

dt

t
= 1 + log x,

we see that for x ≥ 2

|R(x)| ≤ 1 + log x +
1
2

(
x

bxc
+

1
x

)
< 2 + log x.

This shows (i), and (ii) follows by inserting (i) into the proof of Theorem 3.1.
�

For two arithmetic functions f, g : N −→ C, f ∗ g is their Dirichlet con-
volution, with

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d)

for all n. Furthermore, we denote by 1 the constant function on N with
value 1, and µ is the Möbius function.

Lemma 3.3. Let f and g be arithmetic functions with f = 1 ∗ g, and
consider the Dirichlet series

g̃(s) =
∑
n≥1

g(n)
ns

.

(i) If g̃(s) is absolutely convergent for <s ≥ 0, then the mean of f is

f̄(x) = g̃(1) + O

(
1
x

)
,

and more precisely

|f̄(x)− g̃(1)| ≤ 1
x

∑
n≥1

|g(n)|

for x ≥ 1.
(ii) If f is multiplicative and g̃(s) converges absolutely for some s with

<s ≥ 0, then g̃(s) can be written as the Euler product

g̃(s) =
∏

p prime

(
1 +

g(p)
ps

+
g(p2)
p2s

+ · · ·
)
.

The absolute convergence of g̃(s) is equivalent to∑
p prime

k≥1

|f(pk)− f(pk−1)|
pks

< ∞ .
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Proof. For x ≥ 1, we have∣∣∣∣∣∣
∑
n≤x

f(n)− xg̃(1)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
d≤x

g(d)
⌊

x

d

⌋
− xg̃(1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣x
∑
d≤x

g(d)
d

− xg̃(1)

∣∣∣∣∣∣ +
∑
d≤x

|g(d)|

≤ x
∑
d>x

|g(d)|
d

+
∑
d≤x

|g(d)| ≤
∑
1≤d

|g(d)|,

which implies (i).
If f is multiplicative, then so is g = µ ∗ f , and g(pk) = f(pk)− f(pk−1)

for all primes p and k ∈ N . Now the Euler product representation of
g̃(s) follows from the unique factorization theorem. If g̃(s) is absolutely
convergent, then so is the partial series

∑
g(pk) p−ks taken over all prime

powers pk. Conversely, absolute convergence of the latter series implies that
for any x ≥ 1∑

n≤x

|g(n)|
n<s

≤
∏
p≤x

p prime

(
1 +

∑
k≥1

|g(pk)|
pk<s

)

≤
∏
p≤x

p prime

exp
( ∑

k≥1

|g(pk)|
pk<s

)
≤ exp

( ∑
p prime

k≥1

|g(pk)|
pk<s

)
< ∞ .

Thus g̃(s) converges absolutely, which finishes the proof of (ii). �

The mean of β is connected to the constant

Cβ =
ζ(3)ζ(4)

ζ(8)
=

105 ζ(3)
π4

≈ 1.29573 09579.

Theorem 3.4. The average value β̄ of β equals Cβ + O(x−1), and more
precisely

|β̄(x)− Cβ| < x−1
∏

p prime

(
1 +

p + 2
p3 − p

)
for x ≥ 1.

Proof. We use Lemma 3.3 with f = β and g = µ ∗ β. Thus

g(pk) = β(pk)− β(pk−1) =


1

p(p− 1)
for k = 1,

− 1
p2k−1

for k ≥ 2,
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for a prime p and an integer k ≥ 1 . Due to

(3.5)
∑
k≥1

|g(pk)| = 1
p (p− 1)

+
∑
k≥2

1
p2k−1

=
p + 2
p3 − p

,

the series
∑
|g(pk)| p−k<s taken over all prime powers pk converges for

<s ≥ 0, and Lemma 3.3 (ii) implies the absolute convergence of the Dirichlet
series g̃(s). In particular, we obtain

g̃(1) =
∏

p prime

(
1 +

1
p2(p− 1)

−
∑
k≥2

1
p3k−1

)
=

∏
p prime

(
1 +

p + 1
p (p3 − 1)

)

=
∏

p prime

1 + p−4

1− p−3
=

∏
p prime

1− p−8

(1− p−3)(1− p−4)
=

ζ(3) ζ(4)
ζ(8)

= Cβ .

Finally, Lemma 3.3 combined with (3.5) yields

|β̄(x)− Cβ| < x−1
∑
d≥1

|g(d)| = x−1
∏

p prime

(
1 +

∑
k≥1

|g(pk)|
)

= x−1
∏

p prime

(
1 +

p + 2
p3 − p

)
≈ 2.26507 69892 · x−1,

which completes the proof. �

It is interesting to compare the behavior of β̄(x) ≈ ζ(3)ζ(4)/ζ(8) with
its naive “prediction” ᾱ(x)/ϕ̄(x) ≈ ζ(3), see Theorem 3.1 and Lemma 3.2.
We have ζ(4)/ζ(8) ≈ 1.07792 81367.

Figure 3.1 shows the behavior of

(3.6) (β̄(x)− Cβ) · x ·
∏

p prime

(
1 +

p + 2
p3 − p

)−1

for integer x ≤ 1000. Theorem 3.4 says that this quantity is absolutely
smaller than 1.

We can also express our constants A and Cβ as sums of Dirichlet series
via the Euler product decomposition∑

1≤n

f(n) =
∏

p prime

(1 + f(p) + f(p2) + · · · ),

which is valid for a multiplicative function f in the case of absolute con-
vergence. Now

1 +
1

p(p− 1)
=

∑
0≤k

(µ(pk))2

pkϕ(pk)
, 1 +

1
p(p3 − 1)

=
∑
0≤k

(µ(pk))2

pkϕ(pk)σ(p2k)
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Figure 3.1. The average of β normalized as in (3.6).

imply that

(3.7) A =
∑
1≤n

(µ(n))2

nϕ(n)
, Cβ =

∑
1≤n

(µ(n))2

nϕ(n)σ(n2)
.

Both series seem to converge much slower than the product representations.
The mean of the function γ = 1/β = ϕ/α is connected to the constant

Cγ =
∏

p prime

(
1− 1

p

)(
1 +

(
1− 1

p2

) ∑
1≤k

1
pk + p−k−1

)
≈ 0.80146 96934.

Theorem 3.8. The mean γ̄ of γ satisfies γ̄(x) = Cγ + O(x−1), and more
precisely,

|γ̄(x)− Cγ | ≤ Dx−1

for a constant D which is explicitly given in the proof below.

Proof. Again, we use Lemma 3.3, with the multiplicative function f = γ.
For a prime p and k ≥ 1, we have

f(pk) =
1

β(pk)
=

1− p−2

1 + p−2k−1
,
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by Lemma 2.1. For the multiplicative function g = µ ∗ f we find

g(pk) = f(pk)− f(pk−1) =


− 1 + p−1

p2(1 + p−3)
if k = 1,

1
p2k−1(1 + p−2k+1)(1 + p−2k−1)

if k ≥ 2.

Thus the Dirichlet series g̃(s) is absolutely convergent for <s ≥ 0. We have

g̃(1) =
∑
1≤n

g(n)
n

=
∏

p prime

(
1 +

∑
1≤k

g(pk)
pk

)
.

For a prime p, the factor in this product equals

1 +
∑
1≤k

g(pk)
pk

= 1 +
∑
1≤k

f(pk)− f(pk−1)
pk

= 1− 1
p

+
∑
1≤k

(
1− 1

p

)
f(pk)

pk

=
(

1− 1
p

)(
1 +

(
1− 1

p2

) ∑
1≤k

1
pk + p−k−1

)
.

Lemma 3.3 now implies that

|γ̄(x)− Cγ | ≤
1
x

∑
1≤n

|g(n)|,

and the claim follows from the absolute convergence of g̃(0). A numerical
evaluation of the error term gives

D =
∑
1≤n

|g(n)| =
∏

p prime

(
1 +

∑
1≤k

|g(pk)|
)
≈ 1.96531. �

We have Cβ · Cγ ≈ 1.03848 90929.

Section 4. Finite fields

Our original motivation for this work was to study the average order
in the (cyclic) multiplicative group F×q = Fq\{0} of a finite field Fq. We
first show that for the two families q = 2k and q a prime, α(q − 1)/(q − 1)
is on average between two positive constants, and also exhibit subfamilies
for which this quotient tends to zero. We also obtain several results for
β(q − 1).

Theorem 4.1. There are two absolute constants A2 ≥ A1 > 0 such that
for all K ≥ 1

A1 ≤
1
K

∑
1≤k≤K

α(2k − 1)
2k − 1

≤ A2.
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Proof. We use the asymptotic formula from Shparlinski (1990)

(4.2)
1
K

∑
1≤k≤K

ϕ(2k − 1)
2k − 1

= η + O(K−1 log K),

with η given by the absolutely convergent series

η =
∑
d odd

µ(d)
dtd

≈ 0.73192,

where td is the multiplicative order of 2 modulo d. The claim follows from
(4.2) and Theorem 2.2. �

The proof of Theorem 4.1 implies that for any constant c < η, α(2k−1) ≥
c · (2k − 1) for infinitely many integers k. We may, of course, take A2 = 1
in Theorem 4.1; it is not clear whether Theorem 4.1 holds with a smaller
value of A2. We also see that for any ε > 0 and sufficiently large values of
K, Theorem 4.1 holds with A1 = η − ε.

Stephens (1969) shows in his Lemma 1 that∑
p≤x

ϕ(p− 1)
p

= κ lix + O(x/(log x)D),

where

κ =
∑
d≥1

µ(d)
dϕ(d)

=
∏
p

(
1− 1

p(p− 1)

)
≈ 0.37397

is Artin’s constant and D > 1 is arbitrary. The sum does not change by
much if we replace p by p− 1 in the denominator, since∑

p≤x

ϕ(p− 1)
p− 1

=
∑
p≤x

ϕ(p− 1)
p

+ O(log log x).

Using the bounds of Theorem 2.2 on β = α/ϕ, the fact that p − 1 is even
for p ≥ 3, and β(2) = 3/2, we find that

(4.3)
3κ

2
− ε ≤ 1

x

∑
p≤x

α(p− 1)
p− 1

≤ Aκ + ε,

for any ε > 0 and sufficiently large x.
Thus there is an infinite sequence of fields of characteristic 2, and also one

of prime fields, in which the average order is close to its largest possible
value. Now we show that α(2k − 1) and α(p − 1) infinitely often take
relatively small values, just as ϕ(2k − 1) and ϕ(p− 1) do.
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Theorem 4.4. For infinitely many integers k ≥ 3 and for infinitely many
primes p, we have

α(2k − 1)
2k − 1

= O

(
1

loglog k

)
and

α(p− 1)
p− 1

= O

(
1

loglog p

)
.

Proof. Let pi denote the ith prime. For an integer r ≥ 1, we put

kr = (p2 − 1) · · · (pr − 1) and mr = p2 · · · pr = nr/2.

Then mr divides 2kr − 1, and therefore

α
(
2kr − 1

)
< A · ϕ

(
2kr − 1

)
≤ A · (2kr − 1)ϕ(mr)

mr
.

Using the bound

ϕ(mr) = O

(
mr

log(log mr + 1)

)
(see Hardy & Wright (1962), Theorem 328) and kr < mr, we obtain the
first statement.

To prove the second bound, we select qr as the smallest prime number
in the arithmetic progression 1 mod mr. Then

α(qr − 1) < A · ϕ(qr − 1) ≤ A · (qr − 1)ϕ(mr)
mr

= O

(
qr

log(log mr + 1)

)
.

From Linnik’s Theorem on the smallest prime number in an arithmetic
progression, we have log qr = O(log mr), and the result follows. �

In particular,

lim inf
k→∞

α(2k − 1)/(2k − 1) = lim inf
q prime

α(q − 1)/(q − 1) = 0.

Open Question. Obtain analogs of (4.2) and (4.3) for the sums∑
1≤k≤K

α(2k − 1)
2k − 1

,
∑

1≤k≤K

β(2k−1),
∑
p≤K

α(p− 1)
p− 1

,
∑
p≤K

β(p−1).

In the above we considered only α(2k − 1). Similar results also hold for
α(pk − 1) for any fixed p and growing k.

The convergence to zero of α(qr−1)/(qr−1) as above seems rather slow.
For the largest known “primorial prime” q = n33 237 + 1, where as before
nk is the product of the first k primes (see Caldwell & Gallot 2000), with
169 966 digits and the largest prime factor p33 237 = 392 113 of q − 1, we
have α(q − 1)/(q − 1) ≈ 0.0847. Also, β(q − 1) ≈ 1.94359 608 is close to A.

Concerning lower bounds for β, the situation is quite different between
characteristic 2 and odd characteristic.
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In a finite field F2k of characteristic 2, the group of units is cyclic with
2k − 1 elements. For a Mersenne prime Mk = 2k − 1, we have β(Mk) =
1 + (M2

k −Mk)−1. If there are infinitely many of them, then lim inf β(2k −
1) = 1. For the current world record k = 69 72593 (see Chris Caldwell’s
web site http://www.utm.edu/research/primes), we have β(Mk) ≈ 1 +
0.52 · 10−41 97919.

For a field Fq of odd characteristic, 2 divides q − 1 = #F×q and thus
β(q − 1) > 4/3, by Lemma 2.1. For a prime q = m2k + 1 with m odd, we
have

β(q − 1) =
4
3

(
1 +

1
22k+1

)
· β(m).

As an example, with the prime m = 10500 + 961 and k = 3103, q is indeed
prime (Keller 2000), and

β(q − 1) ≈ 4
3
(1 + 10−1000).

We now prove the limits indicated by these experimental results.

Theorem 4.5. We have

(i) lim inf
p prime

β(p− 1) = 4/3,

(ii) lim sup
p prime

β(p− 1) = A,

(iii) lim inf
k→∞

β(2k − 1) = 1.

Proof. To show that the limit in (i) is at least 4/3, we notice that if
p ≥ 3, then p − 1 = 2km with some k ≥ 1 and some odd integer m, and
therefore

β(p− 1) = β(2km) =
4
3

(
1 +

1
22k+1

)
β(m) >

4
3
.

For the equality in (i), we use a theorem of Chen (see Chen (1973), or
Lemma 1.2 in Ford (1999), or Chapter 11 of Halberstam & Richert (1974))
which says that for each even natural number n there exists x0 such that
for every x ≥ x0 there exists a prime number p ∈ (x/2, x] with p ≡ 1 mod n
such that (p−1)/n has at most two prime factors, and each of them exceeds
x1/10.

We now choose a positive integer k and apply Chen’s Theorem with
n = 2k to conclude that there exist infinitely many prime numbers p such
that p − 1 = 2km, where m has at most two prime factors, and each of
them exceeds p1/10. For such prime numbers p, we have

β(p− 1) = β(2km) = β(2k)β(m) =
4
3

(
1 +

1
22k+1

)
β(m).
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If m is prime, then

β(m) = 1 +
1

m(m− 1)
,

if m = r2 is a square of a prime, we have

β(m) = 1 +
r3 + 1

r3(r2 − 1)
,

while if m = rs is a product of two distinct primes, then

β(m) =
(
1 +

1
r(r − 1)

)(
1 +

1
s(s− 1)

)
,

by Lemma 1. At any rate, with k fixed and p tending to infinity through

prime numbers of the above form, we get that the number
4
3

(
1 +

1
22k+1

)
is a cluster point for the set B = {β(p− 1) : p prime}. Since this is true for
all positive integers k, we get that 4/3 is also a cluster point for B, which
takes care of (i).

For (ii), Theorem 1 says that the limit in (ii) is at most A. To show
equality, we let x be a large positive real number, write

Px =
∏
p≤x

p,

and let qx be the smallest prime number in the arithmetic progression
Px+1 mod P 2

x , which exists by Dirichlet’s Theorem, since Px+1 is coprime
to P 2

x . We have qx − 1 ≡ Px mod P 2
x and may write

qx − 1 = Pxmx,

where each prime factor of mx is larger than x. Thus

β(qx − 1) = β(Px)β(mx) =
∏
p≤x

(
1 +

1
p(p− 1)

)
· β(mx),

β(qx − 1)
A

= β(mx) ·
∏
p>x

(
1 +

1
p(p− 1)

)−1
.

(4.6)

We now consider the prime factorization

mx = pe1
1 · · · pek

k

of mx, where p1, . . . , pk > x are distinct primes and e1, . . . , ek are positive
integers. Then

1 < β(mx) ≤
∏

1≤i≤k

β(pi) =
∏

1≤i≤k

(
1 +

1
pi(pi − 1)

)
<

∏
x<p

(
1 +

1
p(p− 1)

)
< exp

(∑
x<p

1
p(p− 1)

)
= 1 + O(x−1).

(4.7)
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Now (4.6) and (4.7) imply that

lim
x→∞

β(qx − 1)
A

= 1,

which takes care of (ii). To prove (iii), we show that

lim
p prime

β(2p − 1) = 1.(4.8)

If d and n are positive integers with d dividing n, then ϕ(d) ≤ ϕ(n). Hence

1 < β(n) =
1
n

∑
d|n

d
ϕ(d)
ϕ(n)

≤ 1
n

∑
d|n

d =
σ(n)

n
<

n

ϕ(n)
.

Let p be any prime number and consider the prime factorization

2p − 1 = pe1
1 · · · pek

k

of 2p − 1. For any i ≤ k, we have 2p ≡ 1 mod pi, so that the order of
2 modulo pi divides p. Since p is prime, it equals this order, and hence
pi ≡ 1 mod p. In particular, pi > p, and therefore

2p > 2p − 1 ≥ p1 · · · pk > pk,

so that k < p/ log2 p. Thus

1 < β(2p − 1) <
2p − 1

ϕ(2p − 1)
=

k∏
i=1

(
1 +

1
pi − 1

)
≤

(
1 +

1
p

)k
< exp

(k

p

)
< exp

( 1
log2 p

)
= 1 + o(1),

which proves (4.8). �
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