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New ramification breaks and additive Galois

structure

par Nigel P. BYOTT et G. Griffith ELDER

Résumé. Quels invariants d’une p-extension galoisienne de corps
local L/K (de corps résiduel de charactéristique p et groupe de
Galois G) déterminent la structure des idéaux de L en tant que
modules sur l’anneau de groupe Zp[G], Zp l’anneau des entiers
p-adiques? Nous considérons cette question dans le cadre des
extensions abéliennes élémentaires, bien que nous considérions
aussi brièvement des extensions cycliques. Pour un groupe abélien
élémentaire G, nous proposons et étudions un nouveau groupe
(dans l’anneau de groupe Fq[G] où Fq est le corps résiduel) ainsi
que ses filtrations de ramification.

Abstract. Which invariants of a Galois p-extension of local num-
ber fields L/K (residue field of char p, and Galois group G) de-
termine the structure of the ideals in L as modules over the group
ring Zp[G], Zp the p-adic integers? We consider this question
within the context of elementary abelian extensions, though we
also briefly consider cyclic extensions. For elementary abelian
groups G, we propose and study a new group (within the group
ring Fq[G] where Fq is the residue field) and its resulting ramifi-
cation filtrations.

1. Introduction

There is, at the present, a small collection of results [3, 4, 2, 5, 6] con-
cerning the structure (the explicit decomposition) of the ring of integers, in
a wildly ramified local number field extension L/K, as a module over the
group ring Zp[G]. Here G = Gal(L/K), Zp denotes the p-adic integers and
K is a finite extension of the p-adic numbers, Qp.

Looking through this collection, one might notice the following: the
ramification invariants of the extension are sufficient to determine this
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Zp[G]-structure only when their number is maximal. Otherwise? In par-
ticular, what happens when there are not enough breaks in the Hilbert
ramification filtration of G?

As observed in [2] where G ∼= C2×C2, additional information is needed.
But how should this information be understood? In this paper, we propose
a refined ramification filtration1 and find that the information required for
[2] arises from breaks in this new filtration.

1.1. Notation. Recall that K is a finite extension of Qp, and let L be a
finite, fully ramified, Galois p-extension of K. Let T denote the maximal
unramified extension of Qp contained in K. Thus e0 = [K : T ] is the
absolute ramification index of K while f = [T : Qp] is its inertia degree.
Use subscripts to denote the field of reference. So πL denotes a prime
element in L, OL its ring of integers, PL = πLOL the prime ideal of OL and
vL the valuation normalized so that vL(πL) = 1. Let Fp denote the finite
field of p elements and Fq = OT /PT the finite field of q = pf elements.
Let Φp(x) = (xp − 1)/(x − 1) be the cyclotomic polynomial. Let Z(p)

denote the integers localized at p, and define truncated exponentiation by
the polynomial,

(1 + x)[y] =
p−1∑
i=0

(
y

i

)
xi ∈ Z(p)[x, y],

which results from a truncation of the binomial series.
By the ramification invariants of L/K, we mean the two integers, e0

and f , along with the information provided by the ramification filtration
of G = Gal(L/K): the list of the quotients Gi/Gi+1 of the ramification
groups Gi = {σ ∈ G : vL((σ − 1)πL) ≥ i+ 1}. Naturally, we are primarily
interested in nontrivial quotients. These occur at a break, where Gi ) Gi+1.
To distinguish the collection of such breaks {bj : Gbj

) Gbj+1}, from other
‘breaks’ (to be defined later), we will refer to them as Hilbert breaks. It
is easy to see, because G is a p-group, that there can be at most logp |G|
Hilbert breaks – when each nontrivial quotient has order p. This is what
we mean by ‘maximal number’.

1.2. Cyclic extensions. Each quotient Gi/Gi+1 in a fully ramified
p-extension L/K is elementary abelian [9]. Thus cyclic fully ramified
p-extensions have a maximal number of ramification invariants. It was
determined in [3] (in [6] respectively) that ramification invariants are suffi-
cient to determine the Zp[G]-structure of the ring of integers in fully rami-
fied Cp2-extensions (in C23-extensions). Does this generalize?

Question. Are ramification invariants sufficient for cyclic p-extensions?

1The refined ramification filtration is, at this point, relative to an element α ∈ L and is not

(yet) guaranteed to be canonical.
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Of course, we are far more interested in the following general

Question. Are ramification invariants sufficient for p-extensions with a
maximal number of ramification invariants?

The first question, as it is phrased, is still open. Though based upon
[5, 11], we can answer it with a qualified ‘yes’. We explain this now.

Let L/K be an arbitrary fully ramified cyclic extension of degree pn.
Let σ generate its Galois group G, and let b1 < b2 < · · · < bn denote
its Hilbert breaks. The first Hilbert break satisfies 1 ≤ b1 ≤ B1 where
B1 = pe0/(p− 1). If we restrict b1 to about one half of its possible values,
namely B1/2 < b1 ≤ B1, then the Zp[G]-structure of the ring of integers of
L is given in [5]. It is determined completely by ramification invariants.

Let K1 denote the fixed field of σp. Note that b2 < b3 < · · · < bn
are the Hilbert breaks for L/K1. If we restrict b1 to B1/p ≤ b1, so-called
stable ramification, the other Hilbert breaks are determined by b1. In fact,
bi = b1+(pi−1−1)B1 [11]. Under this condition b2 satisfies B2/2 < b2 ≤ B2,
where B2 = p2e0/(p−1) is the generic upper bound on b2, and so the main
result of [5] can be applied to the Zp[σp]-structure of the ring of integers of
L. Since this structure is completely determined by ramification invariants
and since 〈σp〉 is the maximal proper subgroup of G, we are justified in
saying that the Galois structure of the integers in a cyclic stably ramified
p-extension is ‘almost’ completely determined by the ramification inva-
riants.

What about unstably ramified extensions? Wyman has shown that the
ramification filtration in Zp-extensions eventually stabilizes [11]. Thus,
among the infinitely many cyclic extensions of degree pn that lie in a
Zp-extension, only finitely many are not covered by the main result of [5].
So, in a sense, ramification invariants are ‘generally sufficient’ for cyclic
p-extensions.

1.3. Elementary abelian extensions. On the other hand, extensions
with G ∼= Cn

p may have from 1 to n Hilbert breaks. Indeed the situation,
where there are not enough ramification invariants, is essentially an ele-
mentary abelian problem – one of the quotients Gi/Gi+1 is not cyclic. As
such, the deficiency of Hilbert’s ramification filtration is a deficiency of ele-
mentary abelian Galois groups. We propose to repair it on the elementary
abelian level.

It is worth mentioning that our proposal arises from an effort to genera-
lize the main result of [2], concerning the Galois module structure of ideals
for biquadratic extensions, to bicyclic extensions, G ∼= Cp ×Cp. Curiously,
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we were led to truncated exponentiation: of σ ∈ G by ω ∈ O∗
T ,

σ[ω] =
p−1∑
i=0

(
ω

i

)
(σ − 1)i.

This paper may be viewed as an attempt to understand this expression.
We begin by asking for an appropriate environment. There are two

natural candidates: OT [G] and Fq[G]. Weiss has shown that up to conju-
gation OT [G] contains only one finite p-group (namely G itself) [10]. As
we want the ‘appropriate environment’ to generalize the Galois group (and
thus be finite), we choose Fq[G].

Now truncated exponentiation x[ω], of x ∈ Fq[G] by ω ∈ Fq, can be
viewed as an Fq-action on Fq[G], and Theorem 2.1 explains that this action
is a consequence of certain natural properties. Define GF to be the closure
of G under this action. We suggest that a refined ramification filtration
upon GF should yield arithmetically interesting information. Indeed in §4,
we show this to be the case for G ∼= C2 × C2.

Note that the idea of filtering something besides the Galois group to
obtain invariants related to Galois module structure is not new. For
example, see [1]. We have, however, chosen a minimal object. And though
our refined filtration cannot, at this point, be considered canonical (it de-
pends upon a choice of element α ∈ L); given an α that is chosen ‘well’,
Theorem 3.3 and its corollary say that GF is as ‘big as possible’ – indicating
that the group GF is.

2. Elementary Abelian Groups under Fq-action

Recall that Fq denotes the finite field with q = pf elements. Let G = Cn
p

be an elementary abelian group, and let J = 〈σ−1 : σ ∈ G〉 be the Jacobson
radical of the group ring Fq[G]. So 1 + J denotes the group of 1-units in
Fq[G]. The finite field Fp possesses a natural action (via exponentiation)
on the 1 + J . If this is extended to an Fq-action, what properties should
the Fq-action have?

Let (ω, 1 + x) ∈ 1 + J , denote the effect of ω ∈ Fq acting upon 1 + x for
x ∈ J . At a minimum we should ask that

(1, 1 + x) = 1 + x, for all x ∈ J, and(1)

(ω1 + ω2, 1 + x) = (ω1, 1 + x) · (ω2, 1 + x) for all ω1, ω2 ∈ Fq, x ∈ J.(2)

These properties determine the action of Fp and the fact that (0, 1 + x) =
(p, 1+x) = (1, 1+x)p = 1. But for f > 1, they are not sufficient to uniquely
determine an Fq-action. We must include further properties.

Observe that for x ∈ J , xp = 0. To see this express x ∈ J as a linear
combination of terms (σ1 − 1)a1 · · · (σn − 1)an for σ1, . . . , σn generators of
G and ai ≥ 1 for at least one i. Now note that for ω ∈ Fp, (ω, 1 + x) =
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i=0

(
ω
i

)
xi is a polynomial in x with coefficients dependent only upon ω.

This should hold for all ω ∈ Fq. And so we ask that there are functions
fi : Fq −→ Fq such that

(3) (ω, 1 + x) = 1 +
p−1∑
i=1

fi(ω)xi for all ω ∈ Fq, x ∈ J.

Turn to the situation considered in §1.3. Given two nontrivial elements
σ1, σ2 ∈ Gi \ Gi+1, we have vL((σ1 − 1)πL) = vL((σ2 − 1)πL) = i + 1.
Since L/T is fully ramified, there is a unit ω̃ ∈ OT such that (σ1 − 1)πL ≡
ω̃(σ2 − 1)πL mod πi+2

L . So σ1πL ≡ [1 + ω̃(σ2 − 1)]πL mod πi+2
L . We can

approximate the effect of one group element by the effect of an expression
involving another. Motivated by this and the fact that OT /pOT = Fq, we
ask that f1(ω) = ω. In other words,

(4) (ω, 1 + x) ≡ 1 + ωx mod x2, for ω ∈ Fq, x ∈ J.

Finally, we require

(5) (ω1, (ω2, 1 + x)) = (ω2, (ω1, 1 + x)) for ω1, ω2 ∈ Fq, x ∈ J,

Theorem 2.1. There is only one Fq-action on 1+J that satisfies properties
(1) through (5). It is provided by truncated exponentiation: (ω, 1 + x) →
(1 + x)[ω] for ω ∈ Fq, x ∈ J . Moreover

(
(1 + x)[ω1]

)[ω2]
= (1 + x)[ω1ω2] for

ωi ∈ Fq and x ∈ J .

Proof. First we check that (1 + x)[ω] satisfies the properties: (1), (3), (4)
are trivial, while (2), (5) rely upon the fact that xp = 0 for x ∈ J .
In the polynomial ring Q[x, y, z]/(xp), we have (1 + x)[y] · (1 + x)[z] =
(1 + x)y · (1 + x)z = (1 + x)y+z = (1 + x)[y+z], and

(
(1 + x)[y]

)[z]
=

((1 + x)y)z = (1+x)yz = (1+x)[yz]. Thus (1+x)[y] ·(1+x)[z] = (1+x)[y+z],
and

(
(1 + x)[y]

)[z]
= (1 + x)[yz] in Z(p)[x, y, z]/(xp). Reduce modulo p. The

resulting polynomial identities in Fp[x, y, z]/(xp) yield (2) and (5) respec-
tively.

We use induction to prove that truncated exponentiation is the only
such Fq-action. Note f1(ω) =

(
ω
1

)
. Suppose fi(ω) =

(
ω
i

)
for all i such

that 1 ≤ i < k ≤ p − 1, and consider fk(ω). Since
(
(1 + x)[y]

)[z] ≡(
(1 + x)[z]

)[y]
mod xk+1 in Z(p)[x, y, z]/(xp),

∑k
j=0

(
ω2

j

) [∑k
i=1

(
ω1

i

)
xi
]j

≡∑k
j=0

(
ω1

j

) [∑k
i=1

(
ω2

i

)
xi
]j

mod xk+1 for ωi ∈ Fp, x ∈ J . Compare this to

the similar expression from property (5),
∑k

j=0 fj(ω2)
[∑k

i=1 fi(ω1)xi
]j
≡∑k

j=0 fj(ω1)
[∑k

i=1 fi(ω2)xi
]j

mod xk+1. Subtract, note that fi(ω) =
(
ω
i

)
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for all 1 ≤ i < k, and look at the coefficient of xk. Thus (ω1 − ωk
1 )fk(ω2)−

(ω2 − ωk
2 )fk(ω1) = (ω1 − ωk

1 )
(
ω2

k

)
− (ω2 − ωk

2 )
(
ω1

k

)
. Set ω1 = r, a primitive

root of Fp (order of r is p − 1). By properties (1) and (2), fk(r) =
(
r
k

)
.

So (r − rk)fk(ω2) = (r − rk)
(
ω2

k

)
. Since 1 < k ≤ p − 1, r − rk 6= 0. So

fk(ω2) =
(
ω2

k

)
. �

We are interested in G, a subgroup of 1 + J , which is closed under Fp

but not under Fq. Thus we are led to the following

Definition. Let GF be the least subgroup with G ⊆ GF ⊆ 1 + J that is
closed under Fq.

2.1. Near Spaces. A near space is a group upon which Fq operates,
satisfying all the properties of a vector space except the distributive prop-
erty [8]. Since Jp 6= {0} if G 6= Cp (even though xp = 0 for x ∈ J),
distribution does not generally hold and GF is a near space. For example
consider p = 2. If ω ∈ F2f \F2, x, y ∈ J and xy 6= 0, then ((1+x)(1+y))[ω] =
1 + ω(x + y + xy) 6= 1 + ω(x + y) + ω2xy = (1 + x)[ω] · (1 + y)[ω]. Indeed
distribution holds only for G ∼= Cp or Fp = Fq. So we will focus on GF

under |G| > p and Fp ( Fq. A near basis will be a minimal generating set
over Fq.

Define the ω-commutator, [a, b]ω = (ab)[ω]a[−ω]b[−ω] for a, b ∈ GF and
ω ∈ Fq. We could equally well call this the ω-distributor: If [a, b]ω 6= 1,
the Fq-action does not distribute. However when ω = 1 this expression
resembles the usual commutator of group theory. Following [8], we define
an ideal I ofGF to be any subgroup ofGF that is closed under the Fq-action
with [g, i]ω ∈ I for g ∈ GF , i ∈ I and ω ∈ Fq.

Define a commutator of ideals, A and B, to be the ideal generated by
the commutators [A,B] =

(
[a, b]ω : a ∈ A, b ∈ B,ω ∈ Fq

)
. Let the derived

series of GF be defined by A0 = GF and An+1 := [An,An]. Note An/An+1

is a vector space. So if `(GF ) is the length of the derived series, the minimal
integer ` such that A` = {1} or ∞, then `(GF ) measures the lack of the
distributivity.

2.2. A bound on the length of the derived series. Let G ∼= Cn
p . In

this section we bound `(GF ) <∞. Indeed, for a fixed n, it is almost always
the case that `(GF ) = 2. First we need a lemma.

Recall that Z(p) denotes the localization of Z at p. Consider the com-

mutator, [1 +X, 1 + Y ]W =
(
(1 +X)(1 + Y )

)[W ](1 +X)[−W ](1 + Y )[−W ] ∈
Z(p)[X,Y,W ]. We shall relate this to the polynomial

Q(X,Y ) :=
(X + Y +XY )p −Xp − Y p −XpY p

p
∈ Z[X,Y ].
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Lemma 2.2. In the quotient ring R := Z(p)[X,Y,W ]/(Xp, Y p) we have
the congruence [1 +X, 1 + Y ]W ≡ 1 + (W p −W )Q(X,Y ) (mod pR).

Proof. Set T = X + Y +XY ∈ R. As Xp = Y p = 0, we have T 2p−1 = 0,
while T p = pQ(X,Y ) ∈ pR. The usual binomial expansions result in
(1 + X)W =

∑p−1
i=0

(
W
i

)
Xi, (1 + Y )W =

∑p−1
i=0

(
W
i

)
Y i and (1 + T )W =∑2p−2

i=0

(
W
i

)
T i. These expressions are all in R since for 0 ≤ i ≤ p − 1,(

W
i

)
∈ Z(p)[W ],

(
W
p+i

)
∈ p−1Z(p)[W ] and T p+i = pQ(X,Y )T i. Thus

(1 +X)[W ](1 + Y )[W ] = (1 +X)W (1 + Y )W = (1 + T )W .
To analyse the expression for (1 + T )W further, note that we have the

congruences p
(
W
p

)
≡ W − W p (mod pZ(p)[W ]) and p

(
W
p+i

)
≡ p

(
W
p

)(
W
i

)
(mod pZ(p)[W ]) for 0 ≤ i ≤ p− 1. Hence

(1 + T )W ≡
(

1 +
(
W

1

)
+ . . .+

(
W

p− 1

)
T p−1

)(
1 + p

(
W

p

)
Q(X,Y )

)
≡ (1 + T )[W ] (1 + (W −W p)Q(X,Y )) (mod pR).

Therefore (1 + X)[W ](1 + Y )[W ] ≡ (1 + T )[W ](1 + (W − W p)Q(X,Y ))
(mod pR). Since Q(X,Y )2 = 0,

(1 + (W −W p)Q(X,Y ))(1 + (W p −W )Q(X,Y )) = 1.

The result now follows since (1+X)[W ](1+X)[−W ] = (1+X)W (1+X)−W =
1 and (1 + Y )[W ](1 + Y )[−W ] = (1 + Y )W (1 + Y )−W = 1. �

Corollary 2.3. For any x, y ∈ J and ω ∈ Fq we have [1 + x, 1 + y]ω =
1 + (ωp − ω)Q(x, y). In particular A1 ⊆ 1 + Jp.

Proof. Since xp = 0 and yp = 0, there is a ring homomorphism R −→ GF

given by reduction mod p followed by the specialization X = x, Y = y,
W = ω. The identity in the lemma then yields the first assertion. The
second assertion follows since GF ⊆ 1+J , and A1 is generated by elements
of the form [1 + x, 1 + y]ω. �

Let dxe denote the least integer function (the ceiling function).

Proposition 2.4. If G ∼= Cn
p and Fp ( Fq, then

`(GF ) ≤ dlogp(n(p− 1) + 1)e.

Proof. Using the pigeon hole principle, Jn(p−1)+1 = {0}. Note GF = A0 ⊆
1 + J . Using Corollary 2.3, [1 + Jn, 1 + Jn] ⊆ 1 + Jpn. Thus [1 + Jpk−1

,

1 + Jpk−1
] ⊆ 1 + Jpk

. So Ak ⊆ 1 + Jpk
. �

Corollary 2.5. Let G ∼= Cn
p . If Fp ( Fq and p ≥ n− 1, then `(GF ) = 2.

It is natural to ask the following
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Question. Is the bound given by Proposition 2.4 tight?

For p = 2, Q(x, y) = xy is a monomial. Indeed it is a simple calculation
to check

(6) [1 + x, 1 + y]ω = 1 + (ω − ω2)xy.

And so we are able to answer the question in this particular case.

Proposition 2.6. Let G ∼= Cn
2 and F2 ( Fq, then GF = 1+J and `(GF ) =

dlog2(n+ 1)e.

Proof. First we prove that GF = 1 + J . To do so, it is helpful to note that
we can express any element of 1 + J as a product of elements of the form
1+ω∗X(m), where ω∗ ∈ Fq and X(m) = (σ1−1) . . . (σm−1) for 〈σ1, . . . , σm〉
a subgroup of G with degree pm. To prove that 1 + J ⊆ GF it suffices to
prove that each 1 + ω∗X

(m) ∈ GF . This follows by induction using (6).
Note that [1 + x, 1 + y][ω∗/(ω−ω2)]

ω = 1 + ω∗xy.
Again using (6), it is easy to show that [1 + J2k

, 1 + J2k
] ⊆ 1 + J2k+1

.
To prove 1 + J2k+1 ⊆ [1 + J2k

, 1 + J2k
], we again note that any element

of 1 + J2k+1
can be decomposed into a product of elements of the form

1 + ω∗X
(m), where m ≥ 2k+1. One can break X(m) into the product of

two monomials of degree ≥ 2k. Using (6), we can prove that 1 +ω∗X
(m) ∈

[1 + J2k
, 1 + J2k

]. Thus Ak = 1 + J2k
. �

2.3. A basis for (C2
p)F . In this section, we restrict our attention to one

particular elementary abelian group, G ∼= C2
p with generators σ, γ, and give

a complete description of GF . Assume Fp ( Fq. Using Proposition 2.4,
`(GF ) ≤ 2. Thus A1 is a vector space. Our first result establishes the
existence of p− 1 elements of A1 that are linearly independent over Fq.

Lemma 2.7. Choose ω ∈ Fq \ Fp and set ψi := [σ, γi]ω. Then
{ψi : 1 ≤ i ≤ p− 1} is a basis for the Fq-vector space (1 + Jp)/(1 + Jp+1).
Moreover, for 1 ≤ j ≤ p− 1,

Ψj :=
p−1∏
i=1

ψ
−j(−i)j−1

i ≡ 1 + (ωp − ω)(σ − 1)j(γ − 1)p−j mod 1 + Jp+1.

Proof. Clearly (1 + Jp)/(1 + Jp+1) is a vector space. Let x = σ − 1 and
y = γ − 1 then {1 + xjyp−j : 1 ≤ j ≤ p − 1} is an Fq-basis. Note that for
1 ≤ k ≤ p− 1,

(
p
k

)
p−1 ∈ Z. Furthermore

(7)
(
p

k

)
p−1 ≡ (−1)p−kk−1 mod p.

Since γi = (1 + y)i ≡ 1 + iy (mod y2), using Corollary 2.3 and (7) we find
that ψi ≡ 1 + (ωp −ω)

∑p−1
k=1(−i)

p−kk−1 · xkyp−k (mod 1 + Jp+1). Because
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the product of any two elements in Jp is zero,

Ψj =
p−1∏
i=1

ψ
−j(−i)j−1

i

≡ 1 + (ωp − ω)
p−1∑
i=1

−j(−i)j−1 ·
p−1∑
k=1

(−i)p−kk−1 · xkyp−k

≡ 1 + (ωp − ω)
p−1∑
k=1

Cj,kx
kyp−k (mod 1 + Jp+1),

where Cj,k =
∑p−1

i=1 −j(−i)j−1 · (−i)p−kk−1 ≡ −jk−1 ·
∑p−1

s=1(r
s)p−k+j−1

mod p for r a primitive root. Thus if j = k, Cj,k ≡ 1 mod p. Otherwise
Cj,k ≡ 0 mod p. �

To prove that the ψi span A1 we need the following

Lemma 2.8. Choose ω ∈ Fq \ Fp and define Ψj as in Lemma 2.7. Then

[
σ[ω1], γ[ω2]

]
ω

=
p−1∏
j=1

Ψ

»
(−1)j−1

j
ωj

1ωp−j
2

–
j

Proof. Specializing the polynomial ring Z(p)[z, z1, z2, x, y]/(xp, yp) modulo
p by setting x = σ−1, y = γ−1, z = ω and zi = ωi (for i = 1, 2), we obtain
a ring into which Fp[ω, ω1, ω2][G] has an obvious injection. Our proof will
rely upon Corollary 2.3 and the verification of an identity (resulting from
expression above) in the polynomial ring, Z(p)[z, z1, z2, x, y]/(xp, yp).

Consider the right-hand-side of the identity. Recall the expression for
Ψj in Lemma 2.7. Note that since Ψj ∈ 1 + Jp, (Ψj − 1)(Ψk − 1) = 0.

So
∏p−1

j=1 Ψ[(−1)j−1j−1ωj
1ωp−j

2 ]
j = 1 +

∑p−1
j=1(−1)j−1j−1ωj

1ω
p−j
2 (Ψj − 1) =

1−
∑p−1

j=1

∑p−1
i=1 i

j−1ωj
1ω

p−j
2 (ψi − 1). Now identify ψi with [1 + x, (1 + y)i]z.

Set (1 + y)i = 1 + yi ∈ Z(p)[y]/(yp). Since yi = y · Y for some Y ∈
Z(p)[y]/(yp), we find that yp

i = yp · Y p = 0. Thus using Lemma 2.2,
[1+x, 1+yi]z ≡ 1−

(
z
p

)
((1 + x)(1 + yi)− 1)p = 1−

(
z
p

) (
(1 + x)(1 + y)i − 1

)p
mod p. The right-hand-side of the identity to be proven is mapped to
1 +

(
z
p

)∑p−1
j=1

∑p−1
i=1 i

j−1zj
1z

p−j
2

(
(1 + x)(1 + y)i − 1

)p mod p. It is worth
mentioning that this expression differs from 1 by a linear combination of
monomials xrys with r, s < p and r + s ≥ p.
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Now consider the left-hand-side of the identity. Set (1 + x)[z1] = 1 + x′

and (1+y)[z2] = 1+y′. As was the case with yi, (x′)p = (y′)p = 0. So using
Lemma 2.2,

[
(1 + x)[z1], (1 + y)[z2]

]
z
≡ 1 −

(
z
p

) (
(1 + x)[z1](1 + y)[z2] − 1

)p
(mod p).

Taking into account the p in the denominator of
(
z
p

)
, the lemma is verified

if we can show in Z(p)[z, z1, z2, x, y]/(xp, yp) that

(
(1 + x)[z1](1 + y)[z2] − 1

)p
≡

p−1∑
i=1

ci
(
(1 + x)(1 + y)i − 1

)p (mod p2)

(8)

where

ci = −
p−1∑
j=1

ij−1zj
1z

p−j
2 .(9)

Expand the pth powers in (8), use (7) to replace
(
p
k

)
. Now compare

coefficients of xrys on both sides, where r, s < p and r+s ≥ p. Our identity,
which was reduced to (8), is now further reduced to determining whether(
z1p
r

)(
z2p
s

)
+
∑p−1

k=1 k
−1p
(
z1k
r

)(
z2k
s

)
≡
∑p−1

i=1 ci

((
p
r

)(
ip
s

)
+
∑p−1

k=1 k
−1p
(
k
r

)(
ik
s

))
(mod p2) for all pairs (r, s), or whether

(10)
p−1∑
k=1

k−1

(
z1k

r

)(
z2k

s

)
≡

p−1∑
i=1

ci

(
p−1∑
k=1

k−1

(
k

r

)(
ik

s

))
(mod p).

We verify this condition now, an identity in Fp[z1, z2] with the ci as in
(9), for all relevant pairs (r, s) . Recall that for an indeterminate X and an
integer r ≥ 1 we have

(
X
r

)
= 1

r!

∑r
u=1(−1)r−u

[
r
u

]
Xu, for some coefficients[

r
u

]
∈ Z (Stirling numbers of the first kind [7, p249].) The left-hand side of

(10) becomes

(11)
1
r!s!

p−1∑
k=1

r∑
u=1

s∑
v=1

(−1)r−u+s−v

[
r

u

][
s

v

]
k−1(z1k)u(z2k)v

≡ (−1)r+s−p+1

r!s!

∑
u+v=p

[
r

u

][
s

v

]
zu
1 z

v
2 (mod p).
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Replacing the ci using (9), the right-hand side of (10) becomes

1
r!s!

p−1∑
i=1

p−1∑
k=1

r∑
u=1

s∑
v=1

(−1)r−u+s−vci

[
r

u

][
s

v

]
ivku+v−1(12)

≡ (−1)r+s−p+1

r!s!

p−1∑
i=1

∑
u+v=p

ci

[
r

u

][
s

v

]
iv

≡ (−1)r+s−p

r!s!

p−1∑
i=1

∑
u+v=p

[
r

u

][
s

v

] p−1∑
j=1

iv+j−1zj
1z

p−j
2

≡ (−1)r+s−p+1

r!s!

∑
u+v=p

[
r

u

][
s

v

]
zu
1 z

v
2 (mod p).

Note that (11) and (12) agree. �

This leads to the main result of the section.

Theorem 2.9. Let G = 〈σ, γ〉 ∼= C2
p . Suppose Fp ( Fq and choose ω ∈ Fq \

Fp. Then A1 is a vector space over Fq with basis {[σ, γi]ω : i = 1, . . . , p−1}.
Indeed,

GF =

{
σ[ω−1] · γ[ω0] ·

p−1∏
i=1

[σ, γi][ωi]
ω : ωi ∈ Fq

}

Proof. Set A =
{
σ[ω−1] · γ[ω0] ·

∏p−1
j=1 ψ

[ωj ]
j : ωj ∈ Fq

}
. This is clearly a sub-

group. It is easy to see, since ψj = [σ, γj ]ω ∈ GF , that A ⊆ GF . To
show that GF ⊆ A, we need only show that A is closed under Fq. Note∏p−1

j=1 ψ
[ωj ]
j ∈ 1 + Jp. The result will follow from Lemma 2.8 and the fact

that for a ∈ J and b ∈ Jp,
(
(1 + a)(1 + b)

)[ω] = (1 + a)[ω](1 + b)[ω] while
(1+b)[ω] = 1+ωb. First observe that J2p−1 = {0}. So b2 = ap−1b = 0. Thus
(1+b)[ω] = 1+ωb. Now expand

(
(1+a)(1+b)

)[ω] =
∑p−1

i=0

(
ω
i

)
(a+b(1+a))i =∑p−1

i=0

(
ω
i

)
ai +

(∑p−1
i=1

(
ω
i

)
i(ai−1 + ai)

)
b carefully using

(
ω

i+1

)
(i+1)+

(
ω
i

)
i =

ω
(
ω
i

)
. �

Remark. For a given value of p, Theorem 2.9 can be verified computa-
tionally. In fact this is how it was discovered, using MAPLE.

3. Ramification Filtrations

Elementary abelian groups G can be viewed as vector spaces over Fp.
From this perspective, the fact that dimFp G may exceed the number of
Hilbert breaks is a deficiency. In this section we define a family of refined
ramification filtrations of GF and prove that these refined filtrations lack
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the deficiency of the Hilbert filtration: dimFq G
F equals the number of

refined breaks.

3.1. Refined Ramification Filtration. To define a ramification filtra-
tion of GF we need GF ⊆ Fq[G] to act in a well-defined manner upon
elements of L. Naturally, the action should be through OT [G]. We also
need a well-defined notion of valuation. Consider the following example:
Suppose α 6= 0. Choose x = 1 ∈ Fq[G], and for k ≥ 1, yk = 1 + pk, y∞ = 1
elements of OT [G]. View elements of Fq[G] as cosets of pOT [G] in OT [G].
Then yk + pOT [G] = x for all k, and vL((y1− 1)α) < · · · < vL((yk− 1)α) <
· · · < vL((y∞ − 1)α) = ∞. Since one would reasonably expect (x− 1)α to
have infinite ‘valuation’, we are led to the following definition: For α ∈ L
and x ∈ GF define

(13) wα(x) = sup{vL((y − 1)α) : y ∈ OT [G], y + pOT [G] = x}
where sup denotes the supremum. Note that wα(x) = ∞ for α ∈ L and
x = 1, also for α ∈ K and x ∈ GF .

Definition. A refined ramification filtration of GF is defined for α ∈ L by
GF ,α

i =
{
x ∈ GF : wα(x) ≥ vL(α) + i

}
,

The purpose of these filtrations is to provide interesting arithmetic infor-
mation. If α ∈ K, then wα(x) = ∞ for all x ∈ GF . So GF = GF ,α

∞ and the
filtration is decidedly uninteresting. To avoid this problem, we will restrict
ourselves to α from

N = {α ∈ L : ∀x ∈ GF \ {1}, wα(x) <∞}.
To prove N 6= ∅, we consider another class of element. By the Normal
Basis Theorem there are elements α ∈ L that generate a normal basis for
L over K. Collect these elements together as

Nb =

{
α ∈ L :

∑
σ∈G

K · σα = L

}
.

Note the following

Lemma 3.1. ∅ 6= Nb ⊆ N

Proof. By the Normal Basis Theorem, ∅ 6= Nb. Now observe the following
basic property of OT -lattices: Given any OT -lattice U ⊂ L there is a bound
BU such that for u ∈ U ,

u 6∈ pU =⇒ vL(u) ≤ BU .

Without restriction we may suppose that U is a full-dimensional lattice.
Then there exist a < b ∈ Z with paOL ⊂ U ⊂ pbOL and so U \ pU ⊂
pbOL \ pa+1OL. Let BU = (a+ 1)vL(p).
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Now let α ∈ Nb. Note that OT [G]α is an OT -lattice. Let y ∈ OT [G]
with y + pOT [G] = x. Then y 6≡ 1 mod p, (y − 1)α 6∈ pOT [G]α, and so
vL((y − 1)α) ≤ BOT [G]α. Therefore wα(x) ≤ BOT [G]α <∞. �

Lemma 3.2. For α ∈ N , GF ,α
i is an ideal of GF .

Proof. Throughout xj will denote an element of GF ,α
i , and yj ∈ OT [G]

with yj + pOT [G] = xj and vL((yj − 1)α) ≥ vL(α) + i. Let ω̄ ∈ Fq and
ω ∈ OT with ω + pOT = ω̄. First we check that the sets are closed un-
der multiplication. Note that y1 · y2 + pOT [G] = x1 · x2 and y1y2 − 1 =
y1(y2 − 1) + (y1 − 1). Since vL(y1(y2 − 1)α) ≥ vL(α) + i and
vL((y1 − 1)α) ≥ vL(α) + i, we find that vL((y1y2 − 1)α) ≥ vL(α) + i. Let
J̃ denote the preimage of J under OT [G] → Fq[G]. To check that the sets
are closed under Fq, note that y[ω]

1 + pOT [G] = x
[ω̄]
1 and vL((y[ω]

1 − 1)α) =
vL(ω(y1 − 1)α) ≥ vL(α) + i. Observe that since L/K is a fully ramified
p-extension, vL((y−1)µ) ≥ vL(µ) for all y ∈ J̃ , µ ∈ L. Finally we check that
given x∗ ∈ GF , [x∗, x1]ω̄ ∈ GF ,α

i . Let y∗ ∈ OT [G] with y∗ + pOT [G] = x∗.
Note y∗− 1, y1− 1 ∈ J̃ and [y∗, y1]ω + pOT [G] = [x∗, x1]ω̄. Use Lemma 2.2.
Since Q(X,Y ) is a polynomial divisible by Y , Q(y∗−1, y1−1) ∈ J̃(y1−1).
Therefore vL(([y∗, y1]ω̄ − 1)α) ≥ vL((y1 − 1)α) ≥ vL(α) + i. �

Refined ramification filtrations have breaks, where GF ,α
i ) GF ,α

i+1 . We
will refer to these integers as refined breaks. Moreover refined ramification
invariants will refer to e0, f and the quotients GF ,α

i /GF ,α
i+1 . Our main result

is the following

Theorem 3.3. For α ∈ N , refined ramification filtrations possess dimFq G
F

breaks.

Proof. Each element 1 6= x ∈ GF , is associated with an integer wα(x) <∞.
As a result, there is an integer T such that GF ,α

t = {1} for t ≥ T . Let Qi

be a set of distinct coset representatives of GF ,α
i /GF ,α

i+1 , and set qi = |Qi|.
The result will follow if we can prove that for all integers i ≥ 1

qi ∈ {1, q}.
Suppose that qi 6= 1. First we prove qi ≥ q. Since qi > 1, choose x ∈ GFi
with x 6∈ GFi+1. By Lemma 3.2, x[ω̄] ∈ GF ,α

i for each ω̄ ∈ Fq. We need
only prove that if ω̄1 6= ω̄2 ∈ Fq then x[ω̄1] 6≡ x[ω̄2] mod GF ,α

i+1 . But this
is equivalent to x[ω̄] 6∈ GF ,α

i+1 for all ω̄ 6= 0. And this is obvious, since if
x[ω̄] ∈ GF ,α

i+1 for ω̄ 6= 0, then x = (x[ω̄])[ω̄
−1] ∈ GF ,α

i+1 .
Now we prove qi ≤ q. Pick any two nontrivial coset representatives

x1, x2 ∈ Qi. We need to prove that x2 ≡ x
[ω̄]
1 mod GF ,α

i+1 for some ω̄ ∈ Fq.
Choose yj ∈ OT [G] such that vL((yj−1)α) = vL(α)+i and yj+pOT [G] = xj
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for j = 1, 2. Since vL((y1 − 1)α) = vL((y2 − 1)α), there is a ω ∈ O×
T such

that vL((y2 − 1)α− ω(y1 − 1)α) > vL(α) + i. Therefore vL((y2 − y
[ω]
1 )α) >

vL(α) + i since i ≥ 1. Since x2 in a unit in Fq[G], y2 is a unit in OT [G].
Therefore y−1

2 ∈ OT [G] and vL((y−1
2 y

[ω]
1 − 1)α) ≥ vL(α) + i + 1. Thus

wα(x−1
2 x

[ω̄]
1 ) ≥ vL(α) + i+ 1 and so x−1

2 x
[ω̄]
1 ∈ GF ,α

i+1 . �

This leads to the following generalization of [9, IV §1 Prop 7].

Corollary 3.4. Given a refined ramification filtration (depending upon α ∈
N ), one can choose a near-basis for GF in one–to–one correspondence
with the values of the refined breaks. Moreover each nontrivial quotient of
refined ramification groups is canonically isomorphic to the corresponding
quotient of unit groups. For refined break number b, the isomorphism φ :
GF ,α

b /GF ,α
b+1 −→ Ub/Ub+1 is defined by φ(x) = yα/α where y ∈ OT [G]

with y + pOT [G] = x such that for all y′ ∈ OT [G] with y′ + pOT [G] = x,
vL((y − 1)α) ≥ vL((y′ − 1)α).

3.2. On the values of refined breaks. Let Rα denote the set of refined
breaks from the refined ramification filtration that depends upon α ∈ N .
Let H denote the set of Hilbert breaks. To be justified in the use of the
term ‘refined’, we would like H ⊆ Rα. But this requires a restriction on
α. As a first step, we restrict to α ∈ Nb. Note that the group ring K[G]
acts faithfully on L. So α1, α2 ∈ Nb if and only if there is a unit u ∈ K[G]∗

such that α2 = uα1. Note also that the elements of Nb are quite natural
for Galois structure.

Now consider the following

Example. Let L/K be a fully ramified Cp-extension with Hilbert break
h < pe0/(p − 1), and Galois group G = 〈σ〉. Pick any element α ∈ L
with vL(α) = h. Since gcd(p, h) = 1 and vL((σ − 1)iα) = (i + 1)h for
0 ≤ i ≤ p − 1, we find α ∈ Nb. Let xj = Φp(σ) + pj for j ≥ 2. Since
χ(xj) 6= 0 for each character χ, it follows that xj ∈ K[G]∗. Thus xjα ∈ Nb.
In the situation that we are considering GF = {σ[ω] : ω ∈ Fq}. There
is one Hilbert break and one refined break. Note that vL((σ − 1)xjα) =
vL(pj)+2h and vL(xjα) = ph. Since gcd(h, p) = 1, wxjα(σ) = vL(pj)+2h.
So Rxjα = {jpe0 − (p− 2)h}, while H = {h}. So H 6⊂ Rxjα.

To find H ⊂ Rα we need to restrict α to a proper subset of Nb. What
should that be? Consider the fact that p | vL(xjα) in this example. Since
elements in K have valuation divisible by p, perhaps this is the problem.
Let

Nc = {α ∈ Nb : p - vL(α)}.

Proposition 3.5. For noncyclic, elementary abelian extensions, if α ∈ Nc

then H ⊂ Rα.
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Proof. Note G ⊆ GF . Let α ∈ Nc. Note that vL((σ− 1)α)− vL(α) < vL(p)
for σ ∈ G. Therefore wα(σ) = vL((σ − 1)α). �

This proposition however, does not say whether the refined breaks in
Rα \ H are canonical. It does not answer the following question: For
α1, α2 ∈ Nc, is Rα1 = Rα2? There is an equivalence relation on Nc. Define
α1 ∼ α2 if there is a u ∈ πZ

K ·OK [G]× such that α1 = uα2.

Lemma 3.6. If α1 ∼ α2, then Rα1 = Rα2.

Proof. This is clear since u ∈ OK [G]× fixes valuations. �

Based upon Lemma 3.6, we might answer the question above by choosing
an equivalence class of ∼. However as the following example illustrates,
∼ is not the weakest equivalence relation that yields the conclusion of
Lemma 3.6.

Example. Suppose that OL were free over its associated order A on the
normal basis α. ThenRα = Rα′ whenever α′ = uα with u ∈ 1+PKA ⊂ A∗.

We close by repeating the question.

Question. We need a canonical subset N? ⊂ Nc, such that α1, α2 ∈ N?

implies Rα1 = Rα2 . What should N? be?

4. Biquadratic Extensions

Let p = 2 and consider L/K a fully ramified biquadratic extension. The
structure of each ideal Pi

L in L as a OT [G]-module (and by restriction of
coefficients also as a Z2[G]-module) was studied in [4, 2]. It was found that
ramification invariants are sufficient to determine the Galois structure of
each ideal when there are two Hilbert breaks [4]. But if there is only one
Hilbert break, additional information is required [2]. The main result of
this section is that all the information required to determine the Galois
structure of ideals in biquadratic extensions is contained in the refined
ramification filtration.

As noted in the proof of Proposition 2.6, GF = 1 + J for p = 2 and
F2 ( Fq. So for G = 〈σ, γ〉 ∼= C2×C2, we have GF = 〈σ, γ, 1+(σ−1)(γ−1)〉.
This is, of course, also a consequence of Theorem 2.9. For α ∈ N , there will
be three refined breaks in the filtration of GF . To determine what those
breaks might be, we need to begin with a listing of the possible Hilbert
breaks. There are three cases to consider: (1) one Hilbert break h, (2)
two congruent Hilbert breaks h1 < h2 with h1 ≡ h2 mod 4, and (3) two
incongruent Hilbert breaks h1 < h2 with h1 6≡ h2 mod 4.
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4.1. Case (1) : One Hilbert break extensions. Let L/K be a fully
ramified biquadratic extension with one Hilbert break, h. As noted in [2],
h is odd, 1 ≤ h < 2e0, the residue class degree f of K/Q2 must exceed 1,
and L must be expressible as L = K(x, y) for

x2 = 1 + β

y2 = (ω−2 + β)(1 + τ)

with β, τ ∈ K, ω a nontrivial 2f − 1 root of unity, vK(β) = 2e0 − h, and
vK(τ) = 2e0 − t for some 0 ≤ t < h (if t 6= 0 then t must be odd). Let
G = Gal(L/K) = 〈σ, γ〉 where σ(x) = x and γ(y) = y. As we will want to
refer directly to results in [2], it is important to point out that our notation
differs in two ways. Here we call the Hilbert break h (instead of b). The ω−1

of this paper is ω in [2, (2.1)]. (So in [2], y2 = (ω2 + β)(1 + τ).) Otherwise
the notation is the same.

4.2. Cases (2) & (3) : Two Hilbert break extensions. Let L/K be a
fully ramified biquadratic extension with two Hilbert breaks, h1 < h2, and
let G = Gh1 = 〈σ, γ〉 where Gh2 = 〈σ〉. Then s = h1 and t = (h2 + h1)/2
are the two upper ramification numbers of L/K [9, IV §3]. Since upper
ramification groups behave well upon passing to quotients, s will be the
Hilbert break of Lσ/K where Lσ is the fixed field of 〈σ〉, and t will be the
Hilbert break of Lγ/K. Let Lσ = K(x) and Lγ = K(y) where x2, y2 ∈ K.
Since 1 ≤ s < t ≤ 2e0, s is odd. So we may assume that x2 = 1 + β for
some β ∈ K with vK(β) = 2e0 − s. Either t < 2e0 and odd, or t = 2e0. If
t odd then y2 = 1 + τ for some τ ∈ K with vK(τ) = 2e0 − t. If t = 2e0,
then y2 = πK for some prime element πK . In any case, the Hilbert breaks
of L/K where L = K(x, y) are h1 = s and h2 = 2t − s. Case (2), where
h1 ≡ h2 mod 4, occurs when t is odd. Case (3), where h1 6≡ h2 mod 4,
occurs when t = 2e0.

4.3. Refined filtration for Cases (1) and (2). Let hmax denote the
largest Hilbert break of L/K, and let

Nmax = {α ∈ L : vL(α) ≡ hmax mod 4}.
We will find if there is one Hilbert break or two congruent Hilbert breaks
that Nmax ⊂ Nc and that the set of refined breaks Rα is independent of
choice of α ∈ Nmax. So in these two cases Nmax gives an answer to the
question of §3.2.

Proposition 4.1. For fully ramified biquadratic extensions with one Hilbert
break or two congruent Hilbert breaks, Nmax ⊂ Nc.

Proof. Since hmax is odd, we only need to check that Nmax ⊂ Nb. Let
h1 ≤ h2 denote the Hilbert breaks. So if there is one Hilbert break, h1 =
h2 = h. Let α ∈ L be any element with vL(α) = h2 + 4m, m ∈ Z. Then



Ramification breaks 103

vL((σ+1)α) = 2h2 +4m, vL((γ− 1)(σ+1)α) = 2h1 +2h2 +4m. Following
[4, Lemma 3.15, 3.17], we find ρ ∈ L such that vL(ρ) = 2h1 + h2 + 4m
and ρ = (γ − 1)α + (σ − 1)θ for some θ ∈ L with vL(θ) = h1 + 4m.
Since h1, h2 are odd, h2, 2h2, 2h1 + 2h2, 2h1 + h2 yield the residues modulo
4. So L = Kα + K(σ + 1)α + K(γ − 1)(σ + 1)α + Kρ ⊆ K[G]α + Kρ.
We want to prove that ρ ∈ K[G]α. For the one Hilbert break case, this
follows immediately from [2, Prop 2.1]. We will however treat both cases
simultaneously.

Since θ ∈ L we find that θ = aα + b(σ + 1)α + c(γ − 1)(σ + 1)α + dρ
for some a, b, c, d ∈ K. Note that vL(θ) ≤ vL(dρ). So vL(d) ≥ −h1 − h2.
It is important to observe here that since h1 + h2 < 4e0 (in the two cases
which we are considering) we have d 6= 1/2. Substitute in for θ. So ρ =
(γ − 1)α+ (σ − 1)[aα+ dρ]. Thus [1− d(σ − 1)]ρ = [(γ − 1) + a(σ − 1)]α.
We need to prove that 1 − d(σ − 1) ∈ K[G]×. But this follows since
((1 + d)− dσ)((1 + d) + dσ) = (1 + d)2 − d2, and d 6= −1/2. �

Proposition 4.2 (One Hilbert Break). Assume the notation of §4.1. Since
f > 1, there are three refined breaks. For α ∈ Nmax, the refined breaks are
r1 = h, r2 = min{4e0−h, 3h−2t, 2h} and r3 = 3h. Moreover GFr2

/GFr2+1 =
〈γσ[ω̄]〉, where ω̄ is the image of ω in Fq.

Proof. Clearly, since h < 2e0 < 4e0 and vL(α) is odd, wα(γ) = vL(α) + h.
Since f > 1, 1+(σ−1)(γ−1) ∈ GF . We claim that wα(1+(σ−1)(γ−1)) =
vL(α) + 3h. It is easy to check that vL((γ + 1)α) = vL(α) + h. Since
vK(y)((γ+1)α) is odd, vL((σ−1)(γ+1)α) = vL(α)+3h. To prove our claim
we need to understand vL(((σ−1)(γ+1)+2f(σ, γ))α) for f(σ, γ) ∈ OT [G].
Since h is odd, 3h 6= 4e0. If 3h < 4e0, this valuation is vL(α)+3h regardless
of f(σ, γ). So consider 4e0 < 3h. We may write f(σ, γ) = u+j where either
u = 0 or u ∈ O×

T , and j is in the ideal generated by 2, σ−1, γ−1. If u ∈ O×
T

then vL(((σ − 1)(γ + 1) + 2f(σ, γ))α) = vL(α) + 4e0. On the other hand,
if u = 0 then since h < 2e0, vL(2jα) ≥ 4e0 + h + vL(α) > 3h + vL(α). So
vL(((σ−1)(γ+1)+2f(σ, γ))α) = vL(α)+3h. Thus wα(1+(σ−1)(γ−1)) =
vL(α) + 3h.

To determine another refined break we quote directly from [2], keep-
ing in mind the two notational differences mentioned in §4.1. First we
restrict our attention to the particular α ∈ L defined in the proof of
[2, Prop 2.1]. Note that it satisfies vL(α) = h. Use [2, Prop 2.1] to find
that vL((γ + 1 + ω(σ + 1))α) = vL(α) + min{4e0 − h, 3h − 2t, 2h}. Since
min{4e0 − h, 3h − 2t, 2h} < 4e0 = vL(2), we find that vL((γσ[ω] − 1)α) =
vL((γ−σ[−ω])α) = vL((γ−1+ω(σ−1))α) = vL(α)+min{4e0−h, 3h−2t, 2h}.
Now we extend this to all α′ ∈ L with vL(α′) ≡ h mod 4. Let Lσ denote the
fixed field of σ. Then α′ can be expressed as α′ = mα+n for somem,n ∈ Lσ

with vL(α′) = vL(mα) < vL(n). Note that (γσ[ω]− 1)α′ = m(γσ[ω]− 1)α+
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(γ − 1)m · γσ[ω]α+ (γ − 1)n where vL((γ − 1)m · γσ[ω]α) > vL(α) + 2h and
vL((γ − 1)n) ≥ vL(n) + 2h. Therefore vL((γσ[ω] − 1)α′) = min{4e0 − h,

3h − 2t, 2h} + vL(α′). Thus wα′(γσ[ω̄]) = vL(α′) + min{4e0 − h,
3h− 2t, 2h}. �

Proposition 4.3 (Two Congruent Hilbert Breaks). Let L/K be a fully
ramified biquadratic extension with two Hilbert breaks, h1 < h2 and h1 ≡
h2 mod 4. Regardless of α ∈ Nmax, the first two breaks are r1 = h1, r2 = h2,
and if f > 1 there is a third refined break r3 = h2 + 2h1.

Proof. Adopt the notation of §4.2. So 〈σ, γ〉 = G = Gh1 , and 〈σ〉 = G =
Gh2 . Since h2 < 4e0 and vL(α) is odd, wα(γ) = vL(α) + h1 and wα(σ) =
vL(α) +h2. If f = 1 there are only these two refined breaks. If f > 1, then
1 + (σ − 1)(γ − 1) ∈ GF . It is easy to check, since (σ + 1)α ∈ Lσ, that
vL((γ − 1)(σ+ 1)α) = vL(α) + h2 + 2h1. Now follow the argument in Prop
4.2 to determine that wα(1 + (σ − 1)(γ − 1)) = vL(α) + h2 + 2h1. �

4.4. On refined filtrations in Case (3). We turn to the case of two
incongruent Hilbert Breaks. Using [4, Lem 3.22], one finds that there are
elements α ∈ L with vL(α) = hmax and (σ−1)(γ+1)α = 0. So Nmax 6⊂ Nb.
And as the following example illustrates, neither will Nmax ∩ Nb serve as
the ‘canonical’ set of §3.2.

Example. Recall the notation of §4.2: L = K(x, y) where x2 = 1+β ∈ K,
vK(β) = 2e0 − s is odd, 1 < s < 2e0, and y2 = πK . Assume that f > 1,
so 1 + (σ − 1)(γ − 1) ∈ GF . The two Hilbert breaks of L/K are h1 = s,
h2 = 4e0 − s. As in [4, Lem 3.22], there are α, ρ ∈ L such that (σ − 1)α =
(γ − 1)ρ = xy. Note that vL(α) ≡ −s mod 4 and vL(ρ) ≡ s mod 4. Clearly
(γ + 1)α ∈ K and 0 6= (σ + 1)ρ ∈ K. So E = (γ + 1)α/(σ + 1)ρ ∈ K.
First we show that if k ∈ K with k 6∈ {0, 1, E}, then α − kρ ∈ Nb. Let
A = α − kρ. We need to prove that if (r + sσ + tγ + uσγ)A = 0 for some
r, s, t, u ∈ K, then r + sσ + tγ + uσγ = 0. Apply (γ + 1)(σ − 1) to both
sides. Thus −k(r+ t− s−u)(γ+1)(σ− 1)ρ = 0. Since (γ− 1)(σ+1)ρ = 0
and (σγ − 1)ρ 6= 0, we find r + t − s − u = 0. Now apply (γ − 1)(σ + 1)
instead. This results in r + s − t − u = 0. Thus r = u and s = t. We
have reduced the equation to (r + sσ)(1 + σγ)A = 0. Apply (σ − 1) to
this new equation. The result is (1− k)(r − s)(1 + σγ)(σ − 1)ρ = 0. Since
k 6= 1 and (σ + 1)(γ − 1)ρ = 0, we find that r = s. The original equation,
(r + sσ + tγ + uσγ)A = 0, is now r(1 + σ)(1 + γ)A = 0. But this is the
same as r[2(γ + 1)α− 2k(σ+ 1)ρ] = 0. Since k 6= (γ + 1)α/(σ+ 1)ρ, r = 0.
Now if we furthermore assume vL(α) < vL(kρ), then

α− kρ ∈ Nmax ∩Nb.
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If we further restrict k, namely assume e0 - vK(k), then we can easily prove
that

wα+kρ(1 + (σ − 1)(γ − 1)) = 4vK(k) + 8e0 − s.

Note that (σ + 1)(γ + 1)A − 2(γ + 1)A = 2(γ + 1)kρ − 2(σ + 1)kρ. So
vL((σ+ 1)(γ+ 1)A− 2(γ+ 1)A) = vL(2(γ+ 1)kρ) ≡ 2s mod 4. We need to
examine vL((σ + 1)(γ + 1)A − 2(γ + 1)A + 2f(σ, γ)) for f(σ, γ) ∈ OT [G].
Express f(σ, γ) = r+s(σ+1)+ t(γ+1)+u(σ+1)(γ+1) for r, s, t, u ∈ OT .
Since vL(rA) ≡ −s mod 4 and vL(t(γ + 1)A) ≡ vL(u(σ + 1)(γ + 1)A) ≡
0 mod 4, the only way to increase valuation is if vL(2s(σ + 1)A =
vL(2(γ + 1)kρ), or vK(k) = vK(s). But since s ∈ OT , e0 | vK(s).

Remark (Two Incongruent Hilbert Breaks). As a result of the example
(and until a ‘canonical’ N? is determined), we can only determine the first
two refined breaks of fully ramified biquadratic extensions with two Hilbert
breaks, h1 < h2, and h1 6≡ h2 mod 4. If α ∈ Nc, the first two refined breaks
are r1 = h1, r2 = h2. If f > 1 there is a third refined break. Its value
depends upon choice of α ∈ L.

4.5. Galois structure in biquadratic extensions. Fortunately, for bi-
quadratic extensions the first two refined breaks are sufficient for additive
Galois structure.

Theorem 4.4. The Galois module structure of the ring of integers in a
biquadratic extension is determined by refined ramification invariants.

Proof. Compare the information in Propositions 4.2, 4.3 and the Remark
with the requirements of [4, Thm 3.6, 3.9] and [2, Thm 3.2]. �

4.6. Twists. Recall the question and example of [2, §4].

Question. Let V be a continuous Galois representation of Ḡ = Gal(K̄/K),
k be the kernel of V and let L be the fixed field of k. Associated with
V there is an integral representation (indeed a whole sequence of them)
given by the valuation ring OL (or by the sequence of ideals Pi

L – the
Galois structure of ideals). Suppose now that we twist V to obtain a new
representation V ′ with kernel k′ fixing L′, and that Ḡ/k ∼= Ḡ/k′. How are
these two associated integral representations of the (abstract) finite group
Ḡ/k and Ḡ/k′ related?

The following example suggests that when the twist is “weak” the inte-
gral representations, the Galois structure of ideals, associated to V and V ′

will be isomorphic.

Example. Let L1 = K(x, y) be a biquadratic extension of K with x2 =
1 + β, y2 = ω−2 + β where vK(β) = 2e0− h, 1 ≤ h < 2e0 is odd, and ω is a
nontrivial 2f − 1 root of unity. Therefore L1/K has one Hilbert break, h.
Let K(z) be a quadratic extension with z2 = 1 + τ , vK(τ) = 2e0 − t and
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0 ≤ t < 2e0 (if t 6= 0 then t is odd). Let χy, χxy, χz be quadratic characters
of Gal(K̄/K) with fixed fields K(y), K(xy) and K(z) respectively. Let
V1 be the 2-dimensional representation of Ḡ = Gal(K̄/K) with character
χy+χxy, kernel k1 and fixed field L1. Note that the kernel kz of Vz = V1⊗χz

has fixed field Lz = K(x, yz).
To be sure that Ḡ/k1

∼= Ḡ/kz, assume that K(y)/K and K(z)/K have
distinct Hilbert breaks, h 6= t. Using Proposition 4.2, and as in §4.1, making
repeated reference to [2, Thm 3.2], observe the following: If the twist is
‘weak’, the ramification number associated to the twist is small (namely
t < h/2 or t < 2h − 2e0), then the Hilbert breaks, the refined breaks
and the Galois structure of ideals are preserved by the twist (L1 and Lz

look the same). However, if we strengthen the twist (so h/2 < t < h and
2h − 2e0 < t < h) then ‘things begin to break down’: The refined breaks
and the Galois structure of ideals in Lz no longer agree with that in L1,
although the Hilbert breaks are preserved. And finally if we strengthen the
twist even further (so h < t), ‘everything breaks down’: there will be two
Hilbert breaks in Lz but only one in L1. And so the refined breaks and
Galois structure of ideals will also disagree.

Observation. Apparently, twists effect the Galois structure of ideals
through their effect on ramification filtrations (Hilbert and refined).

5. Questions

As mentioned in §1.3, this paper can be viewed as an attempt to under-
stand truncated exponentiation. This led to GF and its filtrations. One
would like to see GF generalized. However there are difficulties with ex-
tending the definition of GF to other abelian groups. There seem to be
prohibitive difficulties involved in extending the definition to nonabelian
p-groups. Could it be that GF is defined only in the context of elementary
abelian groups?

A number of other questions remain. Is the bound provided by Propo-
sition 2.4 tight? What is dimFq G

F in general? However the most pressing
question remains the one asked in §3.2: How should we choose α ∈ L so
that the refined ramification filtration is canonical? Naturally, we propose
to address the question by placing appropriate restrictions on α. But a
canonical filtration should provide interesting arithmetic information, and
so no answer will be complete until we understand the deeper question:
How and to what extent do refined ramification filtrations determine addi-
tive Galois structure?

References
[1] M. V. Bondarko, Links between associated additive Galois modules and computation of

H1 for local formal group modules. J. Number Theory 101 (2003), 74–104.



Ramification breaks 107

[2] N. P. Byott, G. G. Elder, Biquadratic extensions with one break. Can. Math. Bull. 45

(2002), 168–179.
[3] G. G. Elder, Galois module structure of integers in wildly ramified cyclic extensions of

degree p2. Ann. Inst. Fourier (Grenoble) 45 (1995), 625–647; errata ibid. 48 (1998), 609–610.

[4] G. G. Elder, Galois module structure of ambiguous ideals in biquadratic extensions. Can.
J. Math. 50 (1998), 1007–1047.

[5] G. G. Elder, On the Galois structure of the integers in cyclic extensions of local number
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