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On a mixed Littlewood conjecture for quadratic

numbers

par Bernard de MATHAN

Résumé. Nous étudions un problème diophantien simultané relié
à la conjecture de Littlewood. En utilisant des minorations con-
nues de formes linéaires de logarithmes p-adiques, nous montrons
qu’un résultat que nous avons précédemment obtenu, concernant
les nombres quadratiques, est presque optimal.

Abstract. We study a simultaneous diophantine problem re-
lated to Littlewood’s conjecture. Using known estimates for linear
forms in p-adic logarithms, we prove that a previous result, con-
cerning the particular case of quadratic numbers, is close to be
the best possible.

1. Introduction

In a joint paper, with O. Teulié [5], we have considered the following
problem. Let B =(bk)k≥1 be a sequence of integers greater than 1. Consider
the sequence (rn)n≥0, where r0 = 1 and rn =

∏
0<k≤n bk for n > 0. For

q ∈ Z, set

wB(q) = sup{n ∈ N ; q ∈ rnZ}

and

|q|B = inf{1/rn ; q ∈ rnZ}.

Notice that |.|B is not necessarily an absolute value, but when B is the
constant sequence p, where p is a prime number, then |.|B is the usual
p-adic value.

For x ∈ R, we denote by {x} the number in [−1/2, 1/2[ such that
x− {x} ∈ Z. As usual, we put ‖x‖ = |{x}|.

Let α be a real number. Given a positive integer M , Dirichlet’s Theo-
rem asserts that for any n, there exists an integer q, with 0 < q ≤ Mrn,
satisfying simultaneously the approximation condition ‖qα‖ < 1/M and
the divisibility condition rn|q, i. e. |q|B ≤ 1/rn. Indeed, it is enough to
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apply Dirichlet’s Theorem to the number rnα. We thus find positive inte-
gers q with

q‖qα‖|q|B < 1.

By analogy with Littlewood’s conjecture, we ask whether

inf
q∈N∗

q‖qα‖|q|B = 0 (1)

holds. The problem is trivial for α rational, and for an irrational number
α, one can easily see [5] that condition (1) is equivalent to the following:
for each n ∈ N, consider the continued fraction expansion

rnα = [a0,n; a1,n, ..., ak,n...].

We have (1) if and only if

sup
n≥0,k≥1

ak,n = +∞.

However, we shall not use this characterization here.
We do not know whether (1) is satisfied for any real number α. In [5], we

have proved that if we assume that the sequence B = (bk)k≥1 is bounded,
(1) is true for every quadratic number α. More precisely:

Theorem 1.1. (de Mathan and Teulié [5]) Suppose that the sequence B
is bounded. Let α be a quadratic real number. Then there exists an infinite
set of integers q > 1 with

‖qα‖ � 1/q (2)

and

|q|B � 1/ ln q. (3)

In particular, we have

liminf
q−→+∞

qlnq‖qα‖|q|B < +∞.

As usual, for positive functions x and y, the notation x � y means that
there exists a positive constant C such that x ≤ Cy.

In our lecture at Graz, for the “Journées Arithmétiques 2003”, it was
discussed whether the factor ln q in (3) is best possible. We do not know
the answer to this question, but we shall prove:
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Theorem 1.2. Assume that the sequence B is bounded. Let α be a real
quadratic number, and let S be a set of integers q > 1 with

‖qα‖ � 1/q. (2)

Then there exists a constant λ = λ(S) such that

|q|B �
1

(ln q)λ
(4)

for any q ∈ S.

One may expect that (4) holds for any λ > 1, but we are not able to
prove this. We do not even know whether there exists a real number λ
for which (4) holds for any set S of integers q > 1 satisfying (2). Indeed,
Theorem 1.2 does not ensure that supS λ(S) < +∞.

There is some analogy between this problem, and the classical simultane-
ous Diophantine approximation. For instance, let us recall Peck’s Theorem.
Let n be an integer greater than 1, and let α1,..., αn, be n numbers in a
real algebraic number field of degree n + 1 over Q. Then it was proved by
Peck [7] that there exists an infinite set of integers q > 1 with

‖qαk‖ � (ln q)−1/(n−1)q−1/n

for 1 ≤ k < n, and
‖qαn‖ � q−1/n.

Assume that 1, α1, ..., αn are linearly independent over Q, and let S be an
infinite set of integers q > 1, with

‖qαk‖ � q−1/n

for each 1 ≤ k ≤ n. Then we have proved in [3] that there exists a constant
κ = κ(S) such that

max
1≤k<n

‖qαk‖ � (ln q)−κq−1/n.

Theorem 1.2 can be regarded as an analogue of this result with n = 1,
and its proof is similar.

2. Proof of the result

2.1. Some rational approximations of α.

In the quadratic field Q(α), there exists a unit ω of infinite order. Re-
placing, if necessary, ω by ω2 or 1/ω2, we may suppose ω > 1. In his
original work, Peck uses units which are “large” and whose other conjugates
are “small” and close to be equal. Here, Peck’s units are just the ωm’s,
with m ∈ N. We shall use these units in order to describe the rational
approximations of α which satisfy (2).



210 Bernard de Mathan

Denote by σ0 = id and σ1 = σ the automorphisms of Q(α). As usual,
we denote by Tr the trace form TrQ(α)/Q = σ0 + σ1. The basis (1, α) of
Q(α) admits a dual basis (β0, β1) for the non-degenerate Q-bilinear form
(x, y) 7−→ Tr(xy) on Q(α). That means that, if we set α0 = 1 and α1 = α,
we have Tr(αkβl) = δkl, for k = 0, 1 and l = 0, 1, where δll = 1, and δkl = 0
if k 6= l. Here it is easy to calculate β0 = − σ(α)

α−σ(α) and β1 = 1
α−σ(α) . Hence,

if we put

η =
−qσ(α) + q′

α− σ(α)
,

where q and q′ are rational numbers, we have

q = Trη (5)

and

q′ = Tr(αη). (6)

Also notice that (5) and (6) imply that

qα− q′ = (α− σ(α))σ(η)· (7)

Let D be a positive integer such that Dα, D
α−σ(α) , and Dα

α−σ(α) are alge-
braic integers.

The notation A � B, where A and B are positive quantities, means that
B � A � B.

Lemma 2.1. Let γ be a positive number in Q(α). Let ∆ be a positive
integer such that ∆γ is an algebraic integer. For each m ∈ N, define the
rational number

q = q(m) = Tr(γωm). (8)
Then ∆q is a rational integer, one has q > 0 when m is large, and the
integers D∆q satisfy (2).

Proof. Also define
q′ = q′(m) = Tr(αγωm).

As ∆γωm and D∆αγωm are algebraic integers, ∆q and D∆q′ are rational
integers. As σ(ω) = 1/ω, we have q = γωm + σ(γ)ω−m, hence q > 0 as
soon as ω2m > −σ(γ)/γ, and then

q � ωm. (9)

From (7), we get qα− q′ = (α− σ(α))σ(γ)ω−m, hence

|qα− q′| � ω−m. (10)

As D∆q and D∆q′ are integers, it follows from (10) that for large m we
have ‖D∆qα‖ = D∆|qα−q′|, and by (9) and (10), the integers D∆q satisfy
(2).
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Conversely:

Lemma 2.2. Let S be a set of positive integers q satisfying (2) . Then
there exists a finite set Γ of numbers γ ∈ Q(α), γ 6= 0, such that for any
q ∈ S, there exist γ ∈ Γ and m ∈ N such that

q = Tr(γωm)· (8)

Proof. For q ∈ S, let m(q) = m be the positive integer such that
ωm−1 ≤ q < ωm. We thus have ωm � q. Let q′ be the rational integer
such that {qα} = qα− q′. Set

γ =
−qσ(α) + q′

α− σ(α)
ω−m·

First, notice that Dγ is an algebraic integer. From (5), we get (8). Writing

γωm = q − qα− q′

α− σ(α)

we see that γ > 0 when q is large, and γωm � q. As we have ωm � q, we
thus get γ � 1. We also have

σ(γ) =
qα− q′

α− σ(α)
ωm,

hence, by (2), |σ(γ)| � ωm/q, and thus, |σ(γ)| � 1. Then, as Dγ is an
algebraic integer in Q(α), and max(|γ|, |σ(γ)|) � 1, the set of the γ’s is
finite.

2.2. End of proof.

Denote by P the set of all prime numbers dividing one of the bk. Since
we assume that the sequence (bk) is bounded, this set is finite. For p ∈ P ,
we extend the p-adic absolute value to Q(α). The completion of this field is
Qp(α). As above, let ω be a unit in Q(α) with ω > 1. Note that |ω|p = 1.
The ball {x ∈ Qp(α); |x − 1|p < p−1/(p−1)} is a subgroup of finite index
in the multiplicative group {x ∈ Qp(α); |x|p = 1}. Hence, replacing ω
by ωn, where n is a suitable positive integer, we may also suppose that
|ω − 1|p < p−1/(p−1) for every p ∈ P .

We shall use the p-adic logarithm function, which is defined on the mul-
tiplicative group {x ∈ Cp; |x− 1|p < 1} ⊂ Cp by

log x =
+∞∑
n=1

(−1)n−1 (x− 1)n

n
.

This function satisfies

log xy = log x + log y,
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and, for |x − 1|p < p−1/(p−1), | log x|p = |x − 1|p. Hence, for |x − 1|p <

p−1/(p−1) and |y − 1|p < p−1/(p−1), we have

| log x− log y|p = | log
x

y
|p = |x

y
− 1|p = |x− y|p· (11)

We prove:

Lemma 2.3. Let p be a number of P . Let γ be a positive number of Q(α).
For m ∈ N, set

q = q(m) = Tr(γωm). (8)
Then, if

|σ(γ)
γ

+ 1|p ≥ p−1/(p−1),

we have
|q|p � 1

for large m; if

|σ(γ)
γ

+ 1|p < p−1/(p−1),

then
|q|p � |2m log ω − log(−σ(γ)/γ)|p· (12)

Proof. Recall that q > 0 when m is large (Lemma 2.1). From the definition,
we get for each p ∈ P , |q|p = |γωm + σ(γ)ω−m|p = |γ|p|ω2m − δ|p, where
δ = −σ(γ)/γ. If |δ − 1|p ≥ p−1/(p−1), we have |ω2m − δ|p ≥ p−1/(p−1), since
|ω − 1|p < p−1/(p−1) and |ω2m − 1|p < p−1/(p−1). Then we get

|q|p � 1.

If |δ−1|p < p−1/(p−1), then, by (11), we write |ω2m−δ|p = |2m log ω−log δ|p,
and we obtain (12).

Accordingly, in order to achieve the proof of the result, we shall use
known lower bounds for linear forms in p-adic logarithms. For instance, it
follows from [8] that:

Lemma 2.4. (K. Yu [8]) Let x and y be algebraic numbers in Cp, with
|x − 1|p < p−1/(p−1) and |y − 1|p < p−1/(p−1). Then there exists a real
constant κ such that for any pair (k, `) of rational integers with
k log x + ` log y 6= 0, one has

|k log x + ` log y|p � (max(|k|, |`|))−κ.

Note that this result is trivial, with κ = 1, if log x and log y are not
linearly independent over Q, and log x 6= 0, i.e, x 6= 1. Indeed, if a log x =
b log y, where a and b are rational integers with b 6= 0, then we write
|k log x+ ` log y|p = 1

|b|p |bk +a`|p|x−1|p. Hence we get |k log x+ ` log y|p �
|bk + a`|p ≥ |bk + a`|−1 � (max(|k|, |`|)−1, when k log x + ` log y 6= 0.
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We can then achieve the proof of Theorem 1.2. Applying Lemma 2.2, we
can suppose that the set Γ contains a unique element γ > 0, i.e., for any
q ∈ S, there exists m ∈ N such that we have (8). It follows from Lemma
2.3 and 2.4 that there exists a constant κ such that |q|p � m−κ (one may
take κ = 0 if |σ(γ)

γ + 1|p ≥ p−1/(p−1)). As q � ωm, hence m � ln q, we
get |q|p � (ln q)−κ. Now set κ = κp (the constant κp may depend upon
p ∈ P ). Note that |q|B ≥

∏
p∈P |q|p. Indeed, putting |q|B = 1/rn, we have

q ∈ rnZ, hence |q|p ≤ |rn|p and
∏

p∈P |q|p ≤
∏

p∈P |rn|p = 1/rn. We thus
get (4) with λ =

∑
p∈P κp, and Theorem 1.2 is proved.

2.3. A remark.

Note that one may also use Lemma 2.3 for solving the opposite problem.
For simplicity, consider the case where |.|B is the p-adic value for a prime
number p. If we take a positive number γ ∈ Q(α) such that σ(γ) = −γ,
for instance, γ = α − σ(α) (one may replace α by −α, and so, we can
suppose α − σ(α) > 0), then we have log(−σ(γ)/γ) = 0, and by (12),
we get |Tr(γωm)|p � |m|p. By Lemma 2.1, there exists a positive integer
A such that for every large m, the numbers q = q(m) = ATr(γωm) are
positive integers satisfying (2). For m = ps with s ∈ N, we get |m|p = 1/m,
hence |q|p � 1/m. Since m � ln q, we have thus proved that there exists
an infinite set of integers q > 1 satisfying (2) and (3) (which is Theorem
1.1). In this way we obtain integers q > 1 satisfying (2) and such that |q|p
� 1/ ln q.

One can ask whether there exists an infinite set of integers q > 1 satis-
fying (2), with

inf |q|p ln q = 0. (3’)

Given a positive decreasing sequence (εm) with
∑+∞

m=0 εm = +∞, a
p-adic version [4] of Khintchine’s Theorem ensures that for almost all x ∈
Zp, there exist infinitely many positive integers m such that |x−m|p ≤ εm.
One often considers as reasonable the hypothesis that a given “special”
irrational number x ∈ Zp satisfies this condition, with εm = 1/(m lnm)
for m > 1 (which is false if x ∈ Zp ∩ Q, since in this case, we have
|x − m|p � 1/m for m large). Let us prove that we can choose γ > 0
in Q(α), with |σ(γ)

γ + 1|p < |ω − 1|p, such that log(−σ(γ)/γ)
log ω is an irrational

number in Zp. In order to make this obvious, we prove:

Lemma 2.5. There exists ξ ∈ Q(α) such that ξ is not a unit, NQ(α):Qξ = 1,
and |ξ|p = 1.

Proof. The number ω is a root of the equation ω2−Sω +1 = 0, where S is
a rational integer, S = Trω. The number ξ must be a root of an equation
ξ2−tξ+1 = 0, where t is a rational number for which there exists a positive
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rational number ρ such that t2 − 4 = ρ2(S2 − 4). Such pairs (t, ρ) can be
expressed by using a rational parameter θ:

t =
2(S2 − 4)θ2 + 2
(S2 − 4)θ2 − 1

= 2 +
4

(S2 − 4)θ2 − 1

ρ =
4θ

(S2 − 4)θ2 − 1
·

Let us show that we can choose θ ∈ Q∗ such that t 6∈ Z and |t|p ≤ 1.
It is enough to take θ = p. As we have S2 > 4, hence S2 ≥ 9 and
(S2− 4)p2− 1 > 4, t cannot be an integer for this choice of θ. But we have
|t|p ≤ 1, since |(S2 − 4)p2 − 1|p = 1. Then there exists a number ξ ∈ Q(α)
such that ξ2 − tξ + 1 = 0, and ξ is neither a rational number, since ρ > 0,
nor an algebraic integer, since t 6∈ Z. Then we have NQ(α)/Q(ξ) = 1,
and |ξ|p = 1 because either condition |ξ|p < 1 or |ξ|p > 1 would imply
|t|p = |ξ + ξ−1|p > 1.

Replacing ξ by ξn, where n is a suitable positive integer, we thus may
find a ξ satisfying Lemma 2.5, with moreover |ξ− 1|p < |ω− 1|p. Then we
have | log ξ|p < | log ω|p. Further let us prove that log ξ

log ω ∈ Qp. Indeed that
is trivial if α ∈ Qp, since in this case ξ and ω lie in Qp, hence so do log ξ
and log ω. If Qp(α) has degree 2 over Qp, then log ξ and log ω lie in Qp(α).
But σ can be extended into a continuous Qp-automorphism of Qp(α), and
we get σ( log ξ

log ω ) = log σ(ξ)
log σ(ω) = − log ξ

− log ω = log ξ
log ω , since ξσ(ξ) = ωσ(ω) = 1.

That proves that log ξ
log ω ∈ Qp, and since | log ξ|p < | log ω|p, we conclude

that log ξ
2 log ω ∈ Zp. Lastly, log ξ

log ω is not a rational number, since ξ is not a
unit. Now, by Hilbert’s Theorem, there exists γ ∈ Q(α), with γ > 0,
such that ξ = −σ(γ)/γ. We thus have found γ > 0 in Q(α), such that
|σ(γ)

γ +1|p < p−1/(p−1) and log(−σ(γ)/γ)
2 log ω is an irrational element of Zp. Under

the above hypothesis, it would exist infinitely many integers m > 1 with
| log(−σ(γ)/γ)

2 log ω −m|p � 1/(m log m), and, by (12), we could obtain an infinite
set of integers q > 1, q = ATr(γωm) where A is a positive integer, satisfying
(2) and such that |q|p � 1

ln q ln lnq . In particular, (3’) would be satisfied.

3. Conclusion

For a sequence B bounded, the Roth-Ridout Theorem [6] allows us to
see that for any irrational algebraic real number α, thus in particular for α
quadratic, we have:

inf
q>0

q1+ε‖qα‖|q|B > 0
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(see [5]). Of course, our method is far from enabling us to prove that there
exists a real constant λ such that

inf
q>1

q(lnq)λ‖qα‖|q|B > 0.

We can only study the approximations with q‖qα‖ � 1. It seems difficult
to study approximations in the “orthogonal direction” q|q|B � 1, with for
instance, q = pn, for a prime number p. For such approximations, it is not
known whether infn∈N ‖pnα‖ = 0 holds, neither if there exists λ such that
infn>0 nλ‖pnα‖ > 0. It is very difficult to obtain more precise results than
the Roth-Ridout Theorem (see [1]).

Even for rational approximations satisfying (2), we are not able to prove
that the constants λ(S) are bounded. This is related to Lemma 2.4. It
would be necessary to prove that there exists a real constant κ for which this
Lemma holds for x = ω and for any y ∈ Q(α) with |y− 1|p < p−1/(p−1) and
NQ(α)/Q(y) = 1. There exist many effective estimates of |k log x + ` log y|p
(see for instance [2] and [8]), but they do not provide the needed result. It
seems difficult to take the particular conditions required into account.
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