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Geometric study of the beta-integers for a Perron

number and mathematical quasicrystals
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Résumé. Nous étudions géométriquement les ensembles de points
de R obtenus par la β-numération que sont les β-entiers Zβ ⊂
Z[β] où β est un nombre de Perron. Nous montrons qu’il existe
deux schémas de coupe-et-projection canoniques associés à la β-
numération, où les β-entiers se relèvent en certains points du
réseau Zm (m = degré de β) , situés autour du sous-espace propre
dominant de la matrice compagnon de β . Lorsque β est en
particulier un nombre de Pisot, nous redonnons une preuve du fait
que Zβ est un ensemble de Meyer. Dans les espaces internes les
fenêtres d’acceptation canoniques sont des fractals dont l’une est
le fractal de Rauzy (à quasi-homothétie près). Nous le montrons
sur un exemple. Nous montrons que Zβ ∩R+ est de type fini sur
N, faisons le lien avec la classification de Lagarias des ensembles
de Delaunay et donnons une borne supérieure effective de l’entier
q dans la relation : x, y ∈ Zβ =⇒ x+y (respectivement x−y ) ∈
β−q Zβ lorsque x+y (respectivement x−y ) a un β-développement
de Rényi fini.

Abstract. We investigate in a geometrical way the point sets
of R obtained by the β-numeration that are the β-integers
Zβ ⊂ Z[β] where β is a Perron number. We show that there
exist two canonical cut-and-project schemes associated with the
β-numeration, allowing to lift up the β-integers to some points
of the lattice Zm (m = degree of β) lying about the dominant
eigenspace of the companion matrix of β . When β is in par-
ticular a Pisot number, this framework gives another proof of the
fact that Zβ is a Meyer set. In the internal spaces, the canoni-
cal acceptance windows are fractals and one of them is the Rauzy
fractal (up to quasi-dilation). We show it on an example. We show
that Zβ ∩R+ is finitely generated over N and make a link with
the classification of Delone sets proposed by Lagarias. Finally we
give an effective upper bound for the integer q taking place in
the relation: x, y ∈ Zβ =⇒ x+ y (respectively x− y ) ∈ β−q Zβ

if x+ y (respectively x− y ) has a finite Rényi β-expansion.

Manuscrit reçu le 7 mai 2002.
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1. Introduction

Gazeau [Gaz], Burdik et al [Bu] have shown how to construct a discrete
set Zβ ⊂ Z[β] ⊂ R which is a Delone set [Mo], called set of β-integers
(or beta-integers), when β > 1 is a Pisot number of degree greater than
2. A beta-integer has by definition no fractional part in its Rényi β-
expansion [Re] [Pa]. As basic feature, this Delone set is self-similar, namely
β Zβ ⊂ Zβ.

Since the general notion of β-expansion of real numbers (see section 2
for definitions) was created by Rényi for any real number β > 1, the set
of beta-integers Zβ, defined as the set of real numbers equal to the integer
part of their β-development, is defined without ambiguity in full generality
and is self-similar by construction: β Zβ ⊂ Zβ. The main questions we may
address are the following: (Q1) For which β > 1 is Zβ a Delone set ? or
equivalently (Q1’) for which β > 1 is Zβ a uniformly discrete set ? since
the sets Zβ of beta-integers are always relatively dense by construction.
Now Delone sets are classified into several types (see the definitions in the
Appendix) so that the following question is also fundamental: (Q2) For
which class of β > 1 is Zβ a Delone set of a given type ?

The uniform discretness property of Zβ is a crucial property which is
not obtained for all real number β, but very few general results are known
nowadays. Thurston has shown that it is the case when β is a Pisot number
[Th]. It is conjectured that it is also the case when β is a Perron number.
Apart from the Pisot case, many open questions remain (Bertrand-Matthis
[Be4], Blanchard [Bl]) and are expressed in terms of the β - shift. Schmeling
[Sc] has proved that the class C3 of real numbers β > 1 such that the
Renyi-expansion dβ(1) of 1 in base β contains bounded strings of zeros,
but is not eventually periodic, has Hausdorff dimension 1. For all β in this
class C3, the β-shift is specified [Bl]. It is obvious that the specification
of the β-shift is equivalent to the fact that Zβ is uniformly discrete. So
that the class C3 would contain all Perron numbers. The idea of exploring
relationships between the β-shift and the algebraic properties of β in
number theory is due to A. Bertrand-Matthis [Be3]. In this direction, some
results are known (Akiyama [Ak] [Ak1]). Parry [Pa] has proved that the
β-shift is sofic when β is a Pisot number. Lind [Li] conversely has shown
that β is a Perron number if the β-shift is sofic.

In section 2 we will recall some basic facts about the β-numeration and
the beta-integers. In section 3, we will establish the geometrical framework
which is attached to the algebraic construction of the set of the beta-integers
when β is a Perron number in general (of degree m ≥ 2). Namely,
by geometric framework, we mean that we will show the existence of two
cut-and-project schemes (see the definitions in the Appendix) embedded
in a canonical way in the Jordan real decomposition of Rm where this
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decomposition is obtained by the action of the companion matrix of β,
respectively of its adjoint, the second cut-and-project scheme being the
dual of the first one. This will be done without invoking any substitution
system on a finite alphabet [AI] or the theory of Perron-Frobenius [Mi].
These cut-and-project schemes will consist of an internal space which will
be an hyperplane of Rm complementary to a one-dimensional line on which
the set of β-integers will be set up in a natural way, together with the
usual lattice Zm in Rm. The constituting irreducible subspaces of the
internal spaces will appear by construction as asymptotic linear invariants.
This will allow us to deduce several results when β is a Pisot number:
a minimal acceptance window in the internal space closely related to the
Rauzy fractal, a geometrical proof that Zβ is a Meyer set, the fact that
Zβ is finitely generated over N. We will make a link on an example with
the Rauzy fractal when the beta-integers arise from substitution systems of
Pisot type (for instance Rauzy [Ra], Arnoux and Ito [AI], Messaoudi [Me]
[Me1], Ito and Sano [IS], Chap. 7 in Pytheas Fogg [PF]). At this point,
we should outline that the main difference with the substitutive approach
is that the matrices involved may have negative coefficients (compare with
the general approach of Akiyama [Ak] [Ak1]).

The additive properties of Zβ will be studied in section 4 by means
of the canonical cut-and-project schemes when β is a Pisot number: in
A), we shall show that the elements of Zβ ∩R+ can be generated over
N by elements of Zβ of small norm, in finite number, using truncated
cones whose axis of revolution is the dominant eigenspace of the companion
matrix of β and a Lemma of Lind [Li] on semigroups; in B), we will provide
a geometrical interpretation of the maximal preperiod of the β-expansion
of some real numbers coming from the addition of two beta-integers, of the
finite sets T and T ′ in the relations [Bu] Z+

β + Z+
β ⊂ Z+

β +T , Z+
β −Z+

β ⊂
Zβ +T ′ and an upper bound of the integer q taking place in the relation
x, y ∈ Z+

β =⇒ x ± y ∈ β−q Zβ when x + y and x − y have finite
β-expansions.

2. Beta-numeration and beta-integers

Let β ∈ (1,+∞) \N. We will refer in the following to Rényi [Re], Parry
[Pa] and Frougny [Fro] [Fro1] [Bu]. For all x ∈ R we will denote by bxc,
resp. {x} = x − bxc, the usual integer part of x, resp. its fractional
part. Let us denote by T (x) = {βx} the ergodic transformation sending
[0, 1] into itself. For all x ∈ [0, 1] , the iterates Tn(x) := T (Tn−1(x)), n ≥
1, with T 0 := Id by convention, provide the sequence (x−i)i≥1 of digits,
with x−i := bβT i−1(x)c, in the finite alphabet A = {0, 1, · · · , bβc}. The
element x is then equal to its Rényi β-expansion

∑+∞
j=1 x−jβ

−j also
denoted by 0.x−1x−2x−3 . . .. The Rényi β-expansion of 1 will be denoted
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by dβ(1). The operator T on [0, 1] induces the shift σ : (x−1, x−2, . . .)→
(x−2, x−3, . . .) on the compact set AN (with the usual product topology).
The closure of the subset of AN invariant under σ takes the name of
β-shift. The knowledge of dβ(1) suffices to exhaust all the elements in the
β-shift (Parry [Pa]). For this let us define the following sequence (ci)i≥1 in
AN:

c1c2c3 · · · =


t1t2t3 · · ·

if the Rényi β − expansion
dβ(1) = 0.t1t2 · · · is infinite,

(t1t2 · · · tr−1(tr − 1))ω if dβ(1) is finite and equal
to 0.t1t2 · · · tr,

where ( )ω means that the word within ( ) is indefinitely repeated. Then
the sequence (y−i)i≥1 in AN is exactly the sequence of digits provided
by the iterates of y =

∑+∞
i=1 y−iβ

−i by Tn if and only if the following
inequalities are satisfied: (y−n, y−(n+1), . . .) < (c1, c2, c3, . . .) for all n ≥
1 where ” < ” means lexicographical smaller. These inequalities will be
called conditions of Parry. We will now use finite subsets of the β-shift.

Definition 2.1. Let Z+
β = {xkβ

k + xk−1β
k−1 + · · · + x1β + x0 | xi ∈

A, k ≥ 0, and (xj , xj−1, . . . , x1, x0, 0, 0, · · · ) < (c1, c2, · · · ) for all j, 0 ≤
j ≤ k } be the discrete subset of R+ of the real numbers equal to the integer
part of their Rényi β-expansion. The set Zβ = Z+

β ∪
(
−Z+

β

)
is called the

set of β- integers.

For all x ∈ R+ , if x =
∑p

i=−∞ xiβ
i with p ≥ 0, is obtained by the

greedy algorithm, then (xi)i≤p will satisfy the conditions of Parry. We will
denote by int(x) =

∑p
i=0 xiβ

i the integer part of its Rényi β-expansion,
respectively by frac(x) =

∑−1
i=−∞ xiβ

i its fractional part. The element
1 = β0 belongs to Z+

β .
Let us now turn to the case where β is a positive real algebraic

integer. Then there exists an irreducible polynomial P (X) = Xm −∑m−1
i=0 aiX

i, ai ∈ Z with m = degree(β) such that P (β) = 0. Then
β =

∑m−1
i=0 am−1−iβ

−i. If aj ≥ 0 for all j and (an, an+1, . . .) <
(am−1, am−2, . . . , a0, 0, 0, . . .) for all n ≤ m−2, then the Rényi β-expansion
of β would be

∑m−1
i=0 am−1−iβ

−i from which we would deduce dβ(1) =∑m−1
i=0 am−1−iβ

−i−1 as well. But the coefficients ai do not obey the con-
ditions of Parry in general. More considerations on the relations between
β-expansions and algebraicity can be found in [Be] [Be1] [Be2] [Be3] [Fro1]
[Ak] [Ak1] [Sch]. Bertrand-Matthis [Be] and Schmidt [Sch] have proved
that, when β is a Pisot number, x ∈ Q(β) if and only if the Rényi β-
expansion of x is eventually periodic; in particular the Rényi β-expansion
of any Pisot number is eventually periodic.
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Let us recall that a Perron number β, resp. a Lind number, resp. a
Salem number, will be a real algebraic integer β > 1 whose conjugates β(i)

are of modulus strictly less than β, resp. of modulus less than β with at
least one conjugate of modulus β [La], resp. of modulus less than 1 with
at least one conjugate of modulus one. A Pisot number β will be a real
algebraic integer β > 1 for which all the conjugates are in the open unit
disc in the complex plane.

3. Canonical cut-and-project schemes over Zβ

Assume that β > 1 is a Perron number of degree m ≥ 2, dominant root
of the irreducible polynomial P (X) = Xm − am−1X

m−1 − am−2X
m−2 −

· · · − a1X − a0, ai ∈ Z, a0 6= 0. All the elements rβk with k ≥ 1, r ∈
{1, 2, . . . , bβc} are obviously in Zβ . We are looking for asymptotic linear
invariants associated with them, hence, by linearity, associated with the
powers βk, k ≥ 1, of β, when k tends to infinity. By linearity, they
will be also associated to the beta-integers. Let us set up the general
situation. For all k ≥ 0 , write βk = zm−1,kβ

m−1 + zm−2,kβ
m−2 + · · · +

z1,kβ+z0,k, where all the integers z0,k, z1,k, · · · , zm−1,k belong to Z. Denote
Zk = t (z0,k z1,k z2,k . . . zm−1,k), B = B(0) = t

(
1 β β2 . . . βm−1

)
,

B(j) = t
(
1 β(j) β(j)2 . . . β(j)m−1

)
, where t means transposition and the

elements β(j), j ∈ {1, 2, · · · ,m− 1}, are the conjugate roots of β = β(0) in
the minimal polynomial of β . Set

Bk =


βk

β(1)k

β(2)k

...
β(m−1)k

 and Q =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . 0

0 0 · · · 1
a0 a1 · · · am−1


the m ×m matrix with coefficients in Z. The transposed matrix of Q is
denoted by tQ. It is the companion matrix of P (X) (and of β). For all
p, k ∈ {0, 1, · · · ,m − 1}, we have: zp,k = δp,k the Kronecker symbol. It
is obvious that, for all k ≥ 0, we have Zk+1 = tQ Zk. Denote

C =


1 β β2 · · · βm−1

1 β(1) β(1)2 · · · β(1)m−1

...
...

...
...

1 β(m−1) β(m−1)2 · · · β(m−1)m−1


the Vandermonde matrix of order m. We obtain C Zk = Bk by the
real and complex embeddings of Q[β] since all the coefficients zj,k, j ∈
{0, 1, · · · ,m− 1}, are integers and remain invariant under the conjugation
operation.
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Theorem 3.1. If V1 denotes the vector defined by the first column of C−1,
then the limit limk→+∞ ‖Zk‖−1Zk exists and is equal to the unit vector
u := ‖V1‖−1V1. Moreover, all the components of V1 are real and belong to

the Z - module Z[β]
βm−1P ′(β)

.

Proof. Since P (X) is minimal, all the roots of P (X) are distinct. Hence,
the determinant of C is

∏
i<j(β

(i)−β(j)) and is not zero. Let C−1 = (ξij).
Then C · C−1 = I, that is
(1)

ξ1i + ξ2iβ
(j) + ξ3iβ

(j)2 + · · ·+ ξmiβ
(j)m−1

= δi,j+1,

{
i = 1, 2, . . . ,m,
j = 0, 1, . . . ,m− 1

On the other hand, the Lagrange interpolating polynomials associated with
{β, β(1), β(2), . . . , β(m−1)} are given by

Ls(X) =
m−1∏
j=0

j 6=s

X − β(j)

β(s) − β(j)
s = 0, 1, . . . ,m− 1.

For m arbitrary complex numbers y1, y2, · · · , ym, let us denote by
σr = σr(y1, y2, · · · , ym) =∑

1≤i1≤i2≤···≤ir≤m

∏r
j=1 yij the r-th elementary symmetric function of the

m numbers y1, y2, · · · , ym. The degree of Ls(X) is m− 1 and Ls(X) can
be expressed as

Ls(X) =
m−1∑
r=0

(−1)rσ(s)
r Xm−r−1/

m−1∏
r=0
r 6=s

(β(s) − β(r))

where σ(s)
r = σr(β, β(1), · · · , β(s−1), β(s+1), · · · , β(m−1)) denotes the r-th

elementary symmetric function of the m − 1 numbers β, β(1), · · · , β(s−1),
β(s+1), · · · , β(m−1) where β(s) is missing. Since these polynomials satisfy
Ls(β(k)) = δs,k for all s, k = 0, 1, · · · ,m − 1, comparing with (1), we
obtain, by identification of the coefficients

ξji =
(−1)m−jσ

(i−1)
m−j

m−1∏
r=0

r 6=i−1

(β(i−1) − β(r))

=
(−1)m−jσ

(i−1)
m−j

P ′(β(i−1))

for all i, j = 1, 2, · · · ,m. We have: Ls(X) =
∑m

j=1 ξj,s+1X
j−1 , s =

0, 1, · · · ,m− 1. Now C · Zk = Bk for all k ≥ 0, hence Zk = C−1 · Bk.
Each component zi,k, 0 ≤ i ≤ m−1, k ≥ 0 of Zk can be expressed as zi,k =∑m

j=1 ξi+1,jβ
(j−1)k

. Since β is a Perron number, we have |β(j)| < β for all
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j, 1 ≤ j ≤ m−1. Hence, for all j, 1 ≤ j ≤ m−1, limk→+∞

(
β(j)

β

)k
= 0,

and therefore limk→+∞
zi,k

βk = ξi+1,1 , i = 0, 1, · · · ,m− 1. Moreover,

lim
k→+∞

(
m−1∑
i=0

|zi,k|2
)1/2

βk
= lim

k→+∞

‖Zk‖
βk

=

√√√√m−1∑
i=0

|ξi+1,1|2 = ‖V1‖

hence the result. The fact that all the components of V1 are real and belong
to the Z - module Z[β]/(βm−1P ′(β)) comes from the following more precise
Proposition. �

Proposition 3.1. The components (ξj,1)j=1,...,m of V1 are given by the
following explicit functions of the coefficients ai of P (X):
ξj,1 = aj−1βj−1+aj−2βj−2+···+a1β+a0

βjP ′(β)
. In particular, ξm,1 = 1

P ′(β) .

Proof. We have L0(X) =
∑m

j=1 ξj,1X
j−1 and P (X) =

∏m−1
j=0 (X −

β(j)) = L0(X)(X − β)P ′(β). All the coefficients of L0(X) satisfy the
following relations: −βP ′(β)ξ1,1 = −a0, −βP ′(β)ξ2,1 + ξ1,1P

′(β) = −a1,
−βP ′(β)ξ3,1+ξ2,1P

′(β) = −a2, · · · , −βP ′(β)ξm,1+ξm−1,1P
′(β) = −am−1,

ξm,1P
′(β) = 1. Hence the result recursively from ξ1,1 noting that P ′(β) ∈

R−{0}. �

Theorem 3.2. Let uB := B/‖B‖. Then: (i) u · uB = ‖B‖−1‖V1‖−1 >

0, (ii) the limit limk→+∞
‖Zk+1‖
‖Zk‖ exists and is equal to β , (iii) u is an

eigenvector of tQ of eigenvalue β and the eigenspace of Rm associated
with the eigenvalue β of tQ is Ru, (iv) uB is an eigenvector of the
adjoint matrix (tQ)∗ = Q associated with the eigenvalue β and for all
x ∈ Cm: limk→+∞ β−k (tQ)k(x) = (x ·B) V1.

Proof. (i) and (ii): From the relation C ·C−1 = Id we deduce the equality
V1 · B = 1. Hence u · B = ‖V1‖−1 > 0 . Then, for all k ≥ 0,
tZk · B = βk = ‖Zk‖t( Zk

‖Zk‖ − u + u) · B > 0 which tends to infinity
when k tends to +∞. Since u − Zk/‖Zk‖ tends to zero when k goes
to infinity, ‖Zk‖ behaves at infinity like βk/ (u · B), hence the limit;
(iii): for all k ≥ 0, tQ(u) = tQ(u − Zk

‖Zk‖ + Zk
‖Zk‖) = tQ(u − Zk

‖Zk‖) +
‖Zk+1‖
‖Zk‖

Zk+1

‖Zk+1‖ . The first term is converging to zero and the second one to
βu when k goes to infinity, from Theorem 3.1. Hence, the result since all
the roots of P (X) are distinct and the (real) eigenspace associated with
β is 1 - dimensional; (iv): it is clear that B is an eigenvector of the
adjoint matrix Q . If h0, h1, · · · , hm−1 ∈ C , x =

∑m−1
j=0 hjZj , where

Z0, Z1, · · · , Zm−1 is the canonical basis of Cm , we have: β−k (tQ)k(x) =
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j=0 hjβ

−kZk+j =
∑m−1

j=0 hjβ
j
(

Zk+j

βk+j

)
, but, from the proof of Theorem

3.1, limk→+∞
Zk+j

βk+j = V1 and
∑m−1

j=0 hjβ
j = x · B . We deduce the

claim. �

Let us denote by tQC the automorphism of Cm which is the complexifi-
cation operator of tQ . Its adjoint QC obviously admits {B,B(1), B(2), · · ·
B(m−1)} as a basis of eigenvectors of respective eigenvalues β, β(1), β(2), · · ·
β(m−1) . Let us specify their respective actions on Rm. Let s ≥ 1 ,
resp. t , be the number of real, resp. complex (up to conjugation), em-
beddings of the number field Q(β) . We have m = s + 2t . Assume
that the conjugates of β are β, β(1), · · · , β(s−1), β(s), β(s+1), · · · , β(m−2) =
β(s+2t−2), β(m−1) = β(s+2t−1) where β(q) is real if q ≤ s − 1 and
β(s+2j) = β(s+2j+1) = |β(s+2j)|eiθj , j = 0, 1, · · · , t − 1, is complex with
non-zero imaginary part. Let us recall that V1 denotes the vector defined
by the first column of C−1 (Theorem 3.1).

Corollary 3.3. (i) A basis of eigenvectors of tQC is given by the m col-
umn vectors {Wk}k=1,2,··· ,m of respective components

ξj,k = aj−1β(k−1)j−1
+aj−2β(k−1)j−2

+···+a1β(k−1)+a0

β(k−1)j P ′(β(k−1))
with j = 1, 2, · · · ,m; in

particular, ξm,k = 1
P ′(β(k−1))

; (ii) a real Jordan form for tQ is given by

the diagonal matrix Diag(β, β(1), · · · , β(s−1), D0, D1, · · · , Dt−1) in the ba-
sis of eigenvectors {Vj}j=1,··· ,m with V2 = W2, · · · , Vs = Ws, Vs+2j+1 =
Im(Ws+2j+1), Vs+2j+2 = Re(Ws+2j+1), j = 0, 1, · · · , t − 1 and where the
2× 2 real Jordan blocks Dj are(

|β(s+2j)| cos θj −|β(s+2j)| sin θj

|β(s+2j)| sin θj |β(s+2j)| cos θj

)
;

(iii) a real Jordan form of the adjoint operator (tQ)∗ = Q is given
by the same diagonal matrix Diag(β, β(1), · · · , β(s−1), D0, D1, · · · , Dt−1) in
the basis of eigenvectors {Xj}j=1,··· ,m with X1 = B,X2 = B(1), X3 =
B(2), · · · , Xs = B(s−1), Xs+2j+1 = Im(B(s+2j)), Xs+2j+2 = Re(B(s+2j)),
j = 0, 1, · · · , t− 1. The t planes RXs+2j+1 + RXs+2j+2, j = 0, 1, . . . , t−
1 are all orthogonal to V1, and thus also to u.

Proof. (i): We apply, componentwise in the equation (tQ)V1 = βV1, the
Q - automorphisms of C which are the real and complex embeddings of
the number field Q(β). Since tQ has rational entries and V1 has its
components in the Z-module β1−m(P ′(β))−1 Z[β], we deduce the claim:
(tQ)Wj = β(j−1)Wj with j = 1, 2, · · · ,m and where W1 = V1; (ii): the
restrictions of tQC to the (real) tQ - invariant subspaces of Rm have
no nilpotent parts since all the roots of P (X) are distinct. Hence, a real
Jordan form of tQ is the one proposed with Jordan blocks which are 2×2
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on the diagonal [HS]. (iii): in a similar way the equation QB = βB implies
QB(j) = β(j)B(j) with j = 0, 1, · · · ,m− 1. Obviously QC and tQC have
the same eigenvalues and Q and tQ the same real 2× 2 Jordan blocks
on the diagonal. The corresponding basis of eigenvectors is given by the
vectors Xi [HS]. The orthogonality between V1 and the vector Xs+2j+1,
resp. Xs+2j+2, j = 0, 1, . . . , t− 1, arises from the relation C · C−1 = Id.
We deduce the claim for the planes. �

The linear invariants associated with the powers of β are the invariant
subspaces given by Corollary 3.3. Let us turn to the beta-integers. Beta-
integers are particular Z-linear combinations of powers of β. We will show
how to construct the set Zβ using the above linear invariants, namely, the
set Zβ will appear in a natural way on the line RuB as image of a point
set close to the expanding line Ru.
Remark . — The conditions of Parry, used here in the context of matrices
tQ without any condition on the signs of the entries, give the same results
as those obtained with the Perron-Frobenius theory (Minc [Mi]), when
this one is applicable, that is when tQ has non-negative entries: first,
the dimensionality one for the dominant eigenspace of tQ ; second, the
equality limk→+∞ β−k (tQ)k(x) = (x ·B) V1, for x ∈ Cm, in Theorem
3.2 (compare with Ruelle [Ru] p136 when tQ has non-negative entries),
and its consequences.

Theorem 3.4. Let πB be the orthogonal projection mapping of Rm onto
RB and define L = {xkZk + xk−1Zk−1 + · · ·+ x1Z1 + x0Z0 | xi ∈ A, k ≥
0 , and (xj , xj−1, · · · , x1, x0, 0, 0, · · · ) < (c1, c2, · · · ) for all j, 0 ≤ j ≤ k }
the tQ-invariant subset of Zm. Then: (i) the mapping

∑k
j=0 xjβ

j →∑k
j=0 xjZj : Z+

β → L (with the same coefficients xj) is a bijection, (ii)
the mapping πB|Zm

is one-to-one onto its image Z[β]‖B‖−1uB: for any

k ≥ 0, a0, · · · , ak ∈ Z, we have πB

(∑k
i=0 aiZi

)
=
(∑k

i=0 aiβ
i
)
‖B‖−1uB

and conversely, any polynomial in β on the line generated by ‖B‖−1uB

can be uniquely lifted up to a Z -linear combination of the vectors Zi with
the same coefficients; in particular, πB(L) = Z+

β ‖B‖
−1uB.

Proof. (i): this mapping Z+
β → L is obviously surjective. Let us show

that it is injective. Assume there exists a non-zero element
∑k

j=0 xjβ
j in

Z+
β such that

∑k
j=0 xjZj = 0 . Since t

(∑k
j=0 xjZj

)
B = 0 =

∑k
j=0 xjβ

j ,
this would mean that zero could be represented by a non-zero element.
This is impossible by construction; (ii): for all k ≥ 0 , we have πB(Zk) =
βk‖B‖−1uB, hence the result by linearity. The injectivity of πB|Zm

comes
from the assertion (i). �
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Proposition 3.2. Let uB,i = ‖Xi‖−1Xi if i = 1, 2, · · · , s, uB,i =
(‖Xi‖2 + ‖Xi+1‖2)1/2( Re(‖B(i−1)‖−2)Xi + Im(‖B(i−1)‖−2)Xi+1) if i =
s + 1, · · · ,m with i − (s + 1) even, and uB,i = (‖Xi−1‖2 + ‖Xi‖2)1/2

(−Im(‖B(i−1)‖−2)Xi + Re(‖B(i−1)‖−2)Xi+1) if i = s + 1, · · · ,m with i −
(s+ 1) odd. Denote by πB,i : Rm → RuB,i, i = 1, 2, · · · , s the orthogonal
projection mappings to the 1-dimensional eigenspaces of Q , resp. πB,i :
Rm → RuB,i + RuB,i+1, i = s + 1, · · · ,m with i − (s + 1) even, the
orthogonal projection mappings to the irreducible 2-dimensional eigenspaces
of Q . Then, for all k ≥ 0, a0, · · · , ak ∈ Z, we have πB,i(

∑k
j=0 ajZj) =(∑k

j=0 ajβ
(i−1)j

)
‖Xi‖−1uB,i, i = 1, 2, · · · , s and, for all i = s+1, · · · ,m

with i− (s+ 1) even, πB,i(
∑k

j=0 ajZj) =(
Re(

∑k
j=0 ajβ

(i−1)j
) Im(

∑k
j=0 ajβ

(i−1)j
)

−Im(
∑k

j=0 ajβ
(i−1)j

) Re(
∑k

j=0 ajβ
(i−1)j

)

)(
uB,i

uB,i+1

)
(∑m−1

k=0 |β(i−1)|2k
)1/2

.

Proof. It suffices to apply the real and complex embeddings of Q(β) to
the relation

πB(
k∑

j=0

ajZj) = ((
k∑

j=0

ajZj) ·B)‖B‖−2B =

 k∑
j=0

ajβ
j

 ‖B‖−2B :

for complex embeddings, ‖Xi‖2 + ‖Xi+1‖2 =
∑m−1

k=0 |β(i−1)|2k and
‖B(i−1)‖−2B(i−1) means:(

Re(‖B(i−1)‖−2) Im(‖B(i−1)‖−2)
−Im(‖B(i−1)‖−2) Re(‖B(i−1)‖−2)

)(
Xi

Xi+1

)
=

1
(‖Xi‖2 + ‖Xi+1‖2)1/2

(
uB,i

uB,i+1

)
.

�

The explicit expressions given above will allow us below to compare
the ”geometric” Rauzy fractals deduced from the present study and the
”algebraic” Rauzy fractal. Before stating the main theorem about the
existence of canonical cut-and-projection schemes associated with the beta-
integers when β is a general (non-integer) Perron number, let us first
consider the case of equality u = uB and show that it is rarely occuring.

Proposition 3.3. The equality u = uB holds if and only if β is a Pisot
number, root > 1 of the polynomial X2 − aX − 1 , with a ≥ 1 .
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Proof. The condition u = uB is equivalent to V1 colinear to B , that is
ξj,1β

−j+1 = a non-zero constant, for all j = 1, 2, · · · ,m. The condition is
sufficient: if β is such a Pisot number, such equalities hold. Conversely, if
such equalities hold, this implies in particular that ξ1,1β

−1+1 = ξm,1β
−m+1.

Thus we obtain a0β
m−2 = 1 , that is necessarily m = 2 and a0 =

1 . The Perron number β is then a Pisot number of negative conjugate
−β−1 which satisfies β2−a1β−1 = 0 , where a1 = β−β−1 is an integer
greater than or equal to 1. This is the only possibility of quadratic Pisot
number of norm −1 ([Fro1], Lemma 3). �

Theorem 3.5. Denote by E the line RuB in Rm. There exist two
canonical cut-and-project schemes E

p1←− (E×D ' Rm,Zm)
p2−→ D asso-

ciated with Zβ ⊂ E (see the definitions in the Appendix). They are given
by, in case (i): the orthogonal projection mapping πB as p1, ⊕FF as
internal space D, p2 = ⊕F πF , where the sums are over all irreducible
tQ-invariant subspaces F of Rm except Ru and where πF is the
projection mapping to F along its tQ-invariant complementary space, in
case (ii): as p1 the orthogonal projection mapping πB, ⊕F F as internal
space D where the sum is over all irreducible Q-invariant subspaces F of
Rm except E, as p2 the sum ⊕i6=1 πB,i of all the orthogonal projection
mappings except πB,1 = πB; in the case (ii), the internal space D is
orthogonal to the line Ru.

Proof. In both cases, the fact that p2(Zm) is dense in D arises from
Kronecker’s theorem (Appendix B in [Mey]): since β is an algebraic
integer of degree m, the m real numbers 1 = β0, β1, · · · , βm−1 are
linearly independent over Q . Hence, for all ε > 0 and all m-tuple of real
numbers x0, x1, · · · , xm−1 such that the vector (say) x = t(x0 x1 . . . xm−1)
belongs to D , there exist a real number w and m rational integers
u0, u1, · · · , um−1 such that | xj−βjw−uj | ≤ ε/

√
m for all j = 0, 1, . . . ,m−

1. In other terms, there exists a point u = t(u0, u1, · · · , um−1) ∈ Zm such
that its image p1(u) is wB ∈ RuB and its image p2(u) is close to x up
to ε. Hence the result. As for the restriction of the projection mapping
p1 = πB = πB,1 : Rm → E to the lattice Zm, it is injective after Theorem
3.4. The orthogonality between D and u comes directly from Corollary
3.3. �

The mapping p1(Zm)→ D : x→ x∗ = p2◦(p1|Zm
)−1(x) will be denoted

by the same symbol (.)∗ in the cases (i) and (ii), the context making the
difference.

Proposition 3.4. Let β be a Pisot number, root > 1 of the polynomial
X2 − aX − 1 , with a ≥ 1. Put ca = (1+aβ)bβc√

2+aβ(β−1)
. Then the two

canonical cut-and-project schemes given by (i) and (ii) in Theorem 3.5 are
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identical and the inclusion of Zβ ‖B‖−1uB in the following model set holds:
Zβ ‖B‖−1uB = πB(L∪(−L)) ⊂ {v ∈ πB(Z2) | v∗ ∈ [−cauB,2,+cauB,2]}
where uB,2 = t(−β 1)‖B‖−1.

Proof. The two cut-and-project schemes are identical: by Proposition 3.3
the equality u = uB holds and the line RuB,2, which is obviously or-
thogonal to the line RuB, is tQ-invariant. Now, if g denotes an arbi-
trary element of L, it can be written g = xk(tQ)kZ0 + xk−1(tQ)k−1Z0 +
· · · + x1(tQ)Z0 + x0Z0 for a certain integer k ≥ 0 with xi ∈ A and
(xj , xj−1, · · · , x1, x0, 0, 0, · · · ) < (c1, c2, · · · ) for all j, 0 ≤ j ≤ k . We
have Z0 = su + s⊥uB,2 with s = ‖B‖−1 and s⊥ = −β‖B‖−1 . Then
g =

∑k
j=0 xj(tQ)jZ0 =

∑k
j=0 xj

(
sβju+ s⊥(−1)jβ−juB,2

)
. Thus p2(g) =

s⊥
∑k

j=0 xj(−1)jβ−juB,2 and ‖p1(g)∗‖ = ‖p2(g)‖ ≤ |s⊥|bβc
∑+∞

j=0 β
−j

= |s⊥|bβc 1
1−β−1 which is equal to ca since ‖B‖ =

√
2 + aβ . This con-

stant is independent of k . Hence we have p1(g) ⊂ {v ∈ πB(Z2) | v∗ ∈
[−cauB,2,+cauB,2]} and the claim. �

Let C = {
∑m−1

j=0 αjZj | αj ∈ [0; 1] for all j = 0, 1, · · · ,m − 1 } be
the m-cube at the origin. For all irreducible tQ- invariant subspace F of
Rm, put δF = maxx∈C ‖πF (x)‖, λF the absolute value of the eigenvalue of
tQ on F and cF = bβc δF

1−λm
F
. Denote by ΩF the closed interval centred

at 0 in F of length 2cF if dim F = 1, resp. the closed disc centred at 0
in F of radius cF if dim F = 2.

Theorem 3.6. Let β be a Pisot number of degree m ≥ 2 and Ω = ⊕F ΩF

where the sum is over all irreducible tQ- invariant subspace F of Rm

except Ru. Then the inclusion of Zβ ‖B‖−1uB in the following model set
defined by Ω holds: Zβ ‖B‖−1uB = p1(L∪(−L)) ⊂ {v ∈ p1(Zm) | v∗ ∈
Ω } in the cut-and-project scheme given by the case (i) in Theorem 3.5.

Proof. If g =
∑k

j=0 xjZj ∈ L with k = dm − 1 , and d ≥ 1 an integer,
then

g =
d−1∑
q=0

m−1∑
l=0

xqm+l(tQ)qmZl =
d−1∑
q=0

(tQ)qm

(
m−1∑
l=0

xqm+lZl

)
.

Hence p1(g)∗ = p2(g) = ⊕FπF (g) =
∑
F

d−1∑
q=0

[
(tQ|F )qmπF

(
m−1∑
l=0

xqm+lZl

)]
with:

‖πF (g)‖ ≤
d−1∑
q=0

bβcλqm
F ‖πF

(
m−1∑
l=0

Zl

)
‖ ≤ bβc δF

+∞∑
q=0

λqm
F = bβc δF

1− λm
F

= cF .
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This constant is independent of d, hence of k = dm−1. It is easy to check
that it is an upper bound for ‖p2(g)‖ if k 6≡ −1(modm) and also for all
g ∈ −L. We deduce the claim. �

Corollary 3.7. If β is a Pisot number of degree m ≥ 2 , then Zβ is a
Meyer set.

Proof. If β is a Pisot number, the set Zβ, viewed as the set of vertices of
an aperiodic tiling, is obtained by concatenation of prototiles on the line,
which are in finite number by Thurston [Th]. And it is relatively dense
by construction. Now, by Theorem 3.6 it is included in a model set. This
proves the claim (see the Appendix). �

In both cases of cut-and-project scheme, as given by Theorem 3.5 where
the duality between the matrices Q and tQ clearly appears, the internal
space represents the contracting hyperplane, whereas the line Ru is the
expanding direction, when β is a Pisot number. The duality between
both cut-and-project schemes is connected to the substitutive approach by
the following (Arnoux and Ito [AI], Chap. 7 in Pytheas Fogg [PF]): the
abelianized Z ′k of the iterates of the substitution satisfy Z ′k+1 = QZ ′k,
and gather now about the line RB. If one takes the projection on RB of
the new set L′ (defined similarly as L) along the other eigenspaces, one
recovers Zβ (up to a scalar factor). A striking feature of the internal
spaces is that the numeration in base β(j) (conjugates of β) appears as
canonical ingredient to control the distance between a point of L and its
orthogonal projection to the expanding line Ru, in particular at infinity.

Definition 3.1. Let β be a Pisot number of degree m ≥ 2 . The

closure
(
Z+

β ‖B‖−1uB

)∗
of the set p2(L) is called the canonical acceptance

window associated with the set of beta-integers Z+
β in both cases (case (i)

or (ii) in Theorem 3.5) of cut-and-project scheme: in the case (i) it will be
denoted by Ri and in the case (ii) by R.

The notations R and Ri (Ri ⊂ Ω by Theorem 3.6) with an ” R ”
like Rauzy are used to recall the close similarity between these sets and
the Rauzy fractal (Rauzy [Ra], Arnoux and Ito [AI], Messaoudi [Me], Ito
and Sano [IS], Chap. 7 in Pytheas Fogg [PF]). The fact is that the set
R is exactly the Rauzy fractal up to the multiplication by a non-zero
scalar factor on each irreducible Q-invariant subspace (by definition we
will speak of quasi-dilation). Let us show it on an example.

”Tribonacci” case [Me]: let us consider the irreducible polynomial
P (X) = X3 − X2 − X − 1. Its dominant root is denoted by β, and
α and α are the two other complex conjugates roots of P (X). In this
case, the Rauzy fractal is ”algebraically” defined by E := {

∑∞
i=3 εiα

i | εi ∈
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{0, 1} and εiεi+1εi+2 = 0 for all integer i ≥ 3}. The condition imposed on
the sequence (εi)i≥3 is exactly that given by the conditions of Parry.
Indeed ([Fro1] and section 2), dβ(1) = 0.111 and the lexicographical
maximal sequence is c1c2c3 · · · = (110)ω. Now (Proposition 3.2) B(1) =
t(1αα2) and ‖X2‖2 + ‖X3‖2 = 1 + αα + α2α2 = β. We deduce that
R = β−1/2 E = πB,2(L) with the following (metric) identification of C :
φ(C) = RuB,2 + RuB,3 where φ is the isometry which sends the vector(

1
0

)
, resp.

(
0
1

)
, to

(
uB,2

uB,3

)
, resp. to

(
uB,3

−uB,2

)
.

Proposition 3.5. The canonical acceptance window R (relative to the
case (ii) of cut-and-project scheme in Theorem 3.5) is compact and con-
nected. Its interior int(R) is simply connected, contains the origin. The
set R is such that: (i) int(R) = R; (ii) it induces a tiling of the internal
space D modulo the lattice φ(Z + Zα): D =

⋃
z∈φ(Z + Z α)(R+z); (iii)

(R+z) ∩ int(R+z′) = ∅ for all z, z′ ∈ φ(Z + Zα), z 6= z′.

Proof. Since R = β−1/2 E , we deduce the properties of R from those of
E already established in Rauzy [Ra], Messaoudi [Me] and [Me1]. �

Proposition 3.6. The boundary of R is a fractal Jordan curve. A point
z belongs to the boundary of R if and only if it admits at least 2 distinct
Rényi α-expansions. A point belonging to the boundary of R admits 2
or 3 distinct Rényi α-expansions, never more.

Proof. The properties of the boundary of E are given in Ito and Kimura
[IK] and Messaoudi [Me1]). Hence the claim. �

The properties of Ri follow from the equality: p2(R) = Ri, where
p2 refers to the case (i) of cut-and-project scheme in Theorem 3.5, and
from Proposition 3.5 and 3.6: in particular, it has also a fractal boundary.
We will speak of ”geometrical” Rauzy fractals for R and Ri and of
”algebraic” Rauzy fractal for E . They are similar objects as far as they
concentrate all the information about the beta-integers and the comple-
tions of their real and complex embeddings (Rauzy [Ra]). The respective
canonical acceptance windows associated with Zβ are R∪(−R) and
Ri ∪(−Ri) in the two cut-and-project schemes.

4. Additive properties of Zβ

In this section, β will be a Pisot number of degree m ≥ 2.

A) Cones, generators and semi-groups. – We will show that any
element of L is generated by a finite number of elements of L of small
norm, over N. By projection to E by πB, the ambiant 1-dimensional
space of the beta-integers (Theorem 3.5), this will imply the same property
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for Zβ. This finiteness property, stated in Corollary 4.5, constitutes a
refinement of Theorem 4.12 (i) (Lagarias) for the Meyer sets Zβ.

First let us fix the notations and simplify them somehow. Let π : Rm →
Ru be the projection mapping along its tQ-invariant complementary space
(instead of denoting it by πR u), and p2 the projection mapping of the cut-
and-project scheme (i) in Theorem 3.5. Let π‖ : Rm → Ru be the orthogo-
nal projection mapping and π⊥ = Id−π‖ (π⊥ is the mapping ⊕i6=1πb,i in
the case (ii) of cut-and-project scheme in Theorem 3.5). The basic ingre-
dient will be the construction of semi-groups of finite type associated with
cones whose axis of revolution is the expanding line Ru, following an idea of
Lind [Li] in another context. Truncating them in a suitable way at a certain
distance of the origin will be the key for finding generators of L over N.
In the first Lemma we will consider the possible angular openings of these
cones around the expanding line Ru for catching the points of L. For
θ > 0 , define the cone Kθ := {x ∈ Rm | θ‖p2(x)‖ ≤ ‖π(x)‖, 0 ≤ π(x) · u }.
For r, w > 0 , define Kθ(r) := {x ∈ Kθ | ‖π(x)‖ ≤ r }, Kθ(r, w) :=
{x ∈ Kθ | r ≤ ‖π(x)‖ ≤ w }. If A is an arbitrary subset of Rm , denote
by sg(A) := {

∑
finitemixi | mi ∈ N, xi ∈ A} the semigroup generated by

A. Let ρ be the covering radius of the subset L∪(−L) with respect
to the band Ri×Ru: ρ is the smallest positive real number such that
for any z ∈ Rm such that p2(z) ∈ Ri the closed ball B(z, ρ) contains
at least one element of L∪(−L). A lower bound of ρ is given by the
covering radius

√
m/2 of the lattice Zm. Referring Rm to the basis

{B, V2, V3, · · · , Vs+2t} and using Corollary 3.3 and Theorem 3.6 we easily
deduce the following upper bound of ρ: 1

2‖B‖
−1 +

∑
F cF , where the

sum
∑

F means there and in the following everywhere it will be used ”the
sum over all irreducible tQ-invariant subspaces F of Rm except Ru”.
The notation diam(·) will be put for the diameter of the set (·) in the
following.

Proposition 4.1. (i) For all θ > 0 , there exists an integer j0 = j0(θ) ≥
0 such that Zj ∈ Kθ for all j ≥ j0; (ii) if tQ is nonnegative,
and min{ξj,1 | j = 1, 2, · · · ,m } > 2‖V1‖(diam(Ri)) , then the following
equality j0(θ) = 0 holds for all 0 < θ < θmin, where θmin := −2 +
(diam(Ri))−1‖V1‖−1min{ξj,1 | j = 1, 2, · · · ,m }.

Proof. (i) Let θ > 0 . We have just to prove that π(Zj) · u tends
to +∞ and not to −∞ when j goes to +∞ . Let j ≥ 0. Write
Zj = π(Zj) + p2(Zj) = π‖(Zj) + π⊥(Zj); hence ‖ π(Zj) − π‖(Zj) ‖ =
‖ π⊥(Zj) − p2(Zj) ‖ ≤ ‖ π⊥(Zj) ‖ + ‖ p2(Zj) ‖ = ‖ π⊥(Zj − π(Zj)) ‖ +
‖ p2(Zj) ‖ ≤ 2‖ p2(Zj) ‖ ≤ 2diam(Ri). On the other hand ‖ πB(π‖(Zj))−
πB(Zj) ‖ = ‖ (Zj · u)(uB · u)uB − ‖B‖−1βjuB ‖ = | (Zj · u)(uB · u) −
‖B‖−1βj | = ‖ πB(π⊥(Zj)) ‖ ≤ ‖ π⊥(Zj) ‖ ≤ diam(R). Hence, since
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uB ·u > 0 (Theorem 3.2), | Zj ·u−(uB ·u)−1‖B‖−1βj | ≤ (uB ·u)−1diam(R).
Consequently ‖ π(Zj)−(uB ·u)−1‖B‖−1βju ‖ = ‖ π(Zj)−π‖(Zj)+π‖(Zj)−
(uB ·u)−1‖B‖−1βju ‖ ≤ ‖ π(Zj)−π‖(Zj) ‖+‖ π‖(Zj)−(uB ·u)−1‖B‖−1βju ‖
≤ 2diam(Ri) + (uB · u)−1)diam(R). The quantity π(Zj) · u tends to
+∞ as (uB · u)−1 ‖B‖−1βj when j → +∞ . Then there exists j0 such
that Zj · u ≥ 2diam(Ri) + ((uB · u)−1 + θ)diam(Ri), for all j ≥ j0. As a
consequence π(Zj) · u ≥ Zj · u− 2diam(Ri) ≥ ((uB · u)−1 + θ)diam(Ri) >
0 for all j ≥ j0. We claim that Zj ∈ Kθ for all j ≥ j0 . Indeed,
since ‖p2(Zj)‖ ≤ diam(Ri) , the inequalities hold: θ‖p2(Zj)‖ ≤ (θ +
(uB · u)−1)‖p2(Zj)‖ ≤ (θ + (uB · u)−1)diam(Ri) ≤ π(Zj) · u = ‖π(Zj)‖ for
all j ≥ j0.

(ii) If tQ is nonnegative the coefficients ai in P (X) are nonnegative
with a0 6= 0 and at least one of the coefficients ak, k ≥ 1, is non-zero
since β is assumed to be a Pisot number and not a Salem number. Hence
(Proposition 3.1), since P ′(β) > 0, we have ‖V1‖−1ξ1,1 = ‖π‖(Z0)‖ =
Z0 · u = a0

βP ′(β) > 0 and ‖V1‖−1ξj+1,1 = ‖π‖(Zj)‖ = Zj · u, for all j =
1, 2, · · ·m − 1 with ‖V1‖−1min{ξj,1 | j = 1, 2, · · ·m − 1} ≥ a0

βmP ′(β) > 0.
Because {Z0, Z1, · · · , Zm−1} is the canonical basis of Rm , any Zj , j ≥ m ,
can be written as a combination of the elements of this basis with positive
coefficients. Hence, Zj · u ≥ ‖V1‖−1min{ ξl,1 | l = 1, 2, · · · ,m − 1 } for all
j ≥ 0. But the relation Zj = π(Zj) + p2(Zj) = π‖(Zj) + π⊥(Zj) implies
that π(Zj) − π‖(Zj) = π⊥(Zj) − p2(Zj). Hence, |π(Zj) · u − Zj · u| ≤
‖π⊥(Zj)‖ + ‖p2(Zj)‖ ≤ 2‖p2(Zj)‖ ≤ 2(diam(Ri)) for all j ≥ 0. Therefore
π(Zj) · u ≥ ‖V1‖−1min{ ξl,1 | l = 1, 2, · · · ,m − 1 } − 2diam(Ri) which
is > 0 by assumption for all j ≥ 0. Hence, by definition of θmin ,
π(Zj) · u = ‖π(Zj)‖ ≥ θmin(diam(Ri)) ≥ θmin‖p2(Zj)‖ ≥ θ‖p2(Zj)‖ for all
j ≥ 0 and 0 < θ ≤ θmin. We deduce that Zj ∈ Kθ for all j ≥ 0 and
0 < θ ≤ θmin. Let us observe that the conditions of the present assertion
are generally not fulfilled. �

We now turn to the question of generating the elements of L by a
finite number of them over N. The idea we will follow is simple: let
us consider the set of the semi-groups generated by a finite number of
(arbitrary) elements of L∩Kθ for all θ > 0; in this set, we will show
the existence of semi-groups (θ > 0 fixed) containing K2θ ∩ L, that is
containing L except a finite number of elements of L close to the origin.
Then we will minimize this finite number of excluded elements. For this we
will consider the maximal possible values of θ. In final this will provide a
suitable value of θ and a control of the norms of the generating elements
of the semi-group which will contain L.
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Lemma 4.1. (Lind [Li]) Let θ > 0 . If δ = (2θ+2)−1 and x ∈ K2θ with
‖π(x)‖ = π(x) · u > 4, then [x−Kθ(1, 3)] ∩K2θ contains a ball of radius
δ.

Proof. [Li] Take y = 2u+ 3(π(x) · u)−1p2(x) . We will show that the ball
centred at x− y and of radius δ satisfies our claim. Suppose ‖z‖ < δ .
Then x− y + z ∈ K2θ . Indeed,

2θ ‖p2(x− y + z)‖ ≤ 2θ
[(

1− 3(π(x) · u)−1
)
‖p2(x)‖+ δ

]
≤
[
1− 3(π(x) · u)−1

]
(π(x) ·u)+2θ(2θ+2)−1 = (π(x) ·u)− 2− 2(2θ+2)−1

but p2(y) = 2 . We deduce 2θ ‖p2(x − y + z)‖ ≤ π(x − y + z) · u. Let
us show that y − z ∈ Kθ. We have 2θ‖p2(y)‖ = 6θ(π(x) · u)−1‖p2(x)‖ ≤
3(π(x) · u)−1(π(x) · u) = 3. Therefore θ‖p2(y − z)‖ ≤ θ(‖p2(y)‖ + δ) ≤
3
2 + θ(2θ+2)−1 = 2− (2θ+2)−1 ≤ π(y− z) ·u. Now, since δ < 1 , we have
the inequalities 1 ≤ π(y − z) · u ≤ 3, establishing the result. �

Theorem 4.2. Let θ > 0 . If r is such that r > ρ(2θ + 2), then
K2θ ∩ L ⊂ sg(Kθ(r) ∩ L).

Proof. Lemma 4.1 implies the following assertion: if x ∈ K2θ is such that
π(x) · u > 4r with r > ρ(2θ + 2) , then [x−Kθ(r, 3r)] ∩ K2θ contains
a ball of radius rδ > ρ . But ρ is by definition the covering radius of
L∪(−L), hence this ball intersects L . Now, let A = Kθ(4r) ∩ L be
the finite point set of L and let us show that K2θ ∩ L ⊂ sg(A). First
the inclusion K2θ(4r) ∩ L ⊂ sg(A) holds. We now proceed inductively.
Suppose K2θ(r′) ∩ L ⊂ sg(A) for some r′ ≥ 4r . We will show that this
implies K2θ(r′ + r)∩L ⊂ sg(A) , which will suffice by induction. For this,
let us take g ∈ L∩[K2θ(r′ + r) K2θ(r)]. From Lemma 4.1 and the above,
there exists an element, say y , in L, contained in [g−Kθ(r, 3r)]∩K2θ(r′).
By assumption, y ∈ sg(A) and y = g−x for some x ∈ Kθ(r, 3r)∩LL ⊂
sg(A). Therefore g = x+ y ∈ sg(A) + sg(A) ⊂ sg(A). This concludes the
induction. �

Lemma 4.3. For all θ > 0 , the following set: L(θ) := { x ∈ L | p2(x) ∈
Ri, x 6∈ Kθ(ρ(2θ + 2)), x 6∈ K2θ } is finite.

Proof. The proof is clear since all g ∈ L such that π(g) · u > 2ρ(2θ +
2) belongs to K2θ. �

Define θf := max{θ > 0 |#(L(θ)) is minimal } (where #(·) denotes the
number of elements of the set (·)). If tQ is nonnegative and the condition
(ii) in Proposition 4.1 satisfied, then the equality #(L(θ)) = 0 holds for
θ < θmin and therefore θf ≥ θmin/2 .

Theorem 4.4. (Minimal decomposition). — Any element g ∈ L\L(θf )
can be expressed as a finite combination over N of elements of the finite
point set Kθf

(ρ(2θf + 2)) ∩ L.
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Proof. It is a consequence of Theorem 4.2 with θ = θf and r = ρ(2θf +
2). �

Corollary 4.5. There exist two disjoint finite subsets F =
{‖B‖πB(g) · uB | g ∈ L(θf ))} and F ′ = {g1, g2, · · · , gη} ⊂{
‖B‖πB(g) · uB | g ∈ Kθf

(ρ(2θf + 2)) ∩ L
}

of Z+
β such that

(2) Z+
β ⊂ F ∪ N[g1, g2, · · · , gη].

The generating elements gi ∈ F ′ satisfy: ‖gi‖ ≤ ρ(2θf +2)‖B‖−1‖V1‖−1+
diam(Ri). If the couple (F ,F ′) is such that η = #F ′ is minimal for the
inclusion relation (2) and F is empty, then the degree m of β divides
η.

Proof. To obtain the inclusion (2) it suffices to project L by πB and
to apply Theorem 4.2 and 4.4 and Lemma 4.3. Let us show the upper
bound on the norms of the elements of F ′. If g ∈ Kθf

(ρ(2θf + 2)) ∩ L is
decomposed as g = π(g) + t, where t ∈ Ri, then, by Theorem 3.2 (i),
we have: ‖πB(g)‖ ≤ ‖π(g)‖‖B‖−1‖V1‖−1 + diam(Ri). But ‖π(g)‖ ≤
ρ(2θf + 2). We deduce the claim. Now if Z+

β ⊂ N[g1, g2, · · · , gη] the group
Z[g1, g2, · · · , gη] contains Zβ and the equality Z[Zβ ] = Z[g1, g2, · · · , gη]
necessarily holds. By Theorem 4.12 we deduce that m divides η since
the rank of Z[Zβ ] = Z[N[Zβ]] is η when η is the smallest integer such
that the set inclusion (2) holds and that F is empty. �

B) Preperiods in the addition of beta-integers. – The Delone set
Zβ endowed with the usual addition and multiplication cannot have a ring
structure otherwise it would contain Z but it is obvious that Zβ contains
no subset of the type λZ, λ > 0. This absence of ring structure on Zβ for
the usual laws can be partially overcome by controlling the fractional parts
of the Rényi β-expansions of x + y and x − y when x, y ∈ Zβ . This
is the aim of this paragraph to focus on the geometrical meaning of the
sets T and T ′ as stated in Theorem 4.7 and of the exponent q in its
Corollary 4.8.

The projection mappings will be the ones redefined (in a simpler way)
at the beginning of the subsection A). Let R > 0 and I be an interval of
R having compact closure. Let us extend the m-cube C for reasons which
will appear below. Let C′ = {

∑m−1
j=0 αjZj | αj ∈ [−1; 1] for all j =

0, 1, · · · ,m − 1 }. For all irreducible tQ- invariant subspace F of Rm,
put δ′F = maxx∈C′ ‖πF (x)‖, λF the absolute value of the eigenvalue of
tQ on F and c′F = bβc δ′F

1−λm
F
. Denote by Ω′

F the closed interval centred
at 0 in F of length 2c′F if dim F = 1, resp. the closed disc centred at
0 in F of radius c′F if dim F = 2. Let Ω′ = ⊕F Ω′

F . We will denote
by TI,R := {x ∈ Rm | p2(x) ∈ bβc−1RΩ′, πB(x) · uB ∈ ‖B‖−1I} the
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slice of the band defined by bβc−1RΩ′ in the internal space, extended
by symmetrization with respect to bβc−1RΩ (compare the definitions of
Ω′ and Ω in Theorem 3.6), of axis the expanding line Ru . Let FR :=
{frac(z) | z = akβ

k + ak−1β
k−1 + · · ·+ a1β+ a0, ai ∈ Z, |ai| ≤ R} ⊂ [0, 1).

Lemma 4.6. The set {‖B‖πB(g) · uB | g ∈ T[0,1),R+bβc ∩Zm} is a finite
subset of Z[β]∩ [0, 1) and the following inclusion holds: FR ⊂ {‖B‖πB(g) ·
uB | g ∈ T[0,1),R+bβc ∩Zm}.

Proof. The finiteness of the set is obvious: it is a discrete set in a subset of
Rm having compact closure. The inclusion relation is a reformulation of
Lemma 2.1 in [Bu]. Let us briefly recall the proof. Let z =

∑k
j=0 ajβ

j with
ai ∈ Z, |ai| ≤ R . We have also z =

∑k
j=−∞ xjβ

j as β - expansion of z .
Therefore z−int(z) =

∑k
i=0 ajβ

k −
∑k

j=0 xjβ
j . Since 0 ≤ xj ≤ bβc and

|ai| ≤ R , frac(z) ∈ [0, 1) is a polynomial in β , the coefficients of which
have their absolute values bounded by R+ bβc. Here the coefficients may
be negative or positive. This is why we have introduced C′ instead of C.
We deduce the result in a similar way as in the proof of Theorem 3.6 for the
computation of the upper bound cF , except that now it is with Ω′, c′F and
the fact that the absolute value of the digits is less than R+bβc; this obliges
to multiply Ω′ by the factor (R+ bβc)/bβc. The set FR is finite (Lemma
6.6 in [So]), and (Proposition 3.4) is in one-to-one correspondence with a
subset of the finite point set T[0,1),R+bβc. We deduce the claim. �

Let

LI,R := b min

[ln(β(i−1)−1
)]−1 ln

 (
m−1∑
k=0

(β(i−1))2k

)1/2

ψI,R+bβc

  c
where the minimum is taken over the real positive embeddings of Q(β) ( i =
1, 2, . . . , s and β(i−1) > 0) and where ψI,R := max{‖y‖ | y ∈ TI,R}. Let us
consider an element z ∈ FR . Its β - expansion:

∑+∞
j=1 z−jβ

−j is even-

tually periodic [Be] [Sch] and therefore can be written
∑k0(z)

j=1 z−jβ
−j +∑+∞

k=0

∑k0(z)+(k+1)r(z)
j=k0(z)+kr(z)+1 z−jβ

−j where the integers k0(z), r(z) ≥ 1 are
minimal. We will denote by JR = max{k0(z) | z ∈ FR} the maximal
preperiod of the β - expansions of the elements of FR. An upper bound
of JR will be computed below.

Theorem 4.7. (i) For all x, y ∈ Z+
β such that x + y has a fi-

nite β-expansion the following relation holds: x + y ∈ β−L Z+
β where

L := min{L[0,1),2bβc, J2bβc}; (ii) the following inclusions hold: Z+
β + Z+

β ⊂
Z+

β +T, Z+
β −Z+

β ⊂ Zβ +T ′, where T = {‖B‖πB(g) · uB |
g ∈ T[0,+1),3bβc ∩Zm} and T ′ = {‖B‖πB(g) · uB | g ∈ T(−1,+1),2bβc ∩Zm}.
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Proof. (i) Let x = xkβ
k + · · · + x0 and y = ylβ

l + · · · + y0 denote
two elements of Z+

β . Then z = x + y is of the form z = ajβ
j + · · · +

a0 with 0 ≤ aj ≤ 2bβc . Write now the β - expansion of z as
z =

∑+∞
j=1 z−jβ

−j +
∑e

j=0 zjβ
j and assume it is finite. Then it admits only

a β-expansion up till the term indexed by its preperiod k0(z) and the
period has necessarily the form given above with r(z) = 1 and z−j = 0 as
soon as j > k0(z). Then

∑k0(z)
j=1 z−jβ

−j = (ajβ
j + · · ·+ a0)− (

∑e
i=0 ziβ

i).

This means that the fractional part
∑k0(z)

j=1 z−jβ
−j is a polynomial of the

type
∑f

i=0 biβ
i with −bβc ≤ bi ≤ 2bβc hence with |bi| ≤ 2bβc . The

set F2bβc is finite (Lemma 4.6) and the set of all possible fractional parts
of elements of Z+

β is exactly in one-to-one correspondence with a subset
of the finite point set T[0,1),3bβc ∩Zm of Zm . Therefore, there exists a
unique gz =

∑f
i=0 biZi ∈ T[0,1),3bβc ∩Zm such that ‖B‖πB(gz) · uB =∑f

i=0 biβ
i =

∑k0(z)
j=1 z−jβ

−j = frac(z) . Let us apply the real and complex

embeddings of the number field Q(β). It gives:
∑k0(z)

j=1 z−j(β(i−1))−j

=
∑f

j=0 bj(β
(i−1))j for all i = 2, 3, . . . ,m. For the real embeddings in

particular this implies (Proposition 3.2):

πB,i(gz) = πB,i(
f∑

j=0

bjZj) =

f∑
j=0

bj(β(i−1))j

‖Xi‖
uB,i =

k0(z)∑
j=1

z−j(β(i−1))−j

‖Xi‖
uB,i

for all i = 1, 2, · · · , s with all z−j ≥ 0. The case of real embeddings will
provide a direct computation of the first upper bound L[0;1),2bβc of the
preperiod and merits to be isolated. Indeed, since in this case 0 < β(i−1) <
1 for all i ∈ {2, 3, · · · , s}, with s assumed ≥ 2, and that all the digits
z−j are positive, we necessarily have: ‖Xi‖−1

(
β(i−1)

)−j ≥ ψ[0,1),3bβc as

soon as j is large enough. Recall that ‖Xi‖ =
(∑m−1

k=0 (β(i−1))2k
)1/2

. With
the definition of L[0;1),2bβc , this implies that the sum of the positive terms∑k0(z)

j=1 z−j(β(i−1))−j cannot contain any term indexed by −j with j >

L[0;1),2bβc. Hence, k0(z) ≤ L[0;1),2bβc. As for the negative real embeddings
and the complex embeddings they will provide the second upper bound of
the preperiod by the computation of J2bβc: indeed, its calculation gives
an upper bound of the number of terms k0(z) in the fractional part of
z, hence, after reducing frac(z) to the same denominator, which will be
βk0(z), we immediately get the result; (ii) (This is reformulation of Theorem
2.4 in [Bu]) First, we have Fbβc ⊂ F2bβc , second Z+

β + Z+
β ⊂ Z+

β +F2bβc ,
Z+

β −Z+
β ⊂ Zβ +(Fbβc∪−Fbβc). Since Ω′ is invariant by inversion and that
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Fbβc∪−Fbβc ⊂ {‖B‖πB(g)·uB | g ∈ T[0,+1),2bβc ∩Zm}∪{‖B‖πB(g)·uB | g ∈
T(−1,0],2bβc ∩Zm} = {‖B‖πB(g) ·uB | g ∈ T(−1,+1),2bβc ∩Zm} (Lemma 4.6),
we deduce the claim. �

Corollary 4.8. Let q = min{L(−1,+1),2bβc, J2bβc}. Then, for all x, y ∈
Zβ such that x + y and x − y have finite β-expansions, the following
relations hold: x+ y (resp. x− y) ∈ β−q Zβ.

Proof. Indeed, T ′ ⊂ T ∪ (−T ) . Hence Zβ + Zβ ⊂ Zβ +(T ∪ (−T )) .
Since T ∪ (−T ) = {‖B‖πB(g) ·uB | g ∈ T(−1,+1),3bβc ∩Zm} , we deduce the
exponent q from the definition of LI,R and from Theorem 4.7. �

Computation of an upper bound of the maximal preperiod JR.— We will
use the case (ii) of cut-and-project scheme in Theorem 3.5. Let {Z−j}j≥0

be the sequence of vectors defined by Z0 = (tQ)jZ−j . We denote as usual
the algebraic norm of β by N(β) = NQ(β)/ Q(β) =

∏m−1
i=0 β(i) . Recall

that a0 = (−1)m−1N(β) .

Lemma 4.9. (i) The following limit holds: limj→+∞ ‖Z−j‖ = +∞ ;
(ii) for all j ∈ N, Z−j ∈ N(β)−j Zm. In particular, if β is a unit of the
number field Q(β) , then all the elements Z−j belong to Zm .

Proof. (i) Since |β(i)|−1 > 1 for all i = 1, 2, . . . ,m − 1, the inverse
operator (tQ)−1 acts as a dilation by a factor of modulus strictly greater
than one on each tQ-invariant subspace F in Rm except Ru: all the
non-zero components of the vector Z−j (which never belongs to Ru) in
the system {Vi}i=2,3,··· ,m diverge when j tends to infinity, hence the
claim. (ii) Solving the equation Z0 = (tQ)1Z−1 shows that Z−1 can be
written Z−1 = −a−1

0 (a1Z0+a2Z1+· · ·+ am−1Zm−2−Zm−1) ∈ N(β)−1 Zm.
Since by construction we have Zj = (tQ)−1(Zj+1) for all j ∈ Z , applying
(tQ)−1 to the last equality clearly gives Z−2 ∈ N(β)−2 Zm and, by
induction Z−h ∈ N(β)−h Zm for all h ≥ 0 . Now it is classical that β is
a unit of Q(β) if and only if N(β) = ±1 establishing the result. �

Theorem 4.10. Denote by

BR =

x ∈ Rm | ‖πB,i(x)‖ ≤
ψ[0;1),R+bβc

(
1− |β(i−1)|m

)
+ bβc(∑m−1

k=0 |β(i−1)|2k
)1/2 (

1− |β(i−1)|
) ,

i = 2, 3, · · · ,m


the cylinder (band) of axis the expanding line Ru and VR = {x ∈
BR | ‖B‖πB(x) · uB ∈ [0, 1)} the slice of the band BR . Then this slice is
such that JR ≤ #(VR ∩N(β)−m Zm).
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Proof. Each element α ∈ FR can be written α =
∑m−1

i=0 piβ
i with

pi ∈ Z and
∑m−1

i=0 piZi ∈ T[0,1),R+bβc ∩Zm (Lemma 4.6). Thus, |pi| ≤
ψ[0,1),R+bβc for all i = 0, 1, · · · ,m − 1. Now ([Sch] and section 2), the
following equality holds for all n ≥ 0:

Tn(α) = βn ·

(
α−

n∑
k=0

εk(α)β−k

)
=

m∑
k=1

r
(n)
k β−k

where (εk(α))k≥0 is the sequence of digits of the Rényi β-expansion of
α and (r(n)

1 , r
(n)
2 , · · · , r(n)

m ) ∈ Zm . Recall that ε0(α) = bαc = 0 .
The real and complex embeddings of the number field Q(β) applied to
Tn(α) provide the m equalities, with j = 1, 2, · · · ,m:

(
β(j−1)

)n
·

(
m−1∑
i=0

pi

(
β(j−1)

)i
−

n∑
k=1

εk(α)
(
β(j−1)

)−k
)

=

m∑
k=1

r
(n)
k

(
β(j−1)

)−k
.

We deduce that(
m−1∑
k=0

|β(i−1)|2k

)1/2

‖πB,i(
m∑

k=1

r
(n)
k (β(j−1))−k)‖

=

∣∣∣∣∣
m∑

k=1

r
(n)
k (β(j−1))−k

∣∣∣∣∣
≤

m−1∑
i=0

|pi||β(j−1)|n+i + bβc
n∑

k=0

|β(j−1)|k

≤ 1
1− |β(j−1)|

[
ψ[0,1),R+bβc(1− |β(j−1)|m) + bβc

]
for all n ≥ 0, j = 2, 3, · · · ,m with 0 ≤

∑m
k=1 r

(n)
k β−k < 1. From Proposi-

tion 3.2 and Lemma 4.9 the element
∑m

k=1 r
(n)
k β−k can be uniquely lifted

up to the element
∑m

k=1 r
(n)
k Z−k ∈ N(β)−m Zm. Its projections by the pro-

jection mappings πB,i, i = 2, 3, · · · ,m to the Q-invariant subspaces of
Rm are bounded by constants which are independant of n . The restric-
tion of the lifting of the operator T to VR ∩N(β)−m Zm has self-avoiding
orbits (to have a preperiod) whose length is necessarily smaller than the
number of available points in the volume VR. We deduce the upper bound
#(VR ∩N(β)−m Zm) of JR. �
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Appendix.– Classification of Delone sets. We will say that a subset Λ
of Rn is (i) uniformly discrete if there exists r > 0 such that ‖x−y‖ ≥ r for
all x, y ∈ Λ, x 6= y, (ii) relatively dense if there exists R > 0 such that, for
all z ∈ Rn, there exists λ ∈ Λ such that the ball B(z,R) contains λ, (iii) a
Delone set if it is relatively dense and uniformly discrete. Delone sets are
basic objects for mathematical quasicrystals [La2] [MVG].

Definition 4.1. A cut-and-project scheme consists of a direct product
E × D, where E and D are Euclidean spaces of finite dimension, and
a lattice L in E × D so that, with respect to the natural projections
p1 : E×D → E , p2 : E×D → D : (i) p1 restricted to L is one-to-one
onto its image p1(L), (ii) p2(L) is dense in D. We will denote by ∗ the
following operation: ∗ := p2 ◦ (p1|L

)−1 : p1(L)→ D.

Definition 4.2. A subset Λ of a finite dimensional Euclidean space E is a
model set (also called a cut-and-project set) if there exist a cut-and-project
scheme (E ×D,L) and a subset Ω of D with nonempty interior and
compact closure such that Λ = Λ(Ω) = {p1(l) | l ∈ L, p2(l) ∈
Ω }, equivalently = { v ∈ p1(L) | v∗ ∈ Ω }. The set Ω is called
acceptance window.

Meyer sets were introduced in [Mey]. By definition, we will say that Λ,
assumed to be a relatively dense subset of Rn, is a Meyer set of Rn if
it is a subset of a model set. Other equivalent definitions can be found in
[Mo] or [Mey]. For instance, Λ is a Meyer set if and only if it is a Delone
set and there exists a finite set F such that Λ−Λ ⊂ Λ+F ; or if and only if
it is relatively dense and Λ−Λ is uniformly discrete. The above definition
shows that the class of Meyer sets of Rn contains the class of model sets
of Rn.

Theorem 4.11. ( Meyer [Mey]) Let Λ be a Delone set in Rn such that
ηΛ ⊂ Λ for a real number η > 1. If Λ is a Meyer set, then η is a Pisot
or a Salem number.

Definition 4.3. A Delone set Λ is said to be finitely generated if Z[Λ−Λ]
is finitely generated. A Delone set Λ is said to be of finite type if Λ−Λ is
such that its intersection with any closed ball of Rn is a finite set.

The class of finitely generated Delone sets of Rn is strictly larger than
the class of Delone set of finite type of Rn, which is itself larger than the
class of Meyer sets of Rn [La] [La1].

Theorem 4.12. ( Lagarias [La]) Let Λ be a Delone set in Rn such that
ηΛ ⊂ Λ for a real number η > 1. The following assertions hold: (i) If Λ
is finitely generated, then η is an algebraic integer. If the rank of Z[Λ] is
s, then the degree of η divides s, (ii) If Λ is a Delone set of finite type,
then η is a Perron number or is a Lind number.
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Although Zβ is associated with two canonical cut-and-project schemes
when β is a non-integer Perron number, the converse of the assertion (ii) of
Theorem 4.12 seems to be an open problem. It is at least already related
to the question Q1’ of the introduction and to various arithmetical and
dynamical problems [ABEI].

Acknowledgements.— We are indebted to Christiane Frougny, Valérie
Berthé, Pierre Arnoux and a referee for very useful and valuable comments
and discussions.
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(xθn)n≥0. Langages codes et θ - shift, Bull. Soc. Math. France, 114 (1986), 271–323.

[Be3] A. Bertrand - Mathis, Nombres de Perron et questions de rationnalité. Séminaire
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