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The distribution of powers of integers in algebraic

number fields
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Résumé. Pour tout corps de nombres K (non totalement réel),
se pose la question de déterminer le nombre de puissances p-ièmes
d’entiers algébriques γ de K, vérifiant µ(τ(γp)) ≤ X, ceci pour
tout plongement τ de K dans le corps des nombres complexes. Ici,
X est un paramètre réel grand, p est un entier fixé ≥ 2 et µ(z) =
max(|Re(z)|, |Im(z)|) (z, nombre complexe). Ce nombre est évalué
asymptotiquement sous la forme cp,KXn/p+Rp,K(X), avec des es-
timations précises sur le reste Rp,K(X). La démonstration utilise
des techniques issues de la théorie des réseaux, dont en particulier
la généralisation multidimensionnelle, donnée par W. Schmidt, du
théorème de K.F. Roth sur l’approximation des nombres algébri-
ques par les nombres rationnels.

Abstract. For an arbitrary (not totally real) number field K
of degree ≥ 3, we ask how many perfect powers γp of algebraic
integers γ in K exist, such that µ(τ(γp)) ≤ X for each embedding
τ of K into the complex field. (X a large real parameter, p ≥ 2 a
fixed integer, and µ(z) = max(|Re(z)|, |Im(z)|) for any complex z.)
This quantity is evaluated asymptotically in the form cp,KXn/p +
Rp,K(X), with sharp estimates for the remainder Rp,K(X). The
argument uses techniques from lattice point theory along with
W. Schmidt’s multivariate extension of K.F. Roth’s result on the
approximation of algebraic numbers by rationals.

1. Introduction and statement of results

In the context of computer calculations on Catalań’s problem in Z[i],
Opfer and Ripken [18] raised questions about the distribution of p-th powers
of Gaussian integers (p ≥ 2, p ∈ Z fixed). In particular, they asked for their
number Mp(X) in a square {z ∈ C : µ(z) ≤ X } , where

µ(z) := max{|Re(z)| , |Im(z)|} , (1.1)

Manuscrit reçu le 7 octobre 2002.
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X a large real parameter. While Opfer and Ripken gave only the crude
bound Mp(X) � X2/p, H. Müller and the first named author [14] under-
took a thorough analysis of the problem. They reduced it to the task to
evaluate the number Ap(X) of lattice points (of the standard lattice Z2) in
the linearly dilated copy X1/pDp of the planar domain

Dp := {(ξ, η) ∈ R2 : µ((ξ + ηi)p) ≤ 1 } . (1.2)
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Fig. 1 : The domain D2
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Fig. 2 : The domain D3

In fact,

Mp(X) =
1

gcd(4, p)

(
Ap(X1/p)− 1

)
+1 =

area(Dp)
gcd(4, p)

X2/p +Rp(X) , (1.3)

where Rp(X) is a certain error term. The area of Dp is readily computed
(supported, e.g., by Mathematica [22]) as

area(Dp) = 4
∫ π

4

0
(cos(w))−2/p dw

=
4p
√

π Γ(3
2 −

1
p)

(p− 2)Γ(1− 1
p)
− 22+1/pp

p− 2 2F1

(
1
2
, 1;

3
2
− 1

p
;−1

)
for p > 2, resp., area(D2) = 4 log (1 +

√
2) = 3.52549 . . . . Here 2F1 denotes

the hypergeometric function

2F1(a1, a2; b; z) =
∞∑

k=0

(a1)k(a2)k

(b)k

zk

k!
, (a)k =

∏
1≤j≤k

(a− 1 + j) .
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Using deep tools from the theory of lattice points1, in particular those due
to Huxley [3], [4], it was proved in [14] that

Rp(X) � X
1
p

46
73 (log X)315/146 , (1.4)

and

lim sup
X→∞

(
Rp(X)

X1/(2p)(log X)1/4

)
> 0 . (1.5)

Furthermore,

Rp(X) � X1/(2p) in mean− square , (1.6)

as was discussed in detail in [17].
Kuba [7] – [11] generalized the question to squares of integer elements in

hypercomplex number systems like quarternions, octaves, etc.

In this paper we consider the – apparently natural – analogue of the
problem in an algebraic number field K, not totally real, of degree [K :
Q] = n ≥ 3. (The case of an arbitrary imaginary quadratic field K can be
dealt with in the same way as that of the Gaussian field, as far as the O-
estimate (1.4) is concerned.) Again for a fixed exponent p ≥ 2 and large real
X, let Mp,K(X) denote the number of z ∈ K with the following properties:

(i) There exists some algebraic integer γ ∈ K with γp = z,
(ii) For each embedding τ of K into C,

µ(τ(z)) ≤ X .

Our objective will be to establish an asymptotic formula for Mp,K(X).

Theorem. For any fixed exponent p ≥ 2, and any not totally real number
field K of degree [K : Q] = n ≥ 3,

Mp,K(X) =
2r+s(area(Dp))s

gcd(p, wK)
√
|disc(K)|

Xn/p +Rp,K(X) ,

where wK is the number of roots of unity in K, r the number of real em-
beddings K → R, s = 1

2(n − r), and disc(K) the discriminant of K. The
error term Rp,K(X) can be estimated as follows:

If K is ”totally complex”, i.e., r = 0,

Rp,K(X) �

{
X

1
p
(n−1− 3

2n−5
)+ε for n ≤ 6,

X
1
p
(n− 4

3
) for n > 6.

If r ≥ 1,
Rp,K(X) � X

1
p(n−1− 1

n−2)+ε
,

1For an enlightening presentation of the whole topic the reader is recommended to the mono-
graphs of Krätzel [5] and [6].
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where throughout ε > 0 is arbitrary but fixed. The constants implied in the
�-symbol may depend on p, K and ε.

Remarks. Our method of proof uses techniques from the theory of lattice
points in domains with boundaries of nonzero curvature2, along with tools
from Diophantine approximation. It works best for n = 3 and for n = 4, K

totally complex. The bounds achieved in these two cases read X
1
p
+ε, resp.,

X
2
p
+ε. The first one significantly improves upon the estimate O

(
X

1
p

11
7

+ε
)

which had been established in [12]. The result for r = 0, n > 6 is somewhat
crude (and, by the way, independent of our Diophantine approximation
techniques). Using a more geometric argument and plugging in Huxley’s
method, this most likely can be refined to X

1
p
(n− 100

73
)+ε.

2. Auxiliary results and other preliminaries

First of all, we reduce our task to a lattice point problem. To this end,
we have to take care of multiple solutions of the equation γp = z. Since, as
is well-known (cf., e.g., Narkiewicz [16], p. 100), the set of all roots of unity
in an algebraic number field K forms a cyclic group (of order wK , say), it
is simple to see that K contains just gcd(p, wK) p-th roots of unity, for any
fixed p ≥ 2. Therefore, if we define Ap,K(X) as the number of algebraic
integers in γ ∈ K with the property that µ(τ(γp)) ≤ X for each embedding
τ : K → C, it readily follows that

Mp,K(X) =
1

gcd(p, wK)
(Ap,K(X)− 1) + 1 . (2.1)

Let σ1, . . . , σr be the real embeddings and σr+1, σr+1, . . . , σr+s, σr+s the
complex embeddings of K into C. Further, let Γ = (α1, . . . , αn) be a fixed
(ordered) integral basis of K. For u = (u1, . . . , un) ∈ Rn, we define linear
forms

Λj(u) =
n∑

k=1

σj(αk)uk , j = 1, . . . , r + s ,

and

Φj(u) = Re Λj(u) , Ψj(u) = Im Λj(u) , j = r + 1, . . . , r + s .

Obviously, Ap,K(X) is the number of lattice points (of the standard lattice
Zn) in the linearly dilated copy X1/pBp of the body

Bp = {u ∈ Rn : µ(Λj(u)p) ≤ 1 , j = 1, . . . , r + s }

=
{
u ∈ Rn : |Λj(u)| ≤ 1 , 1 ≤ j ≤ r

(Φj(u),Ψj(u)) ∈ Dp , r + 1 ≤ j ≤ r + s

}
.

2Cf. again the books of Krätzel [5], [6].
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In our argument, we shall need the linear transformations3

u 7→ v = (Λ1(u), . . . ,Λr(u),Φr+1(u),Ψr+1(u), . . . ,Φr+s(u),Ψr+s(u))

=: Mu (2.2)

and

u 7→ v = (Λ1(u), . . . ,Λr(u),Λr+1(u),Λr+1(u), . . . ,Λr+s(u),Λr+s(u))

=: Cu . (2.3)

Let P = 1
2

(
1 1
−i i

)
, and define an (n × n)-matrix Pr,s as follows: Along

the main diagonal, there are first r 1’s, then s blocks P, and all other
entries are 0. Then it is simple to see that

M = Pr,s C

where M,C, are defined by (2.2), (2.3), respectively. Since |detP| = 1
2 , it

is clear that
|detM| = 2−s |detC| = 2−s

√
|disc(K)| . (2.4)

For any matrix A ∈ GLn(C), we shall write A∗ = tA−1 for the contragra-
dient matrix. Of course,

M∗ = P∗
r,sC

∗ , (2.5)

where P∗
r,s is quite similar to Pr,s, only with P replaced by P∗ =

(
1 1
i −i

)
.

From this it is easy to verify that the first r rows of C∗ are real and that
its (r + 2k)-th row is the complex conjugate of the (r + 2k − 1)-th row,
k = 1, . . . , s. Moreover, if we define linear forms Lj(w), j = 1, . . . , r + s,
and Fr+k(w), Gr+k(w), k = 1, . . . , s, w ∈ Rn, by

(L1(w), . . . , Lr(w), Fr+1(w), Gr+1(w), . . . , Fr+s(w), Gr+s(w)) := M∗w ,

(L1(w), . . . , Lr(w), Lr+1(w), Lr+1(w), . . . , Lr+s(w), Lr+s(w)) := C∗w ,
(2.6)

it readily follows from (2.5) that L1, . . . , Lr are real and, for j = r + 1,
. . . , r + s,

Fj(w) = 2 Re Lj(w) , Gj(w) = 2 Im Lj(w) . (2.7)

Moreover, since the linear transformation w 7→ C∗w is non-singular,
‖C∗w‖2 attains a positive minimum on ‖w‖2 = 1. By homogeneity, for
all w ∈ Rn \{(0, . . . , 0)},r+s∑

j=1

|Lj(w)|2
1/2

� ‖C∗w‖2 � ‖w‖2 . (2.8)

3Vectors are always meant as column vectors although we write them – for convenience of

print – as n-tuples in one line.
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A salient point in our argument will be to estimate from below absolute
values of the linear forms Lj(m), m ∈ Zn. For this purpose, we need
first some information about the linear independence (over the rationals)
of their coefficients.

Lemma 1. For nonnegative integers p, n, denote by

s(n)
p :=

∑
H⊆{1,...,n}
|H|=p

∏
i∈H

Xi

the symmetric basic polynomial of index p in the n indeterminates X1, ...,

Xn (in particular, s
(n)
0 = 1 and s

(n)
p = 0 for p > n). Let K = Q(α) be

an algebraic number field of degree [K : Q] = n, and σj, j = 1, . . . , n, its
embeddings into C. Then the set {s(n−1)

i (σ2(α), ..., σn(α)) : 0 ≤ i < n} is
linearly independent over Q.

Proof. Choose x0, ..., xn−1 ∈ Q so that

(∗)
n−1∑
i=0

xis
(n−1)
i (σ2(α), ..., σn(α)) = 0.

We construct a finite sequence (pk)n
k=0 of polynomials pk ∈ Q[X], by the

recursion

p0 = 0 , pk =
n−k∑
i=0

xis
(n)
i+k(σ1(α), . . . , σn(α))−Xpk−1 for k ≥ 1 .

The sum on the right hand side is always a rational number, and obviously
the degree of pk is < k throughout. We shall show that for 0 ≤ k ≤ n,

(∗∗)
n−k−1∑

i=0

xis
(n−1)
i+k (σ2(α), ..., σn(α)) = pk(σ1(α)) .

We use induction on k. For k = 0 we simply appeal to (∗). Supposing that
n−k∑
i=0

xis
(n−1)
i+k−1(σ2(α), ..., σn(α)) = pk−1(σ1(α))

has already been established, we multiply this identity by σ1(α) and use

s
(n)
j+1(X1, ..., Xn)− s

(n−1)
j+1 (X2, ..., Xn) = X1s

(n−1)
j (X2, . . . , Xn)

to obtain

σ1(α)pk−1(σ1(α)) =
n−k∑
i=0

xi(s
(n)
i+k(σ1(α), ..., σn(α))− s

(n−1)
i+k (σ2(α), . . . , σn(α)))
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or, in other terms,

n−k−1∑
i=0

xis
(n−1)
i+k (σ2(α), ..., σn(α)) =

n−k∑
i=0

xis
(n)
i+k(σ1(α), . . . , σn(α))− σ1(α)pk−1(σ1(α)) ,

which, by our recursion formula, yields just (∗∗).Putting k = n in (∗∗) gives
pn(σ1(α)) = 0. As σ1(α) has degree n over Q, it follows that pn = 0. By our
recursive construction, all pj vanish identically, j = 0, . . . , n. Let I be the
minimal index such that xI 6= 0 in (∗). Applying (∗∗) with k = n−I−1, we
infer that xIs

(n−1)
n−1 (σ2(α), . . . , σn(α)) = xIσ2(α) · · ·σn(α) = 0, thus xI = 0,

hence the assertion of Lemma 1. �

Lemma 2. Let Γ = (α1, . . . , αn) be a basis of the number field K as a
vector space over Q. Let the matrix A be defined as A = (aj,k)1≤j,k≤n =
(σj(αk))1≤j,k≤n, σj the embeddings of K into C. Then for each row of A∗,
the n elements are linearly independent over Q.

Proof. W.l.o.g. we may choose notation so that the assertion will be es-
tablished for the first row of A∗. We start with the special case that
the basis has the special form Γ0 = (1, α, α2, . . . , αn−1). Then A0 =(
(σj(α))k−1

)
1≤j,k≤n

is a Vandermonde matrix, and a little reflection shows4

that the first row of A∗
0 (which is the first column of A−1

0 ) is proportional
to the vector (

(−1)ks
(n−1)
n−k (σ2(α), . . . , σn(α))

)
1≤k≤n

.

By Lemma 1, this is actually linearly independent over Q. If Γ is arbitrary,
and K = Q(α), there exists a nonsingular (n×n)-matrix R = (rj,k)1≤j,k≤n,
with rational entries, so that A = A0R, hence also A∗ = A∗

0R
∗. Let us

write A∗ = (a∗j,k)1≤j,k≤n, A∗
0 = (β∗j,k)1≤j,k≤n, R∗ = (r∗j,k)1≤j,k≤n. Assume

that x1, . . . , xn are rational numbers with
n∑

k=1

xka
∗
1,k = 0 .

Then

0 =
n∑

k=1

xk

 n∑
j=1

β∗1,j r∗j,k

 =
n∑

j=1

β∗1,j

(
n∑

k=1

xk r∗j,k

)
.

4In fact, it is plain to see that, for j ≥ 2, the j-th row of A0 is orthogonal to this vector.
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Since we have already shown the linear independence of (β∗1,1, . . . , β
∗
1,n),

each of the last inner sums must vanish. As det(R∗) 6= 0, this implies that
x1 = · · · = xn = 0. �

Lemma 3. Let L(m) = c1m1 + · · · + cnmn be a linear form whose coeffi-
cients are algebraic numbers and linearly independent over Q. Let further
γ ≥ 1, ε > 0 and c > 0 be fixed, and let Y and M be large real parameters.
(i) If L is a real form, it follows that∑

0<‖m‖∞≤M

min
(
Y γ , |L(m)|−γ)� Y γ−1Mn−1+ε .

(ii) If L is not proportional to a real form, then∑
0<‖m‖∞≤M,

|L(m)|≤c

min
(
Y γ , |L(m)|−γ)� Y γ−1Mn−2+ε .

(iii) Furthermore, in that latter case,∑
0<‖m‖∞≤M,

|L(m)|>c

|L(m)|−γ � Mn−min(γ,2)+ε .

Proof. (i) We split up the sum in question as

Y γ
∑

0<‖m‖∞≤M,

|L(m)|≤1/Y

1 +
∑

0<‖m‖∞≤M,

|L(m)|>1/Y

|L(m)|−γ =: S1 + S2 .

By a celebrated result of W. Schmidt [20] and [21], p. 152, |L(m)| �
M−(n−1)−ε′ , under the conditions stated. For m,m′ ∈ Zn, m 6= ±m′,
‖m‖∞ , ‖m′‖∞ ≤ M , it thus follows that∣∣|L(m)| −

∣∣L(m′)
∣∣∣∣ = min

±

∣∣L(m±m′)
∣∣ ≥ c′M−(n−1)−ε′ =: z

for short. (Here we mimick an idea which may be found, e.g., in the book of
Kuipers and Niederreiter [13], p. 123.) Hence the real numbers |L(m)|, with
m ∈ Zn, 0 < ‖m‖∞ ≤ M , have distances ≥ z from each other (apart from
the fact that |L(m)| = |L(−m)|, which does not affect the �-estimates
which follow) and also from 0 = |L(0, . . . , 0)|. Therefore,

#{m ∈ Zn : 0 < ‖m‖∞ ≤ M, |L(m)| ≤ 1
Y
} � (Y z)−1 ,

thus

S1 � Y γ(Y z)−1 � Y γ−1Mn−1+ε .
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(Note that S1 = 0 if 1/Y < z.) Furthermore,

S2 ≤
∑

1≤k�MC

(
1
Y

+ kz

)−γ

� z−γ
∑

1≤`�MC,

`>[(Y z)−1]

`−γ

� z−1M ε′Y γ−1 � Y γ−1Mn−1+ε ,

which gives just the assertion (i). Slightly more general (and useful for
what follows), we readily derive the following conclusion: If q is a fixed
rational number, 〈w〉 denotes the distance of the real w from the nearest
integer, and c′1, . . . , c

′
n−1 are real algebraic numbers such that 1, c′1, . . . , c

′
n−1

are linearly independent over Q, then (with Y , M as before),∑
0<|mj |≤M

min
(
Y γ ,

〈
q + c′1m1 + · · ·+ c′n−1mn−1

〉−γ
)
� Y γ−1Mn−1+ε .

(2.9)
(ii) Dealing with the complex case, we put ν = n − 2, and may as-
sume w.l.o.g. that cν+2 = 1 and cν+1 /∈ R. For j = 1, . . . , ν + 1, we
set aj = Re cj , bj = Im cj , and5 a = (a1, . . . , aν), b = (b1, . . . , bν), m =
(m1, . . . ,mν). We notice that

|L(m)|2 = (a ·m + aν+1mν+1 + mν+2)2 + (b ·m + bν+1mν+1)2 . (2.10)

For m ∈ Zν , we thus choose m∗
ν+1(m) the nearest integer to −b ·m/bν+1,

then m∗
ν+2(m) the nearest integer to −m∗

ν+1(m) aν+1 − a ·m. (To be quite
precise, the nearest integer to x ∈ R is meant to be [x + 1

2 ]. Throughout, ·
denotes the standard inner product.) Accordingly, we define

SL := {(m1, . . . ,mν ,m
∗
ν+1(m),m∗

ν+2(m)) : m = (m1, . . . ,mν) ∈ Zν} .

The sum to be estimated is therefore∑
0<‖m‖∞≤M,

|L(m)|≤c

min
(
Y γ , |L(m)|−γ)� ∑

0<‖m‖∞≤M,
m∈SL

min
(
Y γ , |L(m)|−γ) . (2.11)

Now consider the group G := {m ∈ Zν : b ·m/bν+1 ∈ Z}, and let R denote
its rank, 0 ≤ R ≤ ν. According to Bourbaki [2], chap. VII, § 4, No. 3,
p. 18, Theorem 1, there exist a basis (e1, . . . , eν) of Zν and positive integers
g1, . . . , gR, so that (g1 e1, . . . , gR eR) is a basis of G, i.e., G = g1 e1 Z + · · ·+
gR eR Z. Furthermore, each m ∈ Zν has a (unique) representation

m =
R∑

j=1

(hj + gjqj)ej +
ν∑

j=R+1

tjej , (2.12)

5Only for the rest of this proof, vectors have less than n components. We symbolize this by

writing m instead of m, and so on.
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where h = (h1, . . . , hR) ∈ ZR, q = (q1, . . . , qR) ∈ ZR, 0 ≤ hj < gj for
j = 1, . . . , R, and t = (tR+1, . . . , tν) ∈ Zν−R. Obviously, m ∈ G iff all hj

and tj vanish. By Cramer’s rule, ‖m‖∞ ≤ M implies that also
∥∥q∥∥∞ � M

and ‖t‖∞ � M . As a further simple consequence of (2.12), the numbers
1, eR+1 · b/bν+1, . . . , eν · b/bν+1 are linearly independent over Q. Since
R∑

j=1

hj ej · b/bν+1 is rational, we infer from (2.9) (with n − 1 replaced by

ν−R, the tj taking over the rôle of the mj in (2.9)), (2.10) (and |Im z| ≤ |z|)
that the portion of the right hand side of (2.11) which corresponds to m /∈ G
is

�
∑

‖m‖∞≤M,

m/∈G

min
(
Y γ ,

∣∣L(m1, . . . ,mν ,m
∗
ν+1(m), m∗

ν+2(m))
∣∣−γ
)

�
∑

‖m‖∞≤M,

m/∈G

min
(
Y γ , 〈b ·m /bν+1〉−γ)

�
∑

h∈ZR:
0≤hj<gj

∑
‖q‖∞,‖t‖∞�M

(h,t) 6=(0,...,0)

min

(
Y γ ,

〈
∑R

j=1 hj ej · b/bν+1+∑ν
j=R+1 tj ej · b/bν+1〉−γ

)

� Y γ−1Mν+ε , (2.13)

since g1, . . . , gR � 1. It remains to deal with the m ∈ G. Here (2.12)

simplifies to m =
R∑

j=1

gjqjej , with q unique. Hence, in this case,

m∗
ν+1(m) = −b ·m/bν+1 = −

R∑
j=1

gjqjb · ej

1
bν+1

.

Therefore (motivated by a look at (2.10)), we infer that

〈
m∗

ν+1(m)aν+1 + a ·m
〉

=

〈
R∑

j=1

gjqjej ·
(

a− aν+1

bν+1
b
)〉

. (2.14)

We claim that the numbers η0 := 1 , ηj := ej ·
(
a− aν+1

bν+1
b
)

for 1 ≤ j ≤ R,
are linearly independent over Q. Write ej =: (ej,1, . . . , ej,R) for 1 ≤ j ≤ R.
Suppose that k0η0 + · · ·+ kRηR = 0 for certain integers k0, . . . , kR. This is
just the real part of the equality

k0 +
ν∑

`=1

 R∑
j=1

kjej,`

 c` − cν+1

R∑
j=1

kjb · ej

1
bν+1

= 0 ,
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whose imaginary part is trivial. The last sum is again a rational num-
ber. Since 1, c1, . . . , cν , cν+1 are linearly independent over Q, it follows that
R∑

j=1

kjej,` = 0 for ` = 1, . . . , ν, hence k1 = · · · = kR = 0, and also k0 = 0.

Therefore, by (2.9) (with R instead of n − 1), (2.10), and the fact that
|Re z| ≤ |z|, the relevant part of the right hand side sum in (2.11) is

�
∑

0<‖m‖∞≤M,
m∈G

min
(
Y γ ,

∣∣L(m1, . . . ,mν ,m
∗
ν+1(m), m∗

ν+2(m))
∣∣−γ
)

�
∑

0<‖m‖∞≤M,
m∈G

min
(
Y γ ,

〈
m∗

ν+1(m)aν+1 + a ·m
〉−γ
)

=
∑

0<‖q‖∞�M

min

Y γ ,

〈
R∑

j=1

gjqjej ·
(

a− aν+1

bν+1
b
)〉−γ


� Y γ−1MR+ε . (2.15)

Combining the bounds (2.13) and (2.15), we complete the proof of clause
(ii).
(iii) For a further parameter 1 � M1 � M , consider the body

W (M,M1) = {w ∈ Rn : ‖w‖∞ ≤ M, 1
2M1 ≤ |L(w)| ≤ M1 } .

It is easy to see6 that vol(W (M,M1)) � M2
1 Mn−2, hence also

# (Zn ∩W (M,M1)) � M2
1 Mn−2 .

Therefore,∑
m∈W (M,M1)

|L(m)|−γ � M−γ
1 # (Zn ∩W (M,M1)) � M2−γ

1 Mn−2 .

Finally, we let M1 range over a dyadic sequence, 1 � M1 � M , and sum
up to complete the proof of Lemma 3. �

Lemma 4. There exist positive constants C1, C2, depending only on p and
on the integral basis Γ of the number field K, so that for 0 < ω ≤ C1

the following holds true: For arbitrary points u,v ∈ Rn such that u ∈ Bp,
v /∈ (1 + ω)Bp, it follows that ‖u− v‖2 > C2ω.

Proof. By definition of Bp, there are two possible cases: Either |Λj(v)| >
1 + ω for some j ∈ {1, . . . , r}, then

|Λj(u)|+ ω ≤ 1 + ω < |Λj(u) + Λj(v − u)| ≤ |Λj(u)|+ |Λj(v − u)| ,

6E.g., by a change of the coordinate system, using a basis of Rn which contains

(a1, . . . , aν+1, 1), (b1, . . . , bν+1, 0), with L as in (2.10).
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hence |Λj(v − u)| ≥ ω, and by Cauchy’s inequality

ω ≤

(
n∑

k=1

σj(αk)2
)1/2

‖u− v‖2

as desired. Or, µ(Λj(v)p) > 1 + ω for some j ∈ {r + 1, . . . , r + s}, i.e.,
(Φj(v),Ψj(v)) /∈ (1 + ω)Dp. By Lemma D in [17], therefore the Euclidean
distance of (Φj(u),Ψj(u)) and (Φj(v),Ψj(v)) is ≥ Cω, for appropriate
C > 0. Therefore,

Cω ≤ ‖(Φj(u− v),Ψj(u− v))‖2 ≤

(
n∑

k=1

|σj(αk)|2
)1/2

‖u− v‖2 .

�

Lemma 5. For the region Dp and arbitrary real numbers T1, T2, not
both 0, ∫∫

Dp

e(T1x + T2y) d(x, y) � (T 2
1 + T 2

2 )−3/4 ,

with e(w) := e2πiw as usual.

Proof. This is just (a special case of) Lemma 1 in [12]. �

3. Proof of the Theorem

Like in [12], we employ a method of W. Müller [15], ch. 3, to evaluate
the number of lattice points Ap,K(X) in the body X1/pBp. For any fixed
positive real N there exists7 a continuous function δ1 : Rn → [0,∞[ with
the following properties:

(i) The support of δ1 is contained in the n-dimensional unit ball ‖u‖2 ≤ 1.

(ii)
∫
Rn

δ1(u) du = 1 .

(iii) The Fourier transform satisfies

δ̂1(w) :=
∫
Rn

δ1(u)e(u ·w) du � min
(
1, ‖w‖−N

2

)
(w ∈ Rn) ,

where u · w denotes the standard inner product. For a small parameter
ω > 0, we put δω(u) = ω−nδ1(ω−1 u). Then the support of δω is contained
in the ball ‖u‖2 ≤ ω, and it follows that

δ̂ω(w) = δ̂1(ωw) � min
(
1, (ω ‖w‖2)

−N
)

,

7For an explicite construction of such a δ1, one can start from the normalized indicator
function of a smaller ball and apply repeated convolution with itself. See also [12] for further

details and references.
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δ̂ω(0, . . . , 0) = 1 . (3.1)

Denote by IS the indicator function of any set S ⊆ Rn. We shall use
convolution by δω to smoothen indicator functions:

(IS ∗ δω)(v) =
∫
Rn

IS(u)δω(v − u) du , v ∈ Rn .

We put Y± := X1/p ± C−1
2 ω, with C2 as in Lemma 4, and claim:

(a) IY−Bp ∗ δω = 0 on Rn \(X1/pBp) ,

(b) IY+Bp ∗ δω = 1 on X1/pBp .

To verify (a), let u ∈ Y−Bp, v ∈ Rn \(X1/pBp). Then there exist u∗ ∈ Bp,
v∗ ∈ Rn \Bp, with u = Y−u∗, v = X1/pv∗. By Lemma 4,

‖v − u‖2 = Y−

∥∥∥∥v∗(1 +
ω

C2Y−

)
− u∗

∥∥∥∥
2

> ω ,

hence IY−Bp(u)δω(v−u) = 0 for all u ∈ Rn, therefore (a) is true. Similarly,

let u ∈ Rn \(Y+Bp), v ∈ X1/pBp. There exist u∗ ∈ Rn \Bp, v∗ ∈ Bp, with
u = Y+u∗, v = X1/pv∗. Again by Lemma 4,

‖u− v‖2 = X1/p

∥∥∥∥u∗(1 +
ω

C2X1/p

)
− v∗

∥∥∥∥
2

> ω ,

thus IRn \(Y+Bp)(u)δω(v − u) = 0 for all u ∈ Rn, hence IRn \(Y+Bp) ∗ δω = 0
on X1/pBp, which is equivalent to (b). Since 0 ≤ IY±Bp ∗δω ≤ 1 throughout,
(a) and (b) imply that

IY−Bp ∗ δω ≤ IX1/pBp
≤ IY+Bp ∗ δω .

Therefore,∑
k∈Zn

(IY−Bp ∗ δω)(k) ≤ Ap,K(X) ≤
∑
k∈Zn

(IY+Bp ∗ δω)(k) .

By Poisson’s formula in Rn (see Bochner [1]), we thus infer that∑
m∈Zn

ÎY−Bp(m) δ̂ω(m) ≤ Ap,K(X) ≤
∑

m∈Zn

ÎY+Bp(m) δ̂ω(m) . (3.2)

Since δ̂ω(0, . . . , 0) = 1 and

ÎY±Bp(0, . . . , 0) = vol(Bp)Y n
± = vol(Bp)Xn/p + O

(
X(n−1)/pω

)
,

we obtain from (3.1) and (3.2)∣∣∣Ap,K(X)− vol(Bp)Xn/p
∣∣∣� max

±

∑
m∈Zn

∗

∣∣∣ÎY±Bp(m)
∣∣∣ ∣∣∣δ̂ω(m)

∣∣∣+ X(n−1)/pω
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� max
±

∑
m∈Zn

∗

∣∣∣ÎY±Bp(m)
∣∣∣ min

(
1, (ω ‖m‖2)

−N
)

+ X(n−1)/pω (3.3)

with Zn
∗ := Zn \{(0, . . . , 0)}. Writing Y instead of Y± for short (thus Y �

X1/p), we have to estimate

ÎY Bp(m) =
∫

Y Bp

e(m · u) du = Y n

∫
Bp

e(Y m · u) du . (3.4)

To this integral we apply the linear transformation u 7→ v = Mu defined
in (2.2). Thus

ÎY Bp(m) =
Y n

|detM|

∫
B∗p

e(Y m · (M−1v)) dv

=
Y n

|detM|

∫
B∗p

e(Y (tM−1m) · v) dv ,

where

B∗p :=
{
v = (v1, . . . , vn) : |vj | ≤ 1, 1 ≤ j ≤ r,

(vr+2k−1, vr+2k) ∈ Dp, 1 ≤ k ≤ s.

}
Using throughout the notation introduced in section 2, in particular (2.6),
we can write this as

ÎY Bp(m) =
Y n

|detM|

r∏
j=1

1∫
−1

e(Y Lj(m)vj) dvj ×

×
s∏

k=1

∫
Dp

e(Y (Fr+k(m)vr+2k−1 + Gr+k(m)vr+2k)) d(vr+2k−1, vr+2k) . (3.5)

As an immediate by-result, we obtain, by an appeal to (2.4),

vol(Bp) = ÎBp(0, . . . , 0) =
2r(area(Dp))s

|detM|
=

2r+s(area(Dp))s√
|disc(K)|

. (3.6)

By Lemma 5, (3.5) implies (for m 6= (0, . . . , 0))

ÎY Bp(m) � Y n−r−3s/2
r∏

j=1

min
(
Y, |Lj(m)|−1

)
×

×
s∏

k=1

min
(
Y 3/2,

(
Fr+k(m)2 + Gr+k(m)2

)−3/4
)

� Y s/2
r∏

j=1

min
(
Y, |Lj(m)|−1

) r+s∏
j=r+1

min
(
Y 3/2, |Lj(m)|−3/2

)
, (3.7)
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in view of (2.7). Combining this with (3.3), we arrive at∣∣∣Ap,K(X)− vol(Bp)Xn/p
∣∣∣�

� X(n−1)/pω + Xs/(2p)
∑

m∈Zn
∗

min
(
1, (ω ‖m‖2)

−N
)
×

×
r∏

j=1

min
(
Y, |Lj(m)|−1

) r+s∏
j=r+1

min
(
Y 3/2, |Lj(m)|−3/2

)
. (3.8)

We divide the range of summation of this sum into subsets

S(M,J) := {m ∈ Zn
∗ : 1

2M < ‖m‖∞ ≤ M, |LJ(m)| = max
1≤k≤r+s

|Lk(m)| } ,

where J ∈ {1, . . . , r + s}, and M is large. By (2.8), always

m ∈ S(M,J) ⇒ |LJ(m)| � M . (3.9)

We have to distinguish two cases.
Case 1: r = 0, i.e., K is ”totally complex”. Let w.l.o.g. J = 1, then we
conclude that∑

m∈S(M,1)

s∏
k=1

min
(
Y 3/2, |Lk(m)|−3/2

)
�

� Y
3
2
(s−2)M−3/2

∑
0<‖m‖∞≤M

min
(
Y 3/2, |L2(m)|−3/2

)
� Y

3
2
(s−2)+ 1

2 M2s−7/2+ε′ + Y
3
2
(s−2)M2s−3+ε′ , (3.10)

by (3.9) and an application of Lemma 3, (ii) and (iii). As a consequence,
the corresponding portion of the sum in (3.8) can be estimated by

∑
1
2
M<‖m‖∞≤M

min
(
1, (ω ‖m‖2)

−N
) s∏

k=1

min
(
Y 3/2, |Lk(m)|−3/2

)
�

�
(
Y

3
2
(s−2)+ 1

2 M2s−7/2+ε′ + Y
3
2
(s−2)M2s−3+ε′

)
min

(
1, (ωM)−N

)
.

We fix N sufficiently large and let M run through the powers of 2. It follows
that

Pp,K(X) := Ap,K(X)− vol(Bp)Xn/p �

� X(n−1)/pω + Xs/(2p)
(
Y

3
2
(s−2)+ 1

2 ω−2s+7/2−ε′ + Y
3
2
(s−2)ω−2s+3−ε′

)
.

Recalling that Y � X1/p, and balancing the remainder terms, we get ω =
X
− 1

p
3

2n−5 and thus

Pp,K(X) � X
1
p(n−1− 3

2n−5)+ε
. (3.11)
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For larger n, it is favorable to choose a different (actually somewhat cruder)
approach. For any U ∈ {1, . . . , s} and parameters 1 � T1, . . . , TU � M ,
we consider the body

KU (T1, . . . , TU ) :={
(x1, . . . , xn) ∈ Rn :

T 2
k ≤ x2

2k−1 + x2
2k ≤ 4T 2

k for 1 ≤ k ≤ U,

x2
2k−1 + x2

2k ≤ 1 for U + 1 ≤ k ≤ s

}
.

It is plain to see that the number of points of the lattice M∗ Zn (with M∗

as in (2.2) through (2.6)) in KU (T1, . . . , TU ) satisfies

# (M∗ Zn ∩KU (T1, . . . , TU )) � (T1 . . . TU )2 .

Therefore8,∑
1
2 M<‖m‖∞≤M

M∗m∈KU (T1,...,TU )

∣∣∣ÎY Bp(m)
∣∣∣ min

(
1, (ω ‖m‖2)

−N
)
�

� min
(
1, (ωM)−N

)
Y s/2

∑
m: M∗m∈KU (T1,...,TU )

s∏
k=1

min
(
Y 3/2, |Lk(m)|−3/2

)
� min

(
1, (ωM)−N

)
Y

s
2
+ 3

2
(s−U) (T1 . . . TU )−3/2

∑
m: M∗m∈KU (T1,...,TU )

1

� min
(
1, (ωM)−N

)
Y n− 3

2
U (T1 . . . TU )1/2 .

We let the Tk range over dyadic sequences � M , and sum also over U =
1, . . . , s to arrive at∑

1
2
M<‖m‖∞≤M

∣∣∣ÎY Bp(m)
∣∣∣ min

(
1, (ω ‖m‖2)

−N
)
�

� min
(
1, (ωM)−N

)
max

1≤U≤s

(
Y n− 3

2
UMU/2

)
.

With N fixed sufficiently large, we let again M range over the powers of 2
to obtain

Pp,K(X) � X(n−1)/pω + max
1≤U≤s

(
X

1
p
(n− 3

2
U)

ω−U/2
)

.

Taking ω = X−1/(3p), we thus get

Pp,K(X) � X
1
p
(n− 4

3
) + max

1≤U≤s

(
X

1
p
(n− 4

3
U)
)
� X

1
p
(n− 4

3
)
. (3.12)

8Note that, because of (3.9), this sum would be empty for U = 0, if M is sufficiently large.
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Case 2: r ≥ 1. Dealing again with the sum in (3.8), we consider first those
domains S(M,J) with J ∈ {r + 1, . . . , r + s}, say, J = r + s. Similarly to
(3.10),∑

m∈S(M,r+s)

r∏
j=1

min
(
Y, |Lj(m)|−1

) r+s∏
k=r+1

min
(
Y 3/2, |Lk(m)|−3/2

)
�

� Y r−1+ 3
2
(s−1)M−3/2

∑
0<‖m‖∞≤M

min
(
Y, |L1(m)|−1

)
� Y r+ 3

2
s− 5

2 Mn−5/2+ε′ , (3.13)

by an appeal to (3.9) and Lemma 3, part (i). Secondly, we deal with
S(M,J) where J ∈ {1, . . . , r}, say, J = 1. The corresponding argument
now reads∑

m∈S(M,1)

r∏
j=1

min
(
Y, |Lj(m)|−1

) r+s∏
k=r+1

min
(
Y 3/2, |Lk(m)|−3/2

)
�

� Y r−1+ 3
2
(s−1)M−1

∑
0<‖m‖∞≤M

min
(
Y 3/2, |Lr+1(m)|−3/2

)
� Y r+ 3

2
s−2Mn−3+ε′ + Y r+ 3

2
s− 5

2 Mn−5/2+ε′ , (3.14)

again in view of (3.9) and Lemma 3, (ii) and (iii). Therefore, the part of
the sum in (3.8) which corresponds to 1

2M < ‖m‖∞ ≤ M is

�
(
Y r+ 3

2
s−2Mn−3+ε′ + Y r+ 3

2
s− 5

2 Mn−5/2+ε′
)

min
(
1, (ωM)−N

)
.

Again, with fixed N sufficiently large, we let M range through the powers
of 2, and sum up to infer from (3.8) that

Pp,K(X) �

� X(n−1)/pω + Xs/(2p)
(
Y r+ 3

2
s−2ω−n+3−ε′ + Y r+ 3

2
s− 5

2 ω−n+5/2−ε′
)

.

Recalling that Y � X1/p, and balancing the remainder terms, we choose
ω = X

− 1
p

1
n−2 and thus obtain

Pp,K(X) � X
1
p(n−1− 1

n−2)+ε
. (3.15)

Combining the estimates (3.11), (3.12), and (3.15), and recalling (3.6) and
(2.1), we complete the proof of our Theorem. �

References
[1] S. Bochner, Die Poissonsche Summenformel in mehreren Veränderlichen. Math. Ann. 106

(1932), 55–63.

[2] N. Bourbaki, Elements of mathematics, Algebra II. Springer, Berlin 1990.



214 Werner Georg Nowak, Johannes Schoißengeier

[3] M.N. Huxley, Exponential sums and lattice points II. Proc. London Math. Soc. 66 (1993),
279-301.

[4] M.N. Huxley, Area, lattice points, and exponential sums. LMS Monographs, New Ser. 13,

Oxford 1996.
[5] E. Krätzel, Lattice points. Kluwer, Dordrecht 1988.

[6] E. Krätzel, Analytische Funktionen in der Zahlentheorie. Teubner, Stuttgart 2000.

[7] G. Kuba, On the distribution of squares of integral quaternions. Acta Arithm. 93 (2000),
359–372.

[8] G. Kuba, On the distribution of squares of integral quaternions II. Acta Arithm. 101 (2002),

81–95.
[9] G. Kuba, On the distribution of squares of hypercomplex integers. J. Number Th. 88 (2001),

313–334.

[10] G. Kuba, Zur Verteilung der Quadrate ganzer Zahlen in rationalen Quaternionenalgebren.
Abh. Math. Sem. Hamburg 72 (2002), 145–163.

[11] G. Kuba, On the distribution of squares of integral Cayley numbers. Acta Arithm. 108
(2003), 253–265.

[12] G. Kuba, H. Müller, W.G. Nowak and J. Schoißengeier, Zur Verteilung der Poten-

zen ganzer Zahlen eines komplexen kubischen Zahlkörpers. Abh. Math. Sem. Hamburg 70
(2000), 341–354.

[13] L. Kuipers and H. Niederreiter, Uniform distribution of sequences. J. Wiley, New York

1974.
[14] H. Müller and W.G. Nowak, Potenzen von Gaußschen ganzen Zahlen in Quadraten.

Mitt. Math. Ges. Hamburg 18 (1999), 119–126.

[15] W. Müller, On the average order of the lattice rest of a convex body. Acta Arithm. 80
(1997), 89–100.

[16] W. Narkiewicz, Elementary and analytic theory of algebraic numbers. 2nd ed., Springer,

Berlin 1990.
[17] W.G. Nowak, Zur Verteilung der Potenzen Gaußscher ganzer Zahlen. Abh. Math. Sem.

Hamburg 73 (2003), 43–65.
[18] G. Opfer and W. Ripken, Complex version of Catalań’s problem. Mitt. Math. Ges. Ham-
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