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Languages under substitutions and balanced

words

par Alex HEINIS

Résumé. Cet article est constitué de trois parties. Dans la pre-
mière on prouve un théorème général sur l’image d’un language
K sous une subsitution. Dans la seconde on applique ce théorème
au cas spécial prenant pour K le language des mots balancés et
la troisième partie concerne les mots bi-infinis récurrents de crois-
sance de complexité minimale (“minimal block growth”).

Abstract. This paper consists of three parts. In the first part
we prove a general theorem on the image of a language K under a
substitution, in the second we apply this to the special case when
K is the language of balanced words and in the third part we deal
with recurrent Z-words of minimal block growth.

Definitions and notation

In this paper a word is a mapping w : I → {a, b} where I is a subinterval
of Z. We identify words which are shifts of eachother: hence we identify
w1 : I1 → {a, b}, w2 : I2 → {a, b} if there exists an integer k with I1+k = I2
and w1(i) = w2(i + k) for all i ∈ I1. If I = Z we call w a Z-word or a
bi-infinite word.

If I is finite we call x finite and its length |x| is defined as |I|. The usual
notation for a finite word of length n is x = x1 · · ·xn where all xi ∈ {a, b}.
We write {a, b}∗ for the collection of finite words and {a, b}+ for the non-
empty finite words. (The empty word will be denoted throughout by ε).
The concatenation xy of two words x, y is defined by writing x in front of
y, which is only defined under the obvious restrictions. A finite word x is
called a factor of w, notation x ⊂ w, if w = yxz for some words y, z. It
is called a left-factor (prefix) of w if w = xy for some y and a right-factor
(suffix) if w = yx for some y. The factor-set of w will be denoted by F (w).

An n-factor of w is a factor of w of length n. The collection of n-factors
is defined by B(w, n) and we write P (w, n) := |B(w, n)|. The mapping
P (w, n) : N → N is known as the complexity function of w. A factor x ⊂ w
has multiple right extension (m.r.e.) in w if xa, xb ⊂ w. We also say that x
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is right-special in w and the collection of right-special factors is denoted by
MRE(w). We write MREn(w) for the collection of right-special n-factors
and similarly we define MLE(w) and MLEn(w). A factor x ∈ MLE(w) ∩
MRE(w) is called a bispecial factor. The bispecials are usually divided into
three classes. We call a factor x weakly/normally/strictly bispecial if the
number of symbols σ for which σx ∈ MRE(w) equals 0/1/2, respectively.
We follow the notation in [Ca] and write BF(w)/BO(w)/BS(w) for the
collection of weakly/normally/ strictly bispecials in w, respectively.

A language K is just a collection of words. Most of the notions above
can be generalised without problems to languages, e.g. F (K) := ∪w∈KF (w)
and MRE(K) = {x|xa, xb ∈ F (K)}. All languages we consider in this paper
are closed under factors and extendible. This means x ⊂ y, y ∈ K ⇒ x ∈ K
and that {ax, bx}∩K, {xa, xb}∩K are non-empty for any finite x ∈ K. We
call this a CE-language. The following fundamental proposition can also
be found in [Ca].

Proposition 1. Let K be a CE-language with a, b ∈ K. Then P (K,n) =
n+ 1 +

∑n−1
i=0 (n− 1− i)(|BSi(K)| − |BFi(K)|).

Proof. We have P (K,n+1)−P (K,n) = |MREn(K)| and |MREn+1(K)|−
|MREn(K)| = |BSn(K)| − |BFn(K)| for all n ≥ 0. Now perform a double
summation. 2

Hence: to know P (K,n) we need only consider the weakly and strongly
bispecial factors of K. A substitution is a mapping T : {a, b}∗ → {a, b}∗
satisfying T (xy) = T (x)T (y) for all finite x, y. Obviously T is determined
by X := Ta, Y := Tb and we write T = (X,Y ). Substitutions extend in
a natural way to infinite words and we will not distinguish between T and
this extension.

If T = (AB,AC), T ′ = (BA,CA) and σ is a Z-word then Tσ = T ′(σ).
It follows that F (TK) = F (T ′K) for any CE-language K. Now consider
a substitution T = (X,Y ). Let x = X+∞ := XXX · · · , y := Y +∞ (right-
infinite words) and write |X| =: m, |Y | =: n. If x = y then one can show,
for instance with the Defect Theorem [L, Thm 1.2.5], that X,Y are powers
of one word π, i.e. X = πk, Y = πl, and then we have Tσ = π∞ for any σ.
In this case we call T trivial. If T is not trivial there exists a smallest i with
xi 6= yi and then Tσ = T ′(σ) where T ′ := (xi · · ·xi+m−1, yi · · · yi+n−1). For
non-trivial T and K a CE-language we have therefore shown that F (TK) =
F (T ′K) for some T ′ where T ′a, T ′b have different initial symbols. From now
on we assume that T = (X,Y ) is a substitution with X1 = a, Y1 = b. We
call such T an a/b-substitution or ABS.
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1. A general theorem

In the next theorem we write {X,Y }−∞ for the image under T of all
left-infinite words, hence {X,Y }−∞ := T ({a, b}−∞).

Theorem 1. Let T = (X,Y ) be an ABS, let K be a CE-language and
L := F (TK). Let Σ := {X,Y }−∞ and let S be the greatest common suffix
of elements of Σ. Then there exists a constant M such that for x ∈ L with
|x| ≥M we have

x ∈ BS(L) ⇐⇒ x = ST (ξ), ξ ∈ BS(K) and

x ∈ BF(L) ⇐⇒ x = ST (ξ), ξ ∈ BF(K).

Proof. Since X−∞ 6= Y −∞ as above we find that S is finite and well-
defined. From T we construct a graph G(T ) as follows. We have a point
O ∈ G(T ), the origin, such that G(T ) consists of two directed cycles α, β
from O to itself such that they only intersect in O. Every edge has a label
in {a, b} in such a way that the labels from α, β (starting at O) read X,Y ,
respectively. As an example we have drawn G(T ) when T = (abb, bba).

O

G(T)

a
b

b

b
b

a

We call G(T ) the representing graph for T . We let ∆ be the collection of
finite paths in G(T ) and define χ : {a, b}∗ → ∆ by χ(a) = α, χ(b) = β such
that χ respects concatenation. We define the label-map λ : ∆ → {a, b}∗ in
the obvious way and set Γ equal to the collection of subpaths of χ(FK).
Then L = λ(Γ). We let σ be the symbol such that all words from ΣX have
suffix σS and then all words from ΣY have suffix σS. (In this paper we
write a = b, b = a). If x is a finite word we write Γ(x) := {γ ∈ Γ|λ(γ) = x}
and its elements are called representing paths for x (in Γ). For (⇒) we
assume that x ∈ L is bispecial and we consider two cases.
α) All γ ∈ Γ(x) have the same final vertex. This vertex is then O

since x ∈ MRE(L). Since x ∈ MLE(L) we have |x| ≥ |S| and x has
suffix S. If |x| > |S| and x has suffix σS/σS, then all γ ∈ Γ(x) end with
an edge in α/β. Since x ∈ MLE(L) we even have that every γ ∈ Γ(x)
ends with α/β. Continuing in this way one finds that every γ ∈ Γ(x) is
of the form γ = φχ(ξ) where φ is a path of length ≤ |S| ending in O
and where ξ depends only on x (not on γ). Using x ∈ MLE(L) we find
|φ| = |S|, λ(φ) = S and x = ST (ξ) where ξ ∈ K. (The last fact follows
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from χ(ξ) ∈ Γ). Now assume that γ′ ∈ Γ represents σx = σST (ξ). Then
γ′ = γ′′χ(ξ) where γ′′ ends in O. Since λ(γ′′) = σS we find that every γ′

ends in ωaχ(ξ) where ωa denotes the final edge of α. This implies

σx ∈ MRE(L) ⇐⇒ aξ ∈ MRE(K).

Similarly we have σx ∈ MRE(L) ⇐⇒ bξ ∈ MRE(K). We deduce that
x ∈ BF(L) ⇐⇒ ξ ∈ BF(K) and likewise for BO and BS. This proves (⇒)
in case α.
β) Not all γ ∈ Γ(x) have the same final vertex.

Definition. A finite word x is called traceable from P if a γ ∈ Γ(x) exists
with initial vertex P . We write P ∈ Tr(x). An infinite word τ : N → {a, b}
is called traceable from P if every prefix of τ is traceable from P . We write
P ∈ Tr(τ).

Definition. A finite word x is called distinctly traceable (dt) if γ, δ ∈ Γ(x)
exist with different endpoints. An infinite word τ : N → {a, b} is distinctly
traceable if every prefix of τ is distinctly traceable.

Suppose that x is dt of length n and choose γ = P0 · · ·Pn, δ = Q0 · · ·Qn in
Γ(x) with Pn 6= Qn. Then induction shows that Pi 6= Qi for all 0 ≤ i ≤ n.
In particular Pi 6= O ∨Qi 6= O for all 0 ≤ i ≤ n. It follows that x is com-
pletely determined by the triple (P0, Q0, n) and we call (P0, Q0) a starting
pair for x. If x, x′ are dt with a common starting pair then it is easily seen
that x, x′ are prefix-related.

Corollary. There exists a finite collection {τi} of words (finite or right-
infinite) such that every dt word x is prefix of some τi.

Corollary. There exists a constant M and a finite collection T of dt
words τi : N → {a, b} such that every finite dt word x of length at least M
is prefix of exactly one τi.

If w is a word we will write [w]n for its prefix of length n if it exists and [w]n

for its suffix of length n (if it exists). Now let τ be any right-infinite word.
Then there exists a constant cτ such that Tr(τ) = Tr([τ ]i) for all i ≥ cτ .
Indeed, (Tr([τ ]i))∞i=0 is a decreasing sequence of finite sets. Such a sequence
is always ultimately constant and its ultimate value is Tr(τ). Enlarging the
previous constant M if necessary we may assume that M ≥ cτ , caτ , cbτ for
all τ ∈ T .

To sum up, we assume that x ∈ L is bispecial and dt with |x| ≥M . We
let τ ∈ T be the unique element from which x is a prefix. We let µ be the
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symbol for which xµ is also a prefix of τ and we denote by δa, δb the initial
edges of α, β.

By extendibility a symbol ν exists such that νxµ ∈ L. Choose γ ∈
Γ(νxµ) with initial vertex P . Then P ∈ Tr(νx) = Tr(ντ) = Tr(νxµ)
hence νx ∈ MRE(L) and x 6∈ BF(L). Hence to prove (⇒) we need only
consider x ∈ BS(L), which we do. Choose γ ∈ Γ(xµ) with initial point
P . Then P ∈ Tr(x) = Tr(τ) = Tr(xµ), hence γ has final edge δµ. Since
xµ ∈ MLE(L) we find, as in α, that γ = φχ(ξ)δµ where λ(φ) = S and
where ξ depends only on x, not on γ. Hence x = ST (ξ), any γ ∈ Γ(σxµ)
ends in ωaχ(ξ)δµ and any γ ∈ Γ(σxµ) ends in ωbχ(ξ)δµ. Considering a
P ∈ Tr(σxµ) yields aξ ∈ MRE(K) and similarly bξ ∈ MRE(K). Therefore
ξ ∈ BS(K) and this concludes the proof of (⇒).

Now assume that x = ST (ξ) with |x| ≥ M and ξ bispecial in K. Then
it is easily seen that x is bispecial in L and the previous arguments apply.
We may assume that x is dt since otherwise we are done. We define τ, µ
as before. Any γ ∈ Γ(σxµ) = Γ(σST (ξ)µ) ends in ωaχ(ξ)δµ and any
γ ∈ Γ(σxµ) ends in ωbχ(ξ)δµ. We deduce

σx ∈ MRE(L) ⇒ aξ ∈ MRE(K), σx ∈ MRE(L) ⇒ bξ ∈ MRE(K).

The reverse implications in this line are clear when x = ST (ξ). Hence

σx ∈ MRE(L) ⇐⇒ aξ ∈ MRE(K), σx ∈ MRE(L) ⇐⇒ bξ ∈ MRE(K).

Hence x ∈ BS/BO/BF(L) ⇐⇒ ξ ∈ BS/BO/BF(K) and we are done. 2

Remark. The given proof shows x ∈ BO(L) ⇐ x = ST (ξ), ξ ∈ BO(K)
for |x| ≥ M . We wondered if the reversed implication is also true. This is
not the case, as pointed out by the referee of this article. He kindly sup-
plied us with the next example. Let K = {a, b}∗ and T = (aba, b). Then
BO(K) = ∅ and BO(L) = a(baba)∗ ∪ ab(abab)∗ ∪ ba(baba)∗ ∪ bab(abab)∗.

2.1. An application to balanced words. Again we start off with some
necessary definitions. The content c(x) of a finite word x is the number of
a’s that it contains.

Definition. A word w is balanced if |c(x) − c(y)| ≤ 1 for all x, y ⊂ w
with |x| = |y|.

We denote the language of balanced words by Bal. One can show, see
[H, Thm 2.3], that K := Bal is a CE-language. The balanced Z-words
can be classified, see [H, Thm 2.5], [MH, Thms 5.1,5.2,5.3], [T, Thm 2],
and the bispecial factors in K are also known. More precisely, BF(K) = ∅
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(there are no weakly bispecials) and BS(K) = H, the class of finite Hed-
lund words. Finite Hedlund words can be introduced in various ways. In
[H, Section 2.3] we define them by means of infinite Hedlund words, in [H,
Section 2.4] we show BF(K) = ∅,BS(K) = H and we give an arithmetical
description of finite Hedlund words. To give this description we need some
more notation. Let A ⊂ I where I is a subinterval of Z. Then A induces a
word w : I → {a, b} by setting wi = a ⇐⇒ i ∈ A. By abuse of notation
we denote this induced word by A ⊂ I. The finite Hedlund words are then
given by

{b i(r + s)
k + l

c}k+l−1
i=1 ⊂ [1, r + s− 2]

where k, l, r, s are integers with 0 ≤ k ≤ r, 0 ≤ l ≤ s and lr − ks = 1. See
[H, p. 27] where this word is denoted by per(s, r, 1). Note that (s, r) = 1.

Remark. A word w : I → {a, b} is called constant if |w(I)| = 1 and
w is said to have period p if wi = wi+p whenever i, i + p ∈ I. A famous
theorem by Fine and Wilf [FW, Thm 1] implies that a non-constant word
x with coprime periods s, r has length at most s+ r− 2 and one can show
that such an x is unique up to exchange of a and b. See also [T, Thm 3].
De Luca and Mignosi define PER as the collection of such x and show that
BS(K) = PER. Hence the class PER in [dL/Mi] equals our class H.

The word x := per(s, r, 1) satisfies c(x) = k + l − 1, |x| = r + s − 2 and
from this one easily deduces that the pair (s, r) is unique. It also fol-
lows from the above that a word x ∈ H with c(x) = λ, |x| = n exists if
and only if 0 ≤ λ ≤ n, (λ + 1, n + 2) = 1 and that such an x is unique.
We leave these details to the reader. As a direct consequence we have
|BSn(K)| = φ(n + 2), |BFn(K)| = 0 and using Proposition 1 we find the
following formula for bal(n) := P (K,n) :

bal(n) = 1 +
n∑
k=1

(n+ 1− k)φ(k)

This formula is well-known and has a number of alternative proofs, see
[Be/Po][dL/Mi, Thm 7][Mi]. From this one can deduce the asymptotics
bal(n) = n3

π2 +O(n2 lnn), see [Mi]. We now investigate what happens when
K is subjected to a substitution T .

Theorem 2. Let T = (X,Y ) be an ABS, let K = Bal and L = F (TK).
Then

lim
n→∞

P (L, n)
P (K,n)

=
1

|X| · |Y |
.
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Proof. We define S as in Theorem 1 and BS∗(L) = ST (H),BF∗(L) = ∅.
Then Theorem 1 implies that the symmetric differences BS∗(L)4BS(L)
and BF∗(L)4BF(L) are finite. Combining Proposition 1 with this fact and
writing f(n) ∼ g(n) for f(n)− g(n) = O(n) we find

P (L, n) ∼
n−1∑
i=0

(n− 1− i)|BS∗i (L)| (1)

If x ∈ BS∗(L) then by definition we have x = ST (ξ) where ξ ∈ H. Writing
|x| − |S| = p, c(x)− c(S) = q, |X| = α, |Y | = β, c(X) = γ, c(Y ) = δ, c(ξ) =
λ, |ξ| − c(ξ) = µ we have (

p

q

)
=

(
α β
γ δ

) (
λ

µ

)
(2)

As we have seen above in a slightly different form, there exists a ξ ∈ H
with parameters (λ, µ) iff λ, µ ∈ N, (λ+1, µ+1) = 1 and ξ is unique in this
case. We can now translate this into conditions for (p, q). Put d := (α, β).
Then obviously p ∈ dZ and we write α = dα̃, β = dβ̃, p = dP. Then(

P
q

)
=

(
α̃ β̃
γ δ

) (
λ

µ

)
(3)

Choose integers k, l ∈ Z with 0 < l ≤ α̃ and kα̃+lβ̃ = 1. Since λα̃+µβ̃ = P
we have (

λ

µ

)
∈

(
Pk
Pl

)
+ Z

(
β̃

−α̃

)
(4)

It follows that |BS∗|S|+dP(L)| equals the number of integers t that satisfy
Pk+ tβ̃,Pl− tα̃ ≥ 0, (Pk+ tβ̃+1,Pl− tα̃+1) = 1. Some calculation then
shows that |BS∗|S|+dP(L)| equals the number of integers t with

−Pk
β̃

≤ t ≤ Pl
α̃
, (t+ l − k,P + α̃+ β̃) = 1

We now need a small lemma on the Euler φ-function.

Lemma 2.1. Let 0 ≤ α < β ≤ 1 be given and define φα,β(n) := |{k :
αn ≤ k ≤ βn, (k, n) = 1}. Then limn→∞

φα,β(n)
φ(n) = β − α.

Proof. We will generalize the classical inclusion/exclusion proof for the
formula φ(n) = nΠp|n(1 − 1

p). All statements in the proof will have fixed

n, α, β. We write n = pk11 · · · pks
s for the prime decomposition of n and we

denote by N(i) the number of multiples of i in [αn, βn]. By the principle
of inclusion/exclusion we have

φα,β(n) = N(1)−N(p1)− · · · −N(ps) · · ·+ (−1)sN(p1 · · · ps)
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This implies

φα,β(n) = (β−α)n− (β − α)n
p1

· · ·− (β − α)n
ps

· · ·+(−1)s
(β − α)n
p1 · · · ps

+O(2s)

since the termwise difference is at most 1. Dividing by φ(n) we find
φα,β(n)
φ(n) = β − α + O(2s)

φ(n) and we will now show that the final term has
limit 0 as n→∞. Choose ε > 0, choose σ ∈ N+ such that s ≥ σ ⇒ 2s

s! < ε

and finally choose N ∈ N+ such that n ≥ N ⇒ 2σ

φ(n) < ε. Let n ≥ N be
arbitrary. If s = s(n) ≥ σ we have 2s

φ(n) = 2s

nΠ(1−1/p) ≤
2s

Π(p−1) ≤
2s

s! < ε.
If s < σ we have 2s

φ(n) <
2σ

φ(n) < ε. Since ε was arbitrary it follows that
limn→∞

2s

φ(n) = 0 and we are done. 2

Applying this to the “formula” for |BS∗|S|+dP(L)| and using that l
α̃+ k

β̃
= 1

α̃·β̃

we find that limP→∞
|BS∗|S|+dP (L)|
φ(P+α̃+β̃)

= 1
α̃·β̃ . To finish things off we have the

following small Tauberian lemma.

Lemma 2.2. Suppose that an ∈ R, bn ∈ R+ for all n ≥ 1 with
limn→∞

an
bn

= λ and
∑∞

1 bn = ∞. If An :=
∑n

k=1 ak and Bn :=
∑n

k=1 bk,
then limn→∞

An
Bn

= λ.

Proof. Replacing ai by ai − λbi we may assume λ = 0. Fix ε > 0 and
choose N ∈ N+ such that |an| < εbn for n ≥ N . For all i ≥ 0 we have

|AN+i

BN+i
| ≤ |AN |+ ε(bN+1 + · · ·+ bN+i)

BN+i
≤ |AN |
BN+i

+ ε

Choose N ′ s.t. BN+i ≥ |AN |
ε for i ≥ N ′. Then |Aj

Bj
| < 2ε for j ≥ N +N ′.2

If we apply Lemma 2.2 not once but twice and use partial summation
we also obtain limn→∞

∑n
1 (n+1−i)ai∑n
1 (n+1−i)bi = λ. In the following we write σ =

bn−1−|S|
d c, we write f(n) ∼= g(n) if limn→∞

f(n)
g(n) = 1 and f(n) ≈ g(n) if

f(n)− g(n) = O(n2). Note that
∑n

k=1 φ(k) = O(n2) since φ(k) ≤ k for all
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k. Combining the previous material we find

P (L, n) ∼
n−1∑
i=0

(n− 1− i)|BS∗i (L)|

= d
σ∑

P=0

(
n− 1− |S|

d
− P)|BS∗|S|+dP(L)|

≈ d
σ∑

P=1

(σ + 1− P)|BS∗|S|+dP(L)|

∼=
d3

αβ

σ∑
P=1

(σ + 1− P)φ(P + α̃+ β̃)

=
d3

αβ
{bal(σ + α̃+ β̃)− bal(α̃+ β̃)− σ

α̃+β̃∑
P=1

φ(P)}

∼ d3

αβ
bal(σ + α̃+ β̃)

∼=
d3

αβ
· bal(n)

d3

=
bal(n)
|X| · |Y |

.

2

Intermezzo. Theorem 2 relies heavily on the properties of Bal. To illus-
trate this we consider another example, K = {a, b}∗. The reader can skip
this part and continue with Section 2.2 if he wishes to continue directly
with applications to balanced words.

Theorem 3. Let T = (X,Y ) be an ABS and let S be the greatest common
suffix of {X,Y }−∞ as in Theorem 1. We write α := |X|, β := |Y |, d :=
(α, β), α̃ := α

d , β̃ := β
d , p := max(α̃, β̃), q := |α̃ − β̃|. Let φ be the unique

positive root of xp − xq − 1 (existence and uniqueness will be established
below). We write fr(x) := x− bxc for fractional parts, for n ∈ N we write
σ = σ(n) := bn−1−|S|

d c and εn := 1− fr(n−1−|S|
d ). Also let K = {a, b}∗ and

L = F (TK). Then there exists a constant γ ∈ R+ such that

P (L, n) = γ(φ− (φ− 1)εn)φσ + o(φσ)

Proof. We will use techniques similar to those in the proof of Theorem 2.
Note that BF(K) = ∅,BS(K) = K and let BF∗(L) = ∅,BS∗(L) = ST (K).
Formula (1) remains valid as it stands. It is clear that BS∗i (L) = ∅ when
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i 6∈ |S| + dN. We define f(P) := |BS∗|S|+dP(L)|, then f(P) = {x ∈ K :
|Tx| = dP}|. Dividing up with respect to the final symbol of x, we find
f(P) = f(P − α̃) + f(P − β̃) for P ≥ α̃, β̃. Replacing P by P + p we find
f(P+p) = f(P)+ f(P+ q) for all P ∈ N. The minimal polynomial of this
recurrence relation equals g = xp − xq − 1. Note p > q ≥ 0 and (p, q) = 1.
We will now prove some relevant properties of g in order to establish the
asymptotics of f(P).

Lemma 3.1. Let g = xp − xq − 1 with p > q ≥ 0 and (p, q) = 1. Then:

a) g has only simple roots;
b) g has exactly one positive root φ and φ ∈ (1, 2];
c) g has another real root iff p is even in which case this other root lies

in (−1, 0);
d) Any circle C(0, r) with r > 0 contains at most 2 roots of g. If it

contains two distinct roots x, y then x, y are non-real and conjugate;
e) φ is the unique root of maximal length.

Proof. We assume q ≥ 1 since q = 0 implies p = 1, g = x− 2 and then the
statements are clear. We have g′ = xq−1(pxp−q − q).
a) If g has a double root x then xq(xp−q−1) = 1 and xp−q = q

p . Substitution
yields xq = −p

p−q and then multiplication yields xp = −q
p−q . Hence xp, xq ∈ Q

and from (p, q) = 1 we deduce x ∈ Q. N ow x is an algebraic integer, hence
x ∈ Z, and all integer roots of g must divide 1. But g(−1) ≡ 1(2) and
g(1) = −1.
b) This follows from g′ and g(0) = g(1) = −1, g(2) = 2p−2q−1 ≥ 2q−1 > 0.
c) From g′ one deduces that g has at most one root in R−. If N is the
number of real roots then N ≡ p(2) since non-real zeroes appear in con-
jugate pairs. Hence another real root exists iff p is even. Then q is odd,
g(−1) = 1 and g(0) = −1.
d) Fix r and suppose g(x) = 0 with |x| = r. Then xp−q − 1 = 1

xq . Writing
τ := xp−q we have τ ∈ C(0, rp−q)∩C(1, 1

rq ). Hence at most two τ are pos-
sible. If roots x, y of g with |x| = |y| = r give the same τ then xp−q = yp−q

and xq = yq. Hence x = y. It follows that C(0, r) contains at most two
distinct zeroes. If it contains a non-real root x, then x is also a root and the
number of zeroes is 2. If it contains a real root x, then also τ ∈ R. Since
C(0, rp−q) and C(1, 1

rq ) have a real point of intersection they are tangent.
Hence for such r there is only one τ and only one x.
e) g(x) = 0 ⇒ |x|p = |xq + 1| ≤ |x|q + 1 ⇒ g(|x|) ≤ 0 ⇒ |x| ≤ φ. Hence φ
is indeed a zero of maximal length and its uniqueness follows from d). 2

Proof of Theorem 3 (continued). We denote the roots of g by (ωi)
p
i=1
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where we suppose that |ω1| ≥ · · · ≥ |ωp|. Since g has simple roots we have

f(P) = C1ω
P
1 + · · ·+ Cpω

P
p , P ∈ N

for uniquely determined constants Ci ∈ C. Note that ω1 = φ. We will
show that C1 > 0. Suppose that C1 = 0 and let k be the minimal index
with Ck 6= 0. Then ωk 6∈ R since ωk ∈ R would imply |ωk| < 1 and
then limP→∞ f(P) = 0. Since f : N → N this would imply f(n) = 0
for n large and the recursive formula for f(P) then shows f(N) = {0}.
A contradiction. Hence ωk 6∈ R and by d) we have ωk+1 = ωk. We can
conjugate the above formula for f(P) and by unicity of the Ci we obtain
Ck+1 = Ck. With C := Ck, ω := ωk, ρ := |ω| we find f(P) = 2Re(CωP) +
o(ρP). Writing C =: reiψ, ω =: ρeiθ this implies f(P)

ρP
= 2r cos(ψ + θP) +

o(1). We can assume 0 < θ < π, interchanging ωk, ωk+1 if necessary. Since
f(P)
ρP

≥ 0 for all P ∈ N we deduce lim infk→∞ cos(ψ + θk) ≥ 0. This is
clearly impossible for 0 < θ < π: the set {cos(ψ + θk)}∞k=1 lies dense in
[−1, 1] if θ

π 6∈ Q and in the other case there exists an arithmetic sequence
kn = k0 + nK such that cos(ψ + θkn) is constant and negative. This
contradiction shows that C1 6= 0. Hence

f(P) ∼= C1φ
P (5)

and C1 > 0. We now write f ≈ g if f−g = o(φσ). We now combine (1),(5),
Lemma 2.2 and the remark following that lemma. Then

P (L, n) ∼
n−1∑
i=0

(n− 1− i)|BS∗i (L)|

= d

σ∑
P=0

(
n− 1− |S|

d
− P)f(P)

= d{
σ∑

P=0

(σ + 1− P)f(P)− εn

σ∑
P=0

f(P)}

≈ C1d{
σ∑

P=0

(σ + 1− P)φP − εn

σ∑
P=0

φP}

= C1d{
φσ+2 − (φ− 1)(σ + 1)− φ

(φ− 1)2
− εn(φσ+1 − 1)

φ− 1
}

∼ C1d{
φσ+2

(φ− 1)2
− εnφ

σ+1

φ− 1
}.

Theorem 3 now follows with γ := φC1d
(φ−1)2

. 2
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2.2. More application to balanced words. We now consider K = Bal
again. One can show that every balanced Z-word has a density in the
following sense. Let xn ⊂ w be a factor of length n for each n. Then
limn→∞

c(xn)
|xn| exists and only depends on w, not on (xn). Its value α(w)

is called the density of w. Note that α(w) ∈ [0, 1]. A Z-word w is called
recurrent if each factor x ⊂ w appears at least twice in w.

Proposition 2. Let w be a recurrent balanced Z-word of density α. If
α = 0 then w = b∞. Otherwise we set ζ := 1

α and we define the set W ⊂ Z
by wi = a ⇐⇒ i ∈ W . Then W = {bζi + φc}i∈Z for some φ ∈ R or
W = {dζi+ φe}i∈Z for some φ ∈ R.

Proof. This follows from the classification of balanced Z-words in [H,
Thm 2.5] by considering which Z-words are recurrent. 2

The Z-words in Proposition 2, including b∞, are called Beatty Z-words
(BZW). They can also be obtained as the coding of a rotation on the unit
circle, see for instance [H, Section 2.5.2] for details. If S is the collection
of all BZW’s, then Bal = F (S). This is well-known and can be seen, for
instance, by combining Theorems 2.3, 2.5, 2.8 in [H]. We now investigate
what happens when we put restrictions on the density α. It turns out that
balanced words are, in some sense, uniformly distributed w.r.t. density.
We would like to thank Julien Cassaigne from IML Marseille for suggesting
that this might be the case.

Theorem 4. Let I ⊂ [0, 1] be given and let SI be the collection of BZW’s
σ with α(σ) ∈ I. Also let balI(n) := P (SI , n) and denote Lebesgue measure
on [0, 1] by λ. Then

λ(I◦) ≤ lim inf
n→∞

balI◦(n)
bal(n)

≤ lim sup
n→∞

balI(n)
bal(n)

≤ λ(I).

In particular we have limn→∞
balI(n)
bal(n) = λ(I) (*) when λ(∂I) = ∅. To prove

Theorem 4 we show (*) directly for a particular class of intervals, the so-
called Farey intervals.

2.3. Sturmian substitutions and Farey intervals. A BZW σ with ir-
rational density is called a Sturmian Z-word. We write S ′ for the class
of sturmian Z-words. Let L = (ba, b), R = (ab, b), C = (b, a). Since sub-
stitutions form a monoid (halfgroup with unit), we can consider the sub-
monoid M :=< L,R,C > generated by {L,R,C}. We call it the monoid
of Sturmian substitutions. The name is explained by the next well-known
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proposition.

Proposition 3. For a substitution T we have T ∈ M ⇐⇒ Tσ ∈ S ′
for some σ ∈ S ′ ⇐⇒ Tσ ∈ S ′ for all σ ∈ S ′.

Proof. See [Mi/S]. It also follows from [H, Thm 3.1]. 2

Now let T = (X,Y ) ∈ M with c(X) =: l, |X| =: s, c(Y ) =: k, |Y | =: r. An
easy induction argument shows that lr − ks ∈ {−1, 1}. Hence CH( ls ,

k
r ),

where CH denotes convex hull, is a Farey interval.

Definition. A Farey interval is an interval I = [αβ ,
γ
δ ] with α, γ ∈ N, β, δ ∈

N+, 0 ≤ α
β ≤

γ
δ ≤ 1 and βγ − αδ = 1. Also F is the collection of all Farey

intervals.

We define the density of a finite non-empty word x as α(x) := c(x)
|x| . Then

we have shown that there exists a mapping κ : M→ F sending T = (X,Y )
to κ(T ) := CH(α(X), α(Y )). We define M∗ ⊂ M as the submonoid gen-
erated by A = (a, ba) = CRC and B = (ab, b) = R. We call it the monoid
of distinguished sturmian substitutions. In fact we have M∗ = M∩ABS,
the proof of which we leave as an exercise to the reader. With induc-
tion one shows α(X) > α(Y ) when (X,Y ) ∈ M∗. It is easy to see that
M∗ :=< A,B > is freely generated by A,B. Indeed, suppose that AΦ =
BΨ where Φ,Ψ ∈ M∗. Then ba ⊂ Φ(ba) since [Φ(a)]1 = a, [Φ(b)]1 = b.
Applying A we find aa ⊂ AΦ(ba) = BΨ(ba), a contradiction. To proceed
we introduce some more structure on F . If I = [αβ ,

γ
δ ] is any interval with

α, γ ∈ N, β, δ ∈ N+, (α, β) = (γ, δ) = 1 we define LI = I− = [αβ ,
α+γ
β+δ ]

and RI = I+ = [α+γ
β+δ ,

β
δ ]. Direct calculation shows L,R : F → F and

L(F)∪R(F)∪ {[0, 1]} = F . Hence F is the smallest collection of intervals
containing [0, 1] which is closed under L,R. It follows that each I ∈ F has
a unique notation I = C1 · · ·Cs([0, 1]) where all Ci ∈ {L,R}.

Lemma 4.1.

a) Let κ : M→ F be the mapping described in the preceding paragraph
and let T = C1 · · ·Cs ∈M∗ where all Ci ∈ {A,B}. Define Di = L if
Ci = B and Di = R if Ci = A. Then κ(T ) = Ds · · ·D1([0, 1]);

b) The restriction κ : M∗ → F is bijective;
c) S[0, 1

2
] = BS and S[ 1

2
,1] = AS;

d) Suppose κ(T ) = I where T ∈M∗, I ∈ F . Then SI = T (S).
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Proof. a) Let T = (X,Y ) = C1 · · ·Cs ∈ M∗, let c(X) = l, |X| =
s, c(Y ) = k, |Y | = r and suppose that the statement is true for T . Hence
[kr ,

l
s ] = [α(Y ), α(X)] = κ(T ) = Ds · · ·D1([0, 1]). For T ′ = TA we have

α(T ′a) = c(T ′a)
|T ′a| = l

s and α(T ′b) = k+l
r+s . Hence κ(TA) = Rκ(T ) and simi-

larly κ(TB) = Lκ(T ). Part a) now follows since it is true for T = (a, b).
b) Immmediate.
c) See [H, Lemma 2.14.1].
d) Suppose the statement is true for T = C1 · · ·Cs, I = Ds · · ·D1([0, 1]) and
write T = (X,Y ). Suppose that σ is a BZW with α(σ) ∈ I. Then σ = T (τ)
for some BZW τ and with α(τ) =: α we have α(σ) = αc(X)+(1−α)c(Y )

α|X|+(1−α)|Y | =:

g(α). Since g is strictly increasing on [0, 1] with g(1
2) = c(X)+c(Y )

|X|+|Y | , we have
α(σ) ∈ LI ⇐⇒ α(τ) ≤ 1

2 ⇐⇒ τ ∈ BS. Hence SLI = TB(S) and
similarly SRI = TA(S). 2

Proof of Theorem 4. First let I = [kr ,
l
s ] ∈ F with all fractions in reduced

form. Let T = (X,Y ) := κ−1(I), then Lemma 4.1d tells us that SI = T (S).
Since c(X)

|X| = l
s ,

c(Y )
|Y | = k

r and all fractions are in reduced form, we have
|X| = s, |Y | = r. We write K = F (S) = Bal and L = F (SI) =: BalI .
Applying Theorem 2 we find

lim
n→∞

balI(n)
bal(n)

= lim
n→∞

P (L, n)
P (K,n)

=
1

|X| · |Y |
=

1
rs

= λ(I),

which is (*). We define the level of an interval I = Dt · · ·D1([0, 1]) ∈ F
as the integer t and we denote the class of Farey intervals of level t by Ft.
Then it is easy to show with induction that λ(I) ≤ 1

t+1 when I ∈ Ft.

Lemma 4.2.

a) Let A,B ⊂ [0, 1] be disjoint and compact. Then BalA(n)∩BalB(n) =
∅ for n large;

b) If A,B ⊂ [0, 1] are closed intervals with A∩B = {α} then |BalA(n)∩
BalB(n)| = o(n3).

Proof. a) If σ is a BZW of density α and x ⊂ w is a non-empty finite fac-
tor, then it is well-known that |α(x)− α| ≤ 1

|x| . See [H, Lemma 2.5.1]. Let
d := d(A,B) > 0 and suppose that σ ∈ SA, τ ∈ SB have a non-empty factor
x in common. Then d ≤ |α(σ)−α(τ)| ≤ |α(σ)−α(x)|+ |α(x)−α(τ)| ≤ 2

|x| ,
whence |x| ≤ 2

d .
b) We assume A to the left of B. If σ ∈ SA, τ ∈ SB have a non-empty
finite factor x in common then, as before, |α(σ) − α(τ)| ≤ 2

|x| . Hence
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|α(τ)− α| ≤ 2
|x| and BalA(n) ∩ BalB(n) ⊂ Bal[α,α+ 2

n
](n). Let t ≥ 1 and let

It be the right-most element of Ft containing α. Then we have BalA(n) ∩
BalB(n) ⊂ BalIt(n) for n ≥ N(t). Hence lim supn→∞

P (BalA∩BalB ,n)
bal(n) ≤ 1

t+1

since (*) holds for It. Now let t→∞. 2

Using Lemma 4.2 we find (*) for any finite union of Farey intervals and
we denote the collection of such sets by Ω′. Now let I be any interval and
fix δ > 0. We can choose I1, I2 ⊂ Ω′ with I1 ⊂ I ⊂ I2 and λ(I2 \ I1) < δ.
For n large we then have

λ(I)− 2δ < λ(I1)− δ <
balI1(n)
bal(n)

≤ balI(n)
bal(n)

≤ balI2(n)
bal(n)

< λ(I2) + δ < λ(I) + 2δ.

This proves (*) for I and using Lemma 4.2 one finds (*) for any finite union
of closed intervals. We denote the collection of such sets by Ω. Now let
I ⊂ [0, 1] be any subset. Then I◦ is a countable union of disjoint open
intervals. Approximating I◦ from the inside by elements of Ω one finds
λ(I◦) ≤ lim inf balI◦ (n)

bal(n) . Approximating [0, 1]\I from the inside by elements

of Ω and applying Lemma 4.2a) we find lim sup balI(n)

bal(n) ≤ λ(I). 2

3. Recurrent Z-words of minimal block growth

If w is any Z-word then P (w, n) = 1+
∑n−1

i=0 |MREi(w)| as in the proof of
Proposition 1. Also it is clear that MREi(w) = ∅ implies MREi+1(w) = ∅.
Hence P (w, n) is strictly increasing in n, in which case P (w, n) ≥ n+ 1 for
all n, or P (w, n) is ultimately constant. In the last case it is well-known
that w is periodic. This, in a sense, explains the following terminology
introduced in [CH].

Definition. Let w be a Z-word. Then w has minimal block growth (MBG)
if there exist constants k,N with P (w, n) = n+ k for n ≥ N .

We have k ≥ 1 and k = k(w) is called the stiffness of w. A word w is
called k-stiff if P (n) ≤ n + k for all n. Hence a Z-word w has MBG if
it is not periodic and k-stiff for some k. The minimal such k then equals
k(w). In this paper we concentrate on recurrent Z-words of minimal block
growth. For the non-recurrent case we refer the interested reader to [H,
Thms A,B of Section 3.1]. The situation for k = 1 is classical.

Proposition 4. The Sturmian Z-words are precisely those recurrent Z-
words with P (n) = n+ 1 for all n.
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Proof. This follows from the classification of stiff Z-words in [H, Thm
2.5, 2.6] by considering which ones are recurrent and not periodic. 2

In a sense Sturmian words form the basis of general recurrent Z-words
of MBG. We will see this in Proposition 5. An ABS T = (X,Y ) is
called reduced if X,Y satisfy no suffix relations, i.e. if none is a suffix
of the other. Then T = (AσC,BσC) for uniquely determined A,B,C, σ
(where σ is a symbol). Conversely, any substitution of this form with
[Aσ]1 = a, [Bσ]1 = b is reduced. The stiffness of such a T is defined as
k(T ) := |ABC|+ 1. The name is explained by the following proposition.

Proposition 5. Let w be a recurrent Z-word. Then P (w, n) = n + k
for large n iff w = T (σ) where T is a reduced ABS of stiffness k and σ a
Sturmian Z-word.

Proof. This follows from [H, Thm 3.1] after noting that every ABS T
is of the form T = TREDΦ with TRED reduced and Φ ∈M∗. 2

We denote the collection of reduced substitutions of stiffness k by Tk.
Since |ABC| = k − 1 one immediately finds that Tk is finite and in fact
|Tk| = (k2 + k + 2)2k−3. See [H, Lm 3.6.1] for a proof. We write Sk for
the class of Z-words which are k-stiff but not (k − 1)-stiff. Also we write
Sper
k /Srnp

k /Snr
k for those Z-words in Sk which are periodic/ recurrent but

not periodic/ non-recurrent, respectively. Then Srnp
k ,Snr

k represent the Z-
words of MBG of stiffness k. It has been shown that F (Sper

k ) = F (Srnp
k ).

See [H, Prop 3.3]. Hence on the level of finite factors we need not distin-
guish between Sper

k and Srnp
k . This is the reason why we concentrate on

Srnp
k .
For T an ABS and K := Bal we define LT := F (TK). Then F (Srnp

k ) =
∪T∈Tk

LT by Proposition 5 and B(Srnp
k , n) = ∪t∈Tk

B(LT , n). If T = (X,Y )
is an ABS then limn→∞

P (LT ,n)
bal(n) = 1

|X|·|Y | by Theorem 2. We will show, in
a sense to be made precise, that the languages LT (T ∈ Tk) can be con-
sidered pairwise disjoint. This can be used to calculate the asymptotics of
P (Srnp

k , n) and the result is the following.

Theorem 5. For k ∈ N we have

lim
n→∞

P (Srnp
k , n)

bal(n)
=

2k−1

k2
+ 2k−2 ·

k−1∑
i=1

1
i2
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Proof of Theorem 5. Let T ∈ Tk and write T = (AσC,BσC) as before.
Then limn→∞

P (LT ,n)
bal(n) = 1

(|AC|+1)(|BC|+1) =: l(T ). We write Vk = {(i, j)|0 ≤
i, j ≤ k − 3, i+ j ≥ k − 3} and consider a few cases.

• A = B = ε. Then |C| = k − 1, σ = a and l(T ) = 1
k2 .

• A = ε, B = bB′. Then |B′C| = k − 2, σ = a and l(T ) = 1
k(|C|+1) .

Writing |C|+ 1 =: i we find that exactly 2k−2 substitutions T of this
type have l(T ) = 1

ki . The case A 6= B = ε is similar.
• Both A and B are non-empty. Then A = aA′, B = bB′, |A′B′Cσ| =
k−2. Writing |A′| =: k−3−i, |B′| =: k−3−j we have 0 ≤ i, j ≤ k−3
and i+j = k−3+|C| ≥ k−3. Hence (i, j) ∈ Vk and l(T ) = 1

(i+2)(j+2) .

Taking “disjointness” for granted for the moment we find

lim
n→∞

P (Srnp
k , n)

bal(n)
=

2k−1

k2
+

2k−1

k

k−1∑
i=1

1
i

+ 2k−2
∑

(i,j)∈Vk

1
(i+ 2)(j + 2)

Setting ak := 2
k

∑k−1
i=1

1
i +

∑
Vk

1
(i+2)(j+2) we have

ak+1 − ak =
2

k + 1

k∑
i=1

1
i
− 2
k

k−1∑
i=1

1
i

+
∑

Vk+1\Vk

−
∑

Vk\Vk+1

We have ∑
Vk+1\Vk

=
∑

max(i,j)=k−2

1
(i+ 2)(j + 2)

=
2
k

k∑
i=2

1
i
− 1
k2

and

∑
Vk\Vk+1

=
∑

i+j=k−3

=
k−3∑
i=0

1
(i+ 2)(k − 1− i)

=
2

k + 1

k−1∑
i=2

1
i

Inserting this we find ak+1−ak = 1
k2 and since a1 = 0 we find ak =

∑k−1
i=1

1
i2

.
The theorem follows. We thank the referee of this article who suggested
the shorter formula for ak. We now turn to the problem of disjointness.
We outline the remainder of the proof in a few lemmata.

Lemma 5.1. Let T1, T2 be ABS, let K be a CE-language and let Li :=
F (TiK). There exist a finite set Σ of N-words and a finite collection V of
finite words such that L1 ∩ L2 ⊂ Pref(Σ) ∪ V (T1(K) ∩ T2(K))V.

Lemma 5.2. Let T1, T2 be ABS and let Ω := {a, b}∗. There exist unique
words C ∈ {ε} ∪ aΩ, D ∈ {ε} ∪ bΩ such that T1(Ω) ∩ T2(Ω) = {C,D}∗.

In the setting of Lemma 5.2 we can obviously write C = T1(A) = T2(A′),
D = T1(B) = T2(B′). Writing Φ := (A,B),Ψ := (A′, B′) we have T1(x) =
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T2(y) ⇐⇒ ∃z : x = Φ(z), y = Ψ(z). Hence the pair (Φ,Ψ) parametrizes
the solutions of T1(x) = T2(y) and we call it the pair associated to (T1, T2).
Note that T1Φ = T2Ψ. We call T1, T2 compatible if the words C,D from
Lemma 5.2 are non-empty or, equivalently, if Φ,Ψ are non-erasing. (A
substitution T is non-erasing if |Tσ| ≥ 1 for each symbol σ). We write
T1&T2 if T1, T2 are compatible and T1&T2 if they are not. The following
two properties have easy proofs which are left to the reader.

Proposition 6.

a) Let T1, T2, T3 be ABS. Then T1&T2T3 ⇒ T1&T2;
b) Let T1, T2, T be ABS and let (T1, T2) have associated pair (R,S).

Then T1&T2T ⇐⇒ S&T .

The set M∗ of distinguished substitutions can be seen as a rooted binary
tree where the successors of T are TA, TB. The root is then T = (a, b).
If T = C1 · · ·Cs ∈ M∗ with all Ci ∈ {A,B}, then s is called the level of
T . It is well-defined since A,B generate M∗ freely and we denote the set
of elements of M∗ with level s by M∗

s. Now let Φ be an ABS. We write
GΦ := {T ∈M∗|T&Φ}. By Proposition 6a this is a rooted subtree of M∗.

Lemma 5.3. Let Φ 6= (a, b) be a reduced ABS. Then GΦ has at most
one branchpoint and |GΦ ∩M∗

s| ≤ 2 for all s ∈ N.

Lemma 5.4. Let T1, T2 be distinct reduced ABS, let K := Bal and
Li := F (TiK). Then P (L1 ∩ L2, n) = o(n3).

It is clear that the itemized computations, together with Lemma 5.4, imply
Theorem 5. Having said this we conclude the proof of Theorem 5 and turn
to the lemmata. 2

Proof of Lemma 5.1. We set Gi := G(Ti), the representing graph of Ti.
We form the directed graph G = G1×G2 where (P,Q) → (R,S) is an arrow
in G iff P → R,Q→ S is an arrow in G1, G2, respectively. We define Γi as
in the proof of Proposition 1, hence as the collection of subpaths of χi(FK).
We let Γ be the collection of paths γ = (γ1, γ2) in G satisfying γi ∈ Γi and
λ1(γ1) = λ2(γ2). In that case we call x := λ1(γ1) = λ2(γ2) the label of γ.
Conversely we call γ a representing path for x and we write Γ(x) for the col-
lection of paths in Γ representing x. Note that x ∈ L1∩L2 ⇐⇒ Γ(x) 6= ∅.
Now let x ∈ L1 ∩ L2 and choose a γ = γ(0) · · · γ(n) ∈ Γ(x). We consider
two cases.

• γi 6= O := (O1, O2) for 0 ≤ i ≤ n. In that case γi+1 is completely
determined by γi for 0 ≤ i < n, hence γ is completely determined by
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γ(0) and its length. It follows that can find a collection Σ of N-words,
with |Σ| ≤ |G|, such that each λ(γ) ∈ Pref(Σ). Of course we consider
only those γ that do not hit O.

• γi = O for some 0 ≤ i ≤ n. We can write uniquely γ = γ′γ′′γ′′′ where
γ′/γ′′′ hit O only in their last/first vertex, respectively. Since γ′ is
determined by γ(0) we have |{γ′}| ≤ |G| and similarly |{γ′′′}| ≤ |G|.
Now let V := {λ(γ′)}∪{λ(γ′′′)} and note that λ(γ′′) ∈ T1(K)∩T2(K).

2

Proof of Lemma 5.2. We use the same notation as in the previous
proof. Let x ∈ T1(Ω) ∩ T2(Ω) and choose a γ = γ(0) · · · γ(n) ∈ Γ(x) with
γ(0) = γ(n) = O. Let 0 ≤ s < t ≤ n be consecutive elements of γ−1(O).
Then γ(s) · · · γ(t) is completely determined by xs+1. It is a path from O
to itself that does not hit O inbetween and we call this a primitive cycle.
We have at most two primitive cycles. We define C = λ(γ) if a primi-
tive cycle γ exists with initial label a and C = ε otherwise. Similarly we
define D. Then it is clear that C ∈ {ε} ∪ aΩ, D ∈ {ε} ∪ bΩ and that
T1(Ω) ∩ T2(Ω) = {C,D}∗. Now suppose that C,D have these properties.
Then C equals the element of T1(Ω)∩ T2(Ω)∩ aΩ of minimal length if this
set is non-empty and C = ε otherwise. Hence C is unique and so is D. 2

Proof of Lemma 5.3. Suppose that T1 6= T2 are branchpoints. We
can see Ti as words in A,B and we define T := gcp(T1, T2), the greatest
common prefix. Without loss of generality, T2 6= T . Let (Φ, T ) have asso-
ciated pair (R,S). Since TA, TB&Φ we have S&A,B by Proposition 6b.
We will show the following two statements about S:

a) S = ((ab)ma, (ba)nb) where m,n ∈ N with m+ n > 0.
b) GS = {(a, b)} ∪AB∗ ∪BA∗

Let GS , GA, GB be the representing graphs for S,A,B, respectively. We
write {OA, 1} for the vertex set of A and {OB, 2} for the vertex set of G(B).
Hence

1

A                                                                     B

O                                                               O  A                                                               B
2

b

a

b

b

G                                                  G                      
a a

Since S&A we know that Sa, Sb ∈ Pref(A(Ω)). Hence S = (A(au)v,A(w)x)
where v, x ∈ {ε, b}. Since S&A we can define γ = γ(0) · · · γ(n) inGS×GA as
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the primitive cycle with initial label a. First suppose that v = b. The initial
path γ′ = γ(0) · · · γ(i) of γ with label A(au)v then ends in γ(i) = (OS , 1).
Let P be the unique point of GS for which λ(OSP ) = a. Note that P 6= OS
since |Sa| > 1. Then γ(1) = γ(i+ 1) = (P,OA). Hence γ(1), · · · , γ(n) has
period i and since O 6∈ {γ(1), · · · , γ(i)} we find γ(n) 6= O, a contradiction.
Hence v = ε and

S = (A(au), A(v)w) where w ∈ {ε, b}.
Similarly, S = (B(x)y,B(bz)) where y ∈ {ε, a}. If y = ε there would
exist a primitive cycle γ = γ(0) · · · γ(n) in GA × GB with initial label
a. Since γ(0) = (OA, OB) we obtain γ(1) = (OA, 2), γ(2) = (1, OB) and
γ(3) = (OA, 2). Hence γ(1), · · · , γ(n) has period 2 and does not hit O, a
contradiction. Therefore y = a and tracing γ as above we find u = bm.
Similarly w = b, z = an and substitution yields S = ((ab)ma, (ba)nb). If
m = n = 0 then S = (a, b) and ΦR = TS then implies ΦR = T . We can
write R = RREDR′ where RRED is reduced and R′ ∈ M∗. Then ΦRRED is
also reduced with k(ΦRRED) =: k. We have ΦRRED(R′(S ′)) = T (S ′) ⊂ S ′
and also ΦRRED(R′(S ′)) ⊂ ΦRRED(S ′) ⊂ Srnp

k . Hence k = 1,ΦRRED =
(a, b) and Φ = RRED = (a, b), contradicting the hypotheses of the lemma.
Hence m+ n > 0 and a) is proved.

The pair (S,A) has associated pair (A, (abm, bm+n+1)) and the pair (S,B)
has associated pair (B, (am+n+1, ban)), as can be easily verified by trac-
ing the primitive cycles in GS × GA and GS × GB, respectively. Let
S′ := (abm, bm+n+1), we will calculate GS′ . We have S′&Bt for all t ∈ N
since abm+t(m+n+1), bm+n+1 ∈ S′(Ω)∩Bt(Ω). If (S′, Bt) has associated pair
(φ, ψ) then φ(b) = b, ψ(b) = bm+n+1. Since m + n + 1 ≥ 2 we have A&ψ,
hence BtA&S′ by Proposition 6b. Combining all this with Proposition 6a
we find GS′ = B∗. Hence S&A2 ⇐⇒ 2&S′ ⇐⇒ 2 ∈ B∗ when 2 ∈M∗.
Similarly S&B2 ⇐⇒ 2 ∈ A∗. This proves b).

We can write T2 = TT3 where T3 ∈ M∗. Since TT3A, TT3B&Φ we have
T3A, T3B&S and by b) we have T3 = (a, b). Hence T2 = T , contradicting
our initial hypothesis. This proves the first part of Lemma 5.3 and the
second part is a direct consequence. 2

Proof of Lemma 5.4. If T1&T2 then an element of T1(Ω) ∩ T2(Ω) is
completely determined by its length. Hence P (T1(Ω) ∩ T2(Ω), n) ∈ {0, 1}
for all n and P (L1 ∩ L2, n) = O(1) by Lemma 5.1. Hence we may assume
that T1&T2. Let (T1, T2) have associated pair (Φ,Ψ). We note that, by
Lemma 5.1, it is sufficient to show that P (T1(K) ∩ T2(K), n) = o(n3). We
will show that also Φ,Ψ are reduced.

Suppose, for instance, that Φ = (RS, S) for some R,S. Then T2(Ψb) =
T1(S) is a suffix of T1(RS) = T2(Ψa). Since T2 is reduced we find that Ψb
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is a suffix of Ψa, hence Ψ = (UV, V ) for some U, V . We have T1(RS) =
T2(UV ), T1(S) = T2(V ), hence T1(R) = T2(U). This implies R = Φ(ζ), U =
Ψ(ζ) for some ζ, hence R ∈ {RS, S}∗. Since |R| < |RS| we find R ∈ S∗,
a contradiction since R1 = a, S1 = b. The other cases are dealt with in
a similar way and we conclude that Φ,Ψ are indeed reduced. We assume
wlog that Φ 6= (a, b). Let t ∈ N. Since κ(M∗

t ) = Ft covers [0, 1] we have
K = ∪T∈M∗

t
F (TK) = ∪T∈M∗

t
LT . We note that T1(x) = T2(y), x, y ∈ Bal

implies x = Φ(z), y = Ψ(z) for some z. Then of course Φ(z) ∈ Bal. Hence

P (T1K ∩ T2K,n) ≤ |{z : Φ(z) ∈ Bal, |T1Φ(z)| = n}|

≤
∑
T∈M∗

t

|{z : Φ(z) ∈ LT , |T1Φ(z)| = n}|

≤
∑
T∈M∗

t

|{ζ ∈ LΦ ∩ LT : |T1(ζ)| = n}|.

If T&Φ then P (LΦ∩LT , n) = O(1) as above, hence |{ζ ∈ Lφ∩LT : |T1(ζ)| =
n}| ≤ |{ζ ∈ LΦ ∩ LT : |ζ| ≤ n}| =

∑n
k=1 P (LΦ ∩ LT , k) = O(n). We now

assume T&Φ: by Lemma 5.3 this can hold for at most two T ∈ M∗
t . We

have

|{ζ ∈ LΦ ∩ LT : |T1(ζ)| = n}| ≤ |{ζ ∈ LT : |T1(ζ)| = n}|
= |T1({ζ ∈ LT : |T1(ζ)| = n})|
≤ P (LT1T , n).

Hence

lim sup
n→∞

|{ζ ∈ LΦ ∩ LT : |T1(ζ)| = n}|
bal(n)

≤ 1
|T1Ta| · |T1Tb|

≤ 1
|Ta| · |Tb|

≤ 1
t+ 1

.

It follows that lim supn→∞
P (T1K∩T2K,n)

bal(n) ≤ 2
t+1 . Now let t→∞. 2

Final remark. We would like to finish with the following nice but
impractical characterization of Z-words of MBG: A Z-word w has MBG iff
|BS(w)| = |BF(w)| <∞.

Proof. If w has MBG then MREn(w) =: {xn} for n ≥ s. Then xm is
a suffix of xn if n ≥ m ≥ s, hence BSn(w) = BFn(w) = ∅ if n ≥ s. It
follows that P (w, n) = n + 1 +

∑s
i=0 (n− 1− i)(|BSi(w)| − |BFi(w)|) for

n > s. Since w has MBG we find that the coefficient of n equals 1 = 1 +∑s
i=0 (|BSi(w)| − |BFi(w)|), hence |BS(w)| =

∑s
0 |BSi(w)| =

∑s
0 |BFi(w)|
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= |BF(w)|. It is clear that the proof above also works in the opposite
direction. 2
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