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On an approximation property of

Pisot numbers II

par Toufik ZAÏMI

Résumé. Soit q un nombre complexe, m un entier positif et
lm(q) = inf{|P (q)| , P ∈ Zm[X], P (q) 6= 0}, où Zm[X] désigne
l’ensemble des polynômes à coefficients entiers de valeur absolue
6 m. Nous déterminons dans cette note le maximum des quan-
tités lm(q) quand q décrit l’intervalle ]m,m + 1[. Nous montrons
aussi que si q est un nombre non-réel de module > 1, alors q est
un nombre de Pisot complexe si et seulement si lm(q) > 0 pour
tout m.

Abstract. Let q be a complex number, m be a positive ratio-
nal integer and lm(q) = inf{|P (q)| , P ∈ Zm[X], P (q) 6= 0}, where
Zm[X] denotes the set of polynomials with rational integer co-
efficients of absolute value 6 m. We determine in this note the
maximum of the quantities lm(q) when q runs through the interval
]m,m+1[. We also show that if q is a non-real number of modulus
> 1, then q is a complex Pisot number if and only if lm(q) > 0 for
all m.

1. Introduction

Let q be a complex number, m be a positive rational integer and lm(q) =
inf{|P (q)| , P ∈ Zm[X], P (q) 6= 0}, where Zm[X] denotes the set of polyno-
mials with rational integer coefficients of absolute value 6 m and not all
0. Initiated by P. Erdos et al. in [6], several authors studied the quantities
lm(q), where q is a real number satisfying 1 < q < 2. The aim of this note
is to extend the study for a complex number q. Mainly we determine in the
real case the maximum ( resp. the infimum ) of the quantities lm(q) when
q runs through the interval ]m,m + 1[ ( resp. the set of Pisot numbers in
]m,m + 1[ ). For the non-real case, we show that if q is of modulus > 1
then q is a complex Pisot number if and only if lm(q) > 0 for all m. Re-
call that a Pisot number is a real algebraic integer > 1 whose conjugates
are of modulus < 1. A complex Pisot number is a non-real algebraic inte-
ger of modulus > 1 whose conjugates except its complex conjugate are of
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modulus < 1. Note also that the conjugates, the minimal polynomial and
the norm of algebraic numbers are considered here over the field of rationals.
The set of Pisot numbers ( resp. complex Pisot numbers ) is usually noted
S ( resp. Sc ). Let us now recall some known results for the real case.

THEOREM A. ( [5], [7] and [9] )
(i) If q ∈ ]1,∞[, then q is a Pisot number if and only if lm(q) > 0 for all

m;
(ii) if q ∈ ]1, 2[, then for any ε > 0 there exists P ∈ Z1[X] such that

|P (q)| < ε.

THEOREM B. ([15])
(i) If q runs through the set S∩]1, 2[, then inf l1(q) = 0;
(ii) if m is fixed and q runs through the interval ]1, 2[, then max lm(q) =

lm(A), where A = 1+
√

5
2 .

The values of lm(A) have been determined in [11].

In [3] P. Borwein and K. G. Hare gave an algorithm to calculate lm(q)
for any Pisot number q ( or any real number q satisfying lm(q) > 0 ). The
algorithm is based on the following points :

(i) From Theorem A (i), the set Ω(q, ε) = ∪d>0Ωd(q, ε), where ε is a fixed
positive number and

Ωd(q, ε) = {|P (q)| , P ∈ Zm[X], ∂P = d, 0 < |P (q)| < ε},

is finite ( ∂P is the degree of P );

(ii) if P ∈ Zm[X] and satisfies |P (q)| < m
q−1 and ∂P > 1, then P can be

written P (x) = xQ(x) + P (0) where Q ∈ Zm[X] and |Q(q)| < m
q−1 ;

(iii) if q ∈]1,m+1[, then 1 ∈ Ω(q, m
q−1) and lm(q) is the smallest element

of the set Ω(q, m
q−1) ( if q ∈]m + 1,∞[, then from Proposition 1 below we

have lm(q) = 1 ).

The algorithm consists in determining the sets Ωd(q, m
q−1) for d > 0 and

the process terminates when ∪k6dΩk(q, m
q−1) = ∪k6d+1Ωk(q, m

q−1) for some
( the first ) d. By (i) a such d exists. In this case, we have Ω(q, m

q−1) =
∪k6dΩk(q, m

q−1) by (ii). For d = 0, we have Ωd(q, m
q−1) = {1, . . . ,

min(m, E( m
q−1))}, where E is the integer part function. Suppose that the

elements of Ωd(q, m
q−1) have been determined. Then, every polynomial P

satisfying |P (q)| ∈ Ωd+1(q, m
q−1) is of the form P (x) = xQ(x) + η, where

|Q(q)| ∈ Ωd(q, m
q−1) and η ∈ {−m, . . . 0, . . . ,m}.
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2. The real case

Let q be a real number. From the definition of the numbers lm(q), we
have lm(q) = lm(−q) and 0 6 lm+1(q) 6 lm(q) 6 1, since the polynomial
1 ∈ Zm[X]. Note also that if q is a rational integer ( resp. if |q| < 1 ), then
lm(q) = 1 ( resp. lm(q) 6 |qn|, where n is a rational integer, and lm(q) = 0).
It follows that without loss of generality, we can suppose q > 1. The next
proposition is a generalization of Remark 2 of [5] and Lemma 8 of [7] :

Proposition 1.
(i) If q ∈ [m + 1,∞[, then lm(q) = 1;
(ii) if q ∈ ]1,m+1[, then for any ε > 0 there exists P ∈ Zm[X] such that

|P (q)| < ε.

Proof. (i) Let q ∈ [m+1,∞[ and P (x) = ε0x
d + ε1x

d−1 + . . .+ εd ∈ Zm[X],
where d = ∂P > 1 ( if d = 0, then |P (q)| > 1 ). Then,

|P (q)| >
∣∣∣ε0q

d
∣∣∣− ∣∣∣ε1q

d−1
∣∣∣− . . .− |εd| > fm,d(q),

where the polynomial fm,d is defined by

fm,d(x) = xd −m(xd−1 + xd−2 + . . . + x + 1).

It suffices now to show that fm,d(q) > 1 and we use induction on d. For
d = 1, we have fm,d(q) = q−m > m+1−m = 1. Assume that fm,d(q) > 1
for some d > 1. Then, from the recursive formula

fm,d+1(x) = xfm,d(x)−m

and the induction hypothesis we obtain

fm,d+1(q) = qfm,d(q)−m > q −m > 1.

(ii) Let q ∈]1,m+1[. Then, the numbers ξj = ε0+ε1q+. . .+εnqn, where n
is a non-negative rational integer and εk ∈ {0, 1, . . . ,m}, 0 6 k 6 n satisfy
0 6 ξj 6 m qn+1−1

q−1 for all j ∈ {1, 2, . . . , (m + 1)n+1} From the Pigeonhole
principle, we obtain that there exist j and l such that 1 6 j < l ≤ (m+1)n+1

and

|ξj − ξl| 6 m
qn+1 − 1

((m + 1)n+1 − 1)(q − 1)
.

It follows that the polynomial P ∈ Zm[X] defined by

P (q) = ξj − ξl

satisfies the relation |P (q)| 6 m qn+1−1
((m+1)n+1−1)(q−1)

and the result follows by
choosing for any ε > 0, a rational integer n so that

m

(q − 1)
qn+1 − 1

(m + 1)n+1 − 1
< ε.

�
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We cannot deduce from Proposition 1 (ii) that q is an algebraic integer
when q satisfies lE(q)(q) > 0 except for the case E(q) = 1. However, we
have :

Proposition 2. If lE(q)+1(q) > 0, then q is a beta-number.

Proof. Let
∑

n>0
εn
qn be the beta-expansion of q in basis q [13]. Then, q is

said to be a beta-number if the subset {Fn(q), n > 1} of the interval [0, 1[,
where

Fn(x) = xn − ε0x
n−1 − ε1x

n−2 − . . .− εn−1,

is finite [12]. Here, the condition lE(q)+1(q) > 0, implies trivially that q is
a beta-number ( as in the proof of Lemma 1.3 of [9] ), since otherwise for
any ε > 0 there exists n and m such that n > m, 0 < |Fn(q)− Fm(q)| < ε
and (Fn − Fm) ∈ ZE(q)+1[X]. �

Remark 1. Recall that beta-numbers are algebraic integers, Pisot numbers
are beta-numbers, beta-numbers are dense in the interval ]1,∞[ and the
conjugates of a beta-number q are all of modulus < min(q, 1+

√
5

2 ) ( [4], [12]
and [14]). Note also that it has been proved in [8], that if q ∈]1, 1+

√
5

2 ] and
lE(q)+1(q) > 0, then q ∈ S. The question whether Pisot numbers are the
only numbers q > 1 satisfying lE(q)(q) > 0, has been posed in [7] for the
case E(q) = 1.

From Proposition 1 ( resp. Theorem B ) we deduce that inf lm(q) = 0
( resp. max l1(q) = l1(A) ) if q runs through the set S∩]1,m + 1[ ( resp.
the interval ]1, 2[ ). Letting A = A1, we have more generally :

Theorem 1.
(i) If q runs through the set S ∩ ]m,m + 1[, then inf lm(q) = 0;
(ii) if q runs through the interval ]m,m+1[, then max lm(q) = lm(Am) =

Am −m, where Am = m+
√

m2+4m
2 .

Proof. (i) Let q ∈ S ∩ ]m,m + 1[, such that its minimal polynomial P ∈
Zm[X]. Suppose moreover, that there exists a polynomial Q ∈ Z[X] satis-
fying Q(q) > 0 and |Q(z)| < |P (z)| for |z| = 1 ( choose for instance q = Am

since m < Am < m + 1, P (x) = x2 −mx −m and Q(x) = x2 − 1. In this
case |P (z)|2− |Q(z)|2 = 2m2− 1 + m(m− 1)(z + 1

z )− (m− 1)(z2 + 1
z2 ) and

|P (z)|2 − |Q(z)|2 > 2m2 − 1− 2m(m− 1)− 2(m− 1) = 1 > 0 ).
From Rouché′s theorem, we have that the roots of the polynomial

Qn(x) = xnP (x)−Q(x),

where n is a rational integer > ∂P , are all of modulus < 1 except only one
root, say θn. Moreover, since Qn(q) < 0, we deduce that θn > q and θn

∈ S.
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Now, from the equation

θn
nP (θn)−Q(θn) = 0,

we obtain

|P (θn)| = |Q(θn)|
θn
n

6
CQ

θn−∂Q
n

6
CQ

qn−∂Q
,

where CQ is a constant depending only on the polynomial Q. As q is
the only root > 1 of the polynomial P, from the last relation we obtain
lim θn = q and θn < m + 1 for n large. Moreover, since lm(θn) 6 |P (θn)| ,
the last relation also yields

lim lm(θn) = 0

and the result follows.

(ii) Note first that m < Am = m+
√

m2+4m
2 < m+1 and A2

m−mAm−m =
0. Let q ∈ ]m,m + 1[ and q 6= Am. Then, lm(q) 6 q − m < Am − m
when q < Am. Suppose now q > Am and lm(q) > 0 ( if lm(q) = 0, then
lm(q) < Am − m ). Then, from Proposition 1 (ii), we know that for any
ε > 0, there exists a polynomial P ∈ Zm[X] such that |P (q)| < ε. Letting
ε = lm(q), we deduce that there exist a positive rational integer d and d+1
elements, say ηi, of the set {−m, . . . , 0, . . . ,m} satisfying η0ηd 6= 0 and

η0 + η1q + . . . + ηdq
d = 0.

Let t be the smallest positive rational integer such that ηt 6= 0. Then,
from the last equation, we obtain

lm(q) 6
∣∣∣ηt + ηt+1q + . . . + ηdq

d−t
∣∣∣ =

∣∣∣∣η0

qt

∣∣∣∣ 6
m

q
<

m

Am

and
lm(q) <

m

Am
= Am −m.

To prove the relation lm(Am) = Am−m, we use the algorithm explained
in the introduction. With the same notation, we have Ω0(Am, m

Am−1) = {1},
since m

Am−1 = 2m
m−2+

√
m2+4m

< 5
3 . Let P ∈ Zm[X]. If ∂P = 1 and |P (Am)| ∈

Ω1(Am, m
Am−1), then P (x) = x− ε, where ε ∈ {−m, . . . , 0, . . . ,m}. A short

computation shows that if ε 6= m, then Am − ε > Am − (m − 1) > m
Am−1 .

It follows that Ω1(Am, m
Am−1) = {Am −m} and if ∂P = 2 with |P (Am)| ∈

Ω2(Am, m
Am−1), then P (x) = x(x − m) − ε. Since Am(Am − m) = m

and the inequality |m− ε| < 5
3 holds only for ε ∈ {m − 1,m},we deduce

that P (Am) = ±1, Ω2(Am, m
Am−1) = {1}, Ω(Am, m

Am−1) = Ω0(Am, m
Am−1)∪

Ω1(Am, m
Am−1) = {1, Am −m} and lm(Am) = Am −m. �

Corollary. If q runs through the interval ]1,m + 1[ and is not a rational
integer, then max lm(q) = lm(Am) = 2

1+
√

1+ 4
m

.
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Proof. From the relations Am = m
1+

√
1+ 4

m

2 and lm(Am) = m
Am

, we have

2
lm(Am)

= 1 +

√
1 +

4
m

> 1 +

√
1 +

4
m + 1

=
2

lm+1(Am+1)

and the sequence lm(Am) is increasing with m ( to 1 = lim 2

1+
√

1+ 4
m

). It

follows that lE(q)(AE(q)) ≤ lm(Am) when q ∈ ]1,m + 1[. From Theorem 1
(ii), we have lE(q)(q) 6 lE(q)(AE(q)) if q is not a rational integer. Further-
more, since lm(q) 6 lE(q)(q) we deduce that lm(q) ≤ lm(Am) and the result
follows. �

Remark 2. From Theorem B ( resp. Theorem 1 ) we have max lm+k(q) =
lm+k(Am) when q runs through the interval ]m,m + 1[, m = 1 and k > 0
( resp. m > 1 and k = 0 ). Recently [1], K. Alshalan and the author
considered the case m = 2 and proved that if k ∈ {1, 3, 4, 5, 6} (resp. if
k ∈ {2, 7, 8, 9}), then max l2+k(q) = l2+k(1 +

√
2) (resp. max l2+k(q) =

l2+k(3+
√

5
2 )).

3. The non-real case

Let a be a complex number. As in the real case we have lm(a) = 0 if
|a| < 1. Since the complex conjugate of P (a) is P (ā) for P ∈ Zm[X], we
have that lm(a) = lm(ā). Note also that if a is a non-real quadratic algebraic
integer and if P ∈ Zm[X] and satisfies P (a) 6= 0, then |P (a)| > 1, since
|P (a)|2 = P (a)P (ā) is the norm of the algebraic integer P (a). It follows in
this case that lm(a) = 1.

Proposition 3.
(i) If |a| ∈ [m + 1,∞[, then lm(a) = 1;
(ii) if |a|2 ∈ [1,m + 1[, then for any positive number ε, there exists

P ∈ Zm[X] such that |P (a)| < ε.

Proof. (i) The proof is identical to the proof of Proposition 1 (i).
(ii) Let n > 0 be a rational integer and an = xn + iyn, where xn and yn

are real and i2 = −1. Then, the pairs of real numbers

(Xj , Yj) = (ε0x0 + ε1x1 + . . . + εnxn, ε0y0 + ε1y1 + . . . + εnyn),

where εk ∈ {0, 1, . . . ,m} for all k ∈ {0, 1, . . . , n}, are contained in the rec-
tangle R = [m

∑
xk≤0 xk,m

∑
06xk

xk] × [m
∑

yk≤0 yk,m
∑

06yk
yk]. If we

subdivide each one of two intervals [m
∑

xk60 xk,m
∑

06xk
xk] and

[m
∑

yk60 yk,m
∑

06yk
yk] into N subintervals of equal length, then R will

be divided into N2 subrectangles.
Letting N = (m + 1)

n+1
2 − 1, where n is odd, then N2 < (m + 1)n+1

and from the pigeonhole principle we obtain that there exist two points
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(Xj , Yj) and (Xk, Yk) in the same subrectangle. It follows that there exist
η0, η1, . . . ηn ∈ {−m, . . . , 0, . . . ,m} not all 0 such that

|Xj −Xk| = |η0x0 + η1x1 + . . . + ηnxn| 6
m

∑
06k6n |xk|
N

,

|Yj − Yk| = |η0y0 + η1y1 + . . . + ηnyn| 6
m

∑
06k6n |yk|
N

and the polynomial P ∈ Zm[X] defined by

P (a) = (Xj −Xk) + i(Yj − Yk) = η0 + η1a + . . . + ηnan,

satisfies

|P (a)| 6 m

N

√
(

∑
06k6n

|xk|)2 + (
∑

06k6n

|yk|)2.

Since
max(

∑
06k6n

|xk| ,
∑

06k6n

|yk|) 6
∑

06k6n

∣∣∣ak
∣∣∣ = n + 1

( resp.

max(
∑

06k6n

|xk| ,
∑

06k6n

|yk|) 6
∑

06k6n

∣∣∣ak
∣∣∣ =

|a|n+1 − 1
|a| − 1

),

when |a| = 1 ( resp. when |a| > 1 ), from the last inequality we obtain

|P (a)| 6 m
√

2
N

(n + 1)

( resp.

|P (a)| 6 m
√

2
N

|a|n+1 − 1
|a| − 1

)

and the result follows by choosing for any ε > 0 a rational integer n so that

(m
√

2)(
n + 1√

(m + 1)n+1 − 1
) < ε

( resp.

(
m
√

2
|a| − 1

)(
|a|n+1 − 1√

(m + 1)n+1 − 1
) < ε).

�

Remark 3. The non-real quadratic algebraic integer a = i
√

m + 1 satisfies
|a|2 = m + 1, lm(a) = 1 and is not a root of a polynomial ∈ Zm[X], since
its norm is m + 1. Hence, Proposition 3 (ii) is not true for |a|2 = m + 1.

Now we obtain a characterization of the set Sc.

Theorem 2. Let a be a non-real number of modulus > 1. Then, a is a
complex Pisot number if and only if lm(a) > 0 for all m.
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Proof. The scheme ( resp. the tools ) of the proof is ( resp. are ) the same
as in [5] ( resp. in [2] and [10] ) with minor modifications. We prefer to
give some details of the proof.

Let a be a complex Pisot number. If a is quadratic, then lm(a) = 1 for
all m. Otherwise, let θ1, θ2, . . . , θs be the conjugates of modulus < 1 of a
and let P ∈ Zm[X] satisfying P (a) 6= 0. Then, for k ∈ {1, 2, . . . , s} we have

|P (θk)| 6 m(|θk|∂P + |θk|∂P−1 + . . .+ |θk|+1) = m
1− |θk|∂P+1

1− |θk|
6

m

1− |θk|
.

Furthermore, since the absolute value of the norm of the algebraic integer
P (a) is > 1, the last relation yields

|P (a)|2 = |P (a)| |P (ā)| >
∏

16k6s(1− |θk|)
ms

and

lm(a) >

√∏
16k6s(1− |θk|)

ms
> 0.

To prove the converse, note first that if a is a non-real number such that
lm(a) > 0 for all m, then a is an algebraic number by Proposition 3 (ii). In
fact we have :

Lemma 1. Let a be a non-real number of modulus > 1. If lm(a) > 0 for
all m, then a is an algebraic integer.

Proof. As in the proof of Proposition 2, we look for a representation a =∑
n>0

εn
an of the number a in basis a where the absolute values of the rational

integers εn are less than a constant c depending only on a. In fact from
Lemma 1 of [2], such a representation exists with c = E(1

2 +
∣∣a2

∣∣ |a|+1
|sin t| ),

where a = |a| eit. Then, the polynomials

Fn(x) = xn − ε0x
n−1 − ε1x

n−2 − . . .− εn−1,

where n > 1, satisfy Fn ∈ Zc[X] and

|Fn(a)| =

∣∣∣∣∣∣
∑
k>0

εn+k

ak+1

∣∣∣∣∣∣ 6
c

|a| − 1
.

It follows that if l2c(a) > 0, then the set {Fn(a), n > 1} is finite. Conse-
quently, there exists n and m such that n > m and Fn(a) = Fm(a), so that
a is a root of the monic polynomial (Fn − Fm) ∈ Z2c[X]. �

To complete the proof of Theorem 2 it suffices to prove the next two
results.
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Lemma 2. Let a be an algebraic integer of modulus > 1. If lm(a) > 0 for
all m, then a has no conjugate of modulus 1.

Proof. Let Im = {F ∈ Zm[X], F (x) = P (x)Q(x), Q ∈ Z[X]}, where P is
the minimal polynomial of a. Let F ∈ Im and define a sequence F (k) in
Zm[X] by the relations F (0) = F and F (k+1) (x) = F (k) (x)−F (k) (0)

x ,where
k is a non-negative rational integer. Then, the polynomials F (k) sat-
isfy

∣∣F (k) (a)
∣∣ 6 m

|a|−1 . Indeed, we have F (0) (a) = 0 and
∣∣F (k+1) (a)

∣∣ 6

|F (k) (a)|+|F (k) (0)|
|a| 6 m

|a|(|a|−1) + m
|a| = m

|a|−1 , when
∣∣F (k) (a)

∣∣ 6 m
|a|−1 . Let

R
(k)
F ∈ Z[X] be the remainder of the euclidean division of the polynomial

F (k) by P . Since P is irreducible and ∂R
(k)
F < ∂P , the set of polynomi-

als {R(k)
F , k > 0, F ∈ Im} is finite when the complex set {R(k)

F (a), k > 0,
F ∈ Im} is finite.

Suppose now that a has a conjugate of modulus 1. Then, from Propo-
sition 2.5 of [10], there exists a positive rational integer c so that the set
{ R

(k)
F , k > 0, F ∈ Ic} is not finite. Hence, the bounded set {R(k)

F (a) =
F (k)(a), k > 0, F ∈ Ic} is not finite and for any ε > 0, there exist F1 ∈ Ic

and F2 ∈ Ic such that 0 <
∣∣∣F (k)

1 (a)− F
(j)
2 (a)

∣∣∣ < ε, where k and j are
non-negative rational integers. Hence, l2c(a) = 0, and this contradicts the
assumption lm(a) > 0 for all m. �

Lemma 3. Let a be an algebraic integer of modulus > 1. If lm(a) > 0
for all m, then a has no conjugate of modulus > 1 other than its complex
conjugate.

Proof. Let Jm be the set of polynomials F ∈ Zm[X] satisfying F (a) =
S( 1

a
)

a , for some S ∈ Zm[[X]] ( the set of formal series with rational integers
coefficients of absolute value 6 m ). If the polynomials F (k) and R

(k)
F are

defined for F ∈ Jm by the same way as in the precedent proof ( Im ⊂ Jm ),

we obtain immediately F (k) ∈ Jm and |F (a)| =
∣∣∣S( 1

a
)

a

∣∣∣ 6 m
|a|−1 . Therefore,

by the previous argument, the set {R(k)
F , k > 0, F ∈ Jm} is finite when

l2m(a) > 0.
Let α be a conjugate of modulus > 1 of a and let S(x) =

∑
n snxn ∈

Zm[[X]] satisfying S( 1
a) = 0. Then, S( 1

α) = 0. Indeed, if F (x) = s0x
n +

s1x
n−1 + . . . + sn, then F ∈ Jm, F (α) = R

(0)
F (α) and

S(
1
α

) = lim(s0 +
s1

α
+ . . . +

sn

αn
) = lim

F (α)
αn

= lim
R

(0)
F (α)
αn

= 0,

since the coefficients of the polynomial R
(0)
F are bounded ( R

(0)
F ∈ {R

(k)
F ,

k > 0, F ∈ Jm}). It suffices now to find for α /∈ {a , ā} a positive rational
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integer m and an element S of Zm[[X]] satisfying S( 1
a) = 0 and S( 1

α) 6= 0.
In fact this follows from Proposition 7 of [2]. �

Now from Theorem 1 we have the following analog :

Proposition 4.
(i) If a runs through the set Sc ∩ { z ,

√
m < |z| <

√
m + 1 }, then

inf lm(a) = 0;
(ii) if a runs through the annulus { z ,

√
m < |z| <

√
m + 1 }, then

sup lm(a) > lm(i
√

Am) = Am −m.

Proof. First we claim that if q is a real number > 1, then lm(q) = lm(i
√

q).
Indeed, let P ∈ Zm[X] such that

P (q) = η0 + η1q + . . . + η∂P q∂P 6= 0.

Then,
P (q) = η0 − η1(i

√
q)2 + . . .± η∂P (i

√
q)2∂P = Q(i

√
q),

where Q ∈ Zm[X] and ∂Q = 2∂P. It follows that |P (q)| > lm(i
√

q) and
lm(q) > lm(i

√
q). Conversely, let P ∈ Zm[X] such that

P (i
√

q) = η0 + η1(i
√

q) + η2(i
√

q)2 + . . . + η∂P (i
√

q)∂P 6= 0.

Then, the polynomial R ( resp. I ) ∈ Zm[X] ∪ {0} defined by

R(q) =
P (i

√
q) + P (−i

√
q)

2
= η0 − η2q + . . .± η2sq

s,

where 0 6 2s 6 ∂P, satisfies |R(q)| 6
∣∣P (i

√
q)

∣∣
( resp.

I(q) =
P (i

√
q)− P (−i

√
q)

2i
√

q
= η1 − η3q + . . .± η2t+1q

t

where 0 6 2t + 1 6 ∂P, satisfies |I(q)| 6
∣∣∣P (i

√
q)√

q

∣∣∣ <
∣∣P (i

√
q)

∣∣ ).
Since P (i

√
q) 6= 0, at least one of the quantities R(q) and I(q) is 6= 0. It

follows that lm(q) 6
∣∣P (i

√
q)

∣∣ and lm(q) 6 lm(i
√

q).
Note also that if q ∈ S, then i

√
q ∈ Sc and conversely if i

√
q ∈ Sc, where

q is a real number, then q ∈ S. Hence, by Theorem 1 we have

0 6 inf lm(a) 6 inf lm(i
√

q) = inf lm(q) = 0,

( resp.

lm(i
√

Am) = lm(Am) = max lm(q) = max lm(i
√

q) ≤ sup lm(a),

when a runs through the set Sc ∩ {z,
√

m < |z| <
√

m + 1} and q runs
through the set S∩]m,m + 1[ ( resp. when a runs through the annulus
{z,

√
m < |z| <

√
m + 1} and q runs through the interval ]m,m + 1[ ). �
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Remark 4. The question of [7] cited in Remark 1, can also be extended to
the non-real case : Are complex Pisot numbers the only non-real numbers
a satisfying lE(|a2|)(a) > 0, a2 + 1 6= 0 and a2 − a + 1 6= 0?

Acknowledgements. The author wishes to thank the referee for careful
reading of the manuscript and K. G. Hare for his remarks.

References
[1] K. Alshalan and T. Zaimi, Some computations on the spectra of Pisot numbers. Submitted.
[2] D. Berend and C. Frougny, Computability by finite automata and Pisot Bases. Math.

Systems Theory 27 (1994), 275–282.

[3] P. Borwein and K. G. Hare, Some computations on the spectra of Pisot and Salem num-
bers. Math. Comp. 71 No. 238 (2002), 767–780.

[4] D. W. Boyd, Salem numbers of degree four have periodic expansions. Number Theory (eds

J.-H. de Coninck and C. Levesque, Walter de Gruyter, Berlin) 1989, 57–64.
[5] Y. Bugeaud, On a property of Pisot numbers and related questions. Acta Math. Hungar.

73 (1996), 33–39.
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