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On the Euclidean minimum of some real

number fields

par Eva BAYER-FLUCKIGER et Gabriele NEBE

Résumé. Le but de cet article est de donner des bornes pour le
minimum euclidien des corps quadratiques réels et des corps cyclo-
tomiques réels dont le conducteur est une puissance d’un nombre
premier.

Abstract. General methods from [3] are applied to give good
upper bounds on the Euclidean minimum of real quadratic fields
and totally real cyclotomic fields of prime power discriminant.

1. Introduction

Throughout the paper let K be a number field of degree n = [K : Q], OK

its ring of integers, and denote by DK the absolute value of the discriminant
of K. Then the Euclidean minimum of K is

M(K) := inf{µ ∈ R>0 | ∀x ∈ K ∃y ∈ OK such that |Norm(x− y)| ≤ µ}.
If M(K) < 1 then OK is a Euclidean ring (with respect to the absolute
value of the norm).

It is conjectured that

M(K) ≤ 2−n
√

DK

for totally real number fields K of degree n. This conjecture follows from
a conjecture in the geometry of numbers that is usually attributed to
Minkowski (see [7, Chapter 7 (xvi)]) and which is proven to be true for
n ≤ 6 (see [10]).

If K is not an imaginary quadratic field, then there is no efficient general
method to calculate M(K). In this paper we use the general upper bounds
for M(K) given in [3] in terms of the covering properties of ideal lattices (see
Theorem 2.1) to calculate good upper bounds for M(K) for real quadratic
fields (Section 3) and for the maximal totally real subfields of cyclotomic
fields of prime power discriminant (Section 4). The last section deals with
thin totally real fields, which are those fields K for which the bounds in
Theorem 2.1 allow to show that M(K) < 1.

Manuscrit reçu le 12 février 2004.
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2. Generalities

2.1. Ideal lattices. This section gives a short introduction into the notion
of ideal lattices. More detailed expositions can be found in [1], [2], and [3].

Let K be a number field of degree n = r1 + 2r2 over Q and denote by

KR := K ⊗Q R ∼= Rr1 ⊕Cr2 .

Note that field automorphisms of K extend uniquely to R-linear ring auto-
morphism of KR. Moreover KR has a canonical involution which is the
identity on Rr1 and complex conjugation on Cr2 . This involution does not
necessarily preserve K. Let

P := {α ∈ KR | α = α and all components of α are positive }.

Then the real valued positive definite symmetric bilinear forms q on KR

that satisfy q(x, λy) = q(λx, y) for all x, y, λ ∈ KR are of the form

T (α) : KR ×KR → R, (x, y) 7→ Trace(αxy)

with α ∈ P where Trace(x1, . . . , xn) =
∑r1

i=1 xi +
∑r1+r2

j=r1+1 xj + xj denotes
the regular trace of the R-algebra KR.

Definition. Let OK denote the ring of integers in the number field K. A
generalized OK-ideal I is an OK-submodule I ⊂ KR of K-rank 1 in KR.
An ideal lattice (I, T (α)) is a generalized OK-ideal in KR together with a
positive definite symmetric bilinear form T (α) for some α ∈ P.

It is easy to see that generalized OK-ideals I are of the form I = αJ for
some α ∈ KR and an ideal J in OK . Then we define the norm N(I) :=
Norm(α)N(J) where the norm of α ∈ KR is

Norm(α) :=
r1∏

i=1

|αi|R
r1+r2∏

j=r1+1

|αj |2C .

The inverse of I is I−1 := α−1J−1 and again a generalized OK-ideal.
The most important ideal lattices are provided by fractional ideals in K.

We are often interested in ideal lattices, where the underlying OK-module
I = OK is the ring of integers in K. We call such ideal lattices principal
ideal lattices.
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2.2. Covering thickness and packing density. With a lattice L in
Euclidean space (Rn, ( , )) one associates two sets of spheres: the associated
sphere packing and the sphere covering of Rn. The centers of the spheres
are in both cases the lattice points. For the sphere packing, one maximizes
the common radius of the spheres under the condition that they do not
overlap, for the covering, one minimizes the common radius of the spheres
such that they still cover the whole space (see [6, Chapter 1 and 2]).

Definition. Let L be a lattice in Euclidean space (Rn, ( , )).
(1) The minimum of L is

min(L) := min{(`, `) | 0 6= ` ∈ L}
the square of the minimal distance of two distinct points in L.

(2) The maximum of L is

max(L) := sup{min{(x− `, x− `) | ` ∈ L} | x ∈ Rn}
the square of the maximal distance of a point in Rn from L.

(3) The Hermite function of L is

γ(L) :=
min(L)

det(L)1/n
.

(4) The Hermite-like thickness of L is

τ(L) :=
max(L)

det(L)1/n
.

Note that min(L) is the square of twice the packing radius of L and
max(L) is the square of the covering radius of L. Therefore the density of
the associated sphere packing of L is

δ(L) = 2−nγ(L)n/2Vn,

where Vn is the volume of the n-dimensional unit ball and the thickness the
associated sphere packing of L is

θ(L) = τ(L)n/2Vn.

The functions τ and γ only depend on the similarity class of the lattice.
Motivated by the applications in information technology one tries to find

lattices that maximize γ and minimize τ . For our applications to number
fields, the minimal γ and minimal τ are of interest.

Definition. Let K be a number field and I be a generalized OK-ideal in
KR.

γmin(I) := min{γ((I, T (α))) | α ∈ P}
τmin(I) := min{τ((I, T (α))) | α ∈ P}
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For I = OK one gets

Proposition 2.1. (see [3, Prop. 4.1 and 4.2]) Let K be a number field of
degree n and denote the absolute value of the discriminant of K by DK .
Then for all generalized OK-ideals I in KR

γmin(I) ≥ n
n
√

DK
with equality for I = OK

and

τmin(I) ≤ n n
√

DK .

2.3. The Euclidean minimum. The Euclidean minimum of a number
field K is a way to measure how far is K from having a Euclidean algorithm.
A very nice survey on Euclidean number fields is given in [9].

Definition. Let K be an algebraic number field and OK be its ring of
integers. The Euclidean minimum of K is

M(K) := inf{µ ∈ R>0 | ∀x ∈ K ∃y ∈ OK such that |Norm(x− y)| ≤ µ}.

More general, let I be a generalized ideal in KR. Then we define

M(I) := inf{µ ∈ R>0 | ∀x ∈ KR ∃y ∈ I such that |Norm(x− y)| ≤ µ}.

Note that M(K) ≤ M(OK).
In [3] it is shown that

Theorem 2.1.

M(I) ≤
( τmin(I)
γmin(OK)

)n/2
N(I)

for all number fields K with [K : Q] = n.

In particular

M(K) ≤
(τmin(OK)

n

)n/2√
DK .

Together with Proposition 2.1 this implies that

M(K) ≤ DK

for all number fields K. Moreover M(K) ≤ 2−n
√

DK if K has a principal
ideal lattice of thickness smaller than the thickness of the standard lattice.

The purpose of the paper is to use Theorem 2.1 to get good upper bounds
on τmin(OK) for certain number fields K. The next section treats real
quadratic fields and in Section 4 we deal with the maximal real subfields
of cyclotomic fields of prime power discriminant.
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3. Real quadratic fields

This section treats real quadratic fields K = Q[
√

D]. Then for any
generalized OK-ideal I the similarity classes of ideal lattices (I, T (α)) with
α ∈ P form a one-parametric family in the space of all similarity classes of
two-dimensional lattices. The latter can be identified with H/ SL2(Z), the
upper half-plane

H := {x + iy ∈ C | y > 0}

modulo the action of SL2(Z).
We show that for any generalized OK-ideal I there is an α ∈ P such

that the lattice (I, T (α)) has a basis of minimal vectors. In particular
τmin(I) ≤ 1

2 which implies the Theorem of Minkowski that M(K) ≤ 1
4

√
DK

(see [4, Section XI.4.2]). In most of the cases we find better bounds.

3.1. Two-dimensional lattices. There is a well known identification of
the set of similarity classes of two-dimensional lattices and the quotient of
the upper half plane H modulo SL2(Z).

To explain this, we pass to the language of quadratic forms. Up to
rescaling we may assume that any positive definite two-dimensional qua-
dratic form is of the form

q(t1, t2) := wt21 + 2xt1t2 + t22 with w, x ∈ R, w > x2.

Then q is mapped to z = x + iy ∈ H := {z ∈ C | =(z) > 0} where y is the
positive solution of x2 + y2 = w.

The group SL2(R) acts on H by Möbius transformations A · z := az+b
cz+d

for all A :=
(

a b
c d

)
∈ SL2(R). It also acts on the positive definite quadratic

forms in two variables by variable substitution,

(A·q)(t1, t2) := q(at1+ct2, bt1+dt2) = (wc2+2xdc+d2)(w1t
2
1+2x1t1t2+t22)

for certain w1, x1 ∈ R. Then the mapping above is a similarity of SL2(R)-
sets.

Any proper similarity class of two-dimensional lattices corresponds to a
unique SL2(Z)-orbit of similarity classes of quadratic forms in two variables
and hence to an element in H/ SL2(Z).

3.2. Real quadratic ideal lattices. Let K = Q[
√

D] be a real quadratic
field, with D ∈ N, square-free. Let OK be the ring of integers in K and ε a
fundamental unit in OK . Fix the two different embeddings of σ1 and σ2 of
K into R. Then (σ1, σ2) : KR = K ⊗Q R → R⊕R is an isomorphism. As
above let P be the set of totally positive elements in KR. Then R>0 acts
on P by α · r := (α1r, α2r) for α = (α1, α2) ∈ P and r ∈ R>0. Every orbit
under this action contains a unique element α = (α1, α2) with Norm(α) =
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α1α2 = 1. Since α1 > 0, there is a unique t ∈ R with α1 = σ1(ε2)t. This
establishes a bijection

R → P/R>0, t 7→ (ε2)t(R>0).

Theorem 3.1. Let I ⊂ KR be a generalized OK-ideal. Then the set of
similarity classes of ideal lattices

SI := {[(I, T (α))] | α ∈ P}

corresponds to a closed geodesics on H/ SL2(Z).

Proof. Let B := (b1, b2) be a Z-basis of I. With respect to this basis B, the
action of ε2 on I corresponds to right multiplication with a unique matrix
A ∈ SL2(Z).

Let W ∈ SL2(R) such that WAW−1 = diag(s1, s2) where s1 and s2 =
s−1
1 are the eigenvalues of A.
The forms T (α) with α ∈ P are precisely the forms for which ε2 is self-

adjoint. Therefore the two eigenvectors of A are orthogonal with respect
to any of the forms T (α). Hence in this basis, the set SI is identified with
the geodesics {is | s > 0} ⊂ H. Since SL2(R) acts as isometries on the
hyperbolic plane H, W−1 maps this geodesics to some other geodesics G in
H that corresponds under the identification above to the set SI with respect
to the basis B. Since A ∈ SL2(Z) induces an isometry between (I, T (α))
and (I, T (αε4)), the image of G in H/ SL2(Z) is a closed geodesics that
corresponds to the ideal lattices in SI . �

The theorem (together with the two examples above) yields a method to
calculate τmin(OK) for real quadratic fields K, by calculating the image of
the geodesics G in the fundamental domain

X := {z ∈ H | |Re(z)| ≤ 1
2
, |z| ≥ 1}

of the action of SL2(Z) on H. For x + iy ∈ X one has

τ(x + iy) =
1
4

(x2 + y2)((|x| − 1)2 + y2)
y3

where, of course, τ(x+iy) is the Hermite-like thickness of the corresponding
two-dimensional lattice.

For D = 19, the image of the geodesics G in X/〈 diag(-1,1) 〉 drawn with
MAPLE looks as follows:



Euclidean minimum of real number fields 443

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5

x

The next lemma is certainly well known. Since we did not find a precise
reference, however, we include a short elementary proof for the reader’s
convenience.

Lemma 3.1. Every geodesics in H/ SL2(Z) meets the geodesic segment
E := (−1+i

√
3

2 , 1+i
√

3
2 ).

Proof. As usual let T := ( 1 1
0 1 ) ∈ SL2(Z). The orbit C := 〈T 〉E is a contin-

uous curve in H separating the fundamental domain X and the real axis.
The geodesics in H are half-circles perpendicular to the real axis. Let G be
such a geodesics. Up to the action of SL2(Z) we may assume that G meets
X in some point. Since G also meets the real axis, it passes through C and
hence an image of G under 〈T 〉 meets the geodesic segment E. �

Corollary 3.1. Let I be a generalized OK-ideal. Then there is an α ∈ P
such that the lattice (I, T (α)) has a Z-basis of minimal vectors.

Corollary 3.2. Let I be a generalized OK-ideal. Then M(I)≤ 1
4

√
DKN(I).

In particular

M(K) ≤ 1
4

√
DK (Minkowski, see [4]).

For the special case I = OK , it seems to be worthwhile to perform some
explicit calculations:

Example. Let OK = Z[
√

D]. Then B := (
√

D, 1) is a Z-basis of OK and
the matrix of ε2 =: a + b

√
D with respect to this basis is A :=

(
a bD
b a

)
. The

matrix W can be chosen as

W :=
1√

2
√

D

(
1

√
D

−1
√

D

)
.
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Then the geodesics {is | s > 0} is mapped under W−1 to the geodesics G

which is the upper half circle with center 0 meeting the real axis in
√

D
and −

√
D. The trace bilinear form T (1) corresponds to i in the basis of

eigenvectors of A (since the two eigenvectors are Galois conjugate) which
is mapped to i

√
D ∈ G under W−1.

To calculate an intersection of G and the geodesic segment E of Lemma
3.1 let t′ := b

√
Dc. If t′2 + t′ + 1 ≥ D then let t := t′ and if t′2 + t′ + 1 < D

then let t := t′ + 1. Let α := 1 + D+t2−1
2tD

√
D ∈ K. With respect to the new

basis B′ := (
√

D − t, 1) the Gram matrix of T (α) is(
2 x
x 2

)
where x =

D − t2 − 1
t

∈ [−1, 1]

by the choice of t. The thickness of the corresponding ideal lattice

τ(OK , T (α)) =
2t2

(2t + |D − t2 − 1|)(4t2 − (D − t2 − 1)2)1/2
≤ 1

2

with equality if and only if D = t2 + 1.

Example. Let OK = Z[1+
√

D
2 ]. Then B := (1+

√
D

2 , 1) is a Z-basis of
OK and the matrix of ε2 =: a + b

√
D with respect to this basis is A :=(

a+b b D−1
2

2b a−b

)
. The matrix W can be chosen as

W :=
1

4
√

D

(
1

√
D−1
2

−1
√

D+1
2

)
.

Then the geodesics {is | s > 0} is mapped under W−1 to the geodesics
G which is the upper half circle meeting the real axis in (1 −

√
D)/2 and

(1 +
√

D)/2. The trace bilinear form T (1) corresponds to i in the basis of
eigenvectors of A (since the two eigenvectors are Galois conjugate) which
is mapped to 1

2 + i
√

D
2 ∈ G under W−1.

As in the previous example we calculate an intersection of G and the
geodesic segment E of Lemma 3.1. Let t′ := b1+

√
D

2 c. Then

t′2 − t′ <
D − 1

4
< t′2 + t′.

For D = 5 let t := 0, otherwise let t :=
{

t′ if t′2 ≥ D−1
4

t′ + 1 if t′2 < D−1
4

and put

α := 1 +
D+1

2 + 2t2 − 2t− 2
D(2t− 1)

√
D ∈ K.
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With respect to the new basis B′ := (1+
√

D
2 −t, 1) the Gram matrix of T (α)

is (
2 x
x 2

)
where x =

D − (2t− 1)2 − 4
2(2t− 1)

∈ [−1, 1]

by the choice of t. With s := 2t − 1, the thickness of the corresponding
ideal lattice

τ(OK , T (α)) =
8s2

(4s + |D − s2 − 4|)(16s2 − (D − s2 − 4)2)1/2
≤ 1

2

with equality if and only if D = s2 + 4.

These explicit upper bounds on τmin(OK) yield the following corollary:

Corollary 3.3. Assume that DK 6= 4(t2 + 1) and DK 6= (2t− 1)2 + 4 (for
all t ∈ N). Then M(K) < 1

4

√
DK . In particular this is true if OK does

not contain a unit of norm −1.

3.3. Special lattices in real quadratic fields. In view of the results
in the last subsection, it is interesting to calculate all points, where the
geodesics G meets the geodesic segment E in H/ SL2(Z). This section
characterizes the real quadratic fields K that have the square lattice Z2 ↔
i ∈ E respectively the hexagonal lattice A2 ↔ 1+

√
3i

2 ∈ E as principal ideal
lattice.

Let K = Q[
√

DK ] be a real quadratic field of discriminant DK and let
OK be its ring of integers.

Theorem 3.2. The square lattice Z2 is a principal ideal lattice for K, if
and only if the fundamental unit of K has norm −1.

Proof. Let ε be a unit in K of norm −1. Then α = ± ε√
DK

is a totally
positive element in K and Lα := (OK , T (α)) is an integral lattice of deter-
minant 1 and dimension 2. Therefore Lα

∼= Z2.
On the other hand let Lα := (OK , T (α)) be a positive definite unimodular
lattice. Since L#

α = Lα one finds that ε := α
√

DK is a unit in OK . Since α
is totally positive, the norm of ε is −1. �

In view of Lemma 3.1 this gives a better bound for M(K) for those real
quadratic fields K where all units have norm 1:

It is well known that all real quadratic fields of prime discriminant DK =
p ≡ 1 (mod 4) have a fundamental unit of norm −1 (see e.g. [12, Exercise
6.3.4]). In general one can characterize the real quadratic fields that have
units of norm −1, though this characterization is algorithmically not very
helpful:

Remark. A real quadratic field K has a unit of norm −1 if and only if
K = Q[

√
D] for some (not necessarily square-free) D of the form t2 + 4. If
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fact, in this case the norm of t+
√

D
2 is −1. On the other hand any integral

element

u :=
a +

√
D

2
=

a + b
√

D/b2

2
=

a + b
√

DK

2
of norm −1 yields a decomposition D = a2 − 4.

There is a similar characterization of the fields that contain an element
of norm −3 (and of course other norms):

Remark. A real quadratic field K contains an integral element of norm
−3 if and only if there are b, t ∈ Z with

(?) b2DK = t2 + 12.

Then α = t+b
√

DK
2 is such an element of norm −3.

Similarly as above, one constructs a definite integral lattice

Lα := (OK , T (
α√
DK

))

of determinant 3. Up to isometry, there are two such positive definite
lattices, the hexagonal lattice A2 and Z⊕

√
3Z. The lattice A2 is the only

even lattice of determinant 3 and dimension 2. To characterize the fields
that have A2 as ideal lattice, it therefore remains to characterize those α
for which the lattice Lα above is even.

This is shown by an explicit calculation of the Gram matrix with respect
to an integral basis of OK . Note that

α√
DK

=
1

2DK
(t
√

DK + bDK).

If DK ≡ 1 (mod 4) then (1, 1+
√

DK
2 ) is a basis of OK for which the Gram

matrix of Lα is (
b (b + t)/2

(b + t)/2 1
4(b(1 + DK) + 2t)

)
Hence Lα is an even lattice, if and only if b, t ∈ 2Z and b ≡ t (mod 4)
(which is impossible in view of equation (?)).

If DK ≡ 0 (mod 4) then (1,
√

DK
2 ) is a basis of OK for which the Gram

matrix of Lα is (
b t/2

t/2 bDK/4

)
Hence Lα is an even lattice, if and only if b is even. Equation (?) then
shows that t is even and DK/4 ≡ 3 (mod 4).

Clearly the prime 3 has to be either decomposed or ramified in K. Sum-
marizing we get:
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Theorem 3.3. The hexagonal lattice A2 is a principal ideal lattice for the
real quadratic field K = Q[

√
DK ] if and only if 4 divides DK , DK/4 ≡ 3

or 7 (mod 12), and there is b ∈ 2Z with b2DK = t2 + 12.

Numerical examples:

DK/4 3 7 19 31 43 67 91 103 111 127
b/2 1 1 7 1 1 553 1 1669 1 13
t/2 3 5 61 11 13 9077 19 33877 21 293

Corollary 3.4. Assume that the real quadratic field K = Q[
√

DK ] satisfies
the condition of Theorem 3.3. Then

M(K) ≤
√

DK

3
√

3
< 0.2

√
DK .

4. Real cyclotomic fields of prime power discriminant

In this section we give a good upper bound on τmin(OK) where K =
Q(ζ + ζ−1) and ζ is a pa-th root of unity, for some prime p and a ∈ N. [3]
already shows that the standard lattice is a principal ideal lattice and hence
these fields satisfy Minkowski’s conjecture. For p > 2 the lattice (OK , T (1))
– the ring of integers of K with the usual trace bilinear form – has a much
smaller thickness than the standard lattice and the aim of this section is
to calculate this thickness. Since the lattice is invariant under the natural
permutation representation of the symmetric group Sn (n = [K : Q]) we
begin with a study of Sn-invariant lattices in the next subsection. Note
that these lattices are of Voronoi’s first kind and their Voronoi domain is
for instance also investigated in [5]. We thank Frank Vallentin for pointing
out this reference to us.

4.1. The thickness of certain Sn-lattices.

Theorem 4.1. Let n ∈ N, and b ∈ R with b > n. Let L = Lb,n be a lattice
in Rn with Gram matrix

A := bIn − Jn =


b− 1 −1 . . . −1

−1
. . . . . .

...
...

. . . . . . −1
−1 . . . −1 b− 1


where In is the n×n-identity matrix and Jn ∈ {1}n×n is the all-ones matrix.
Then L is a positive definite lattice of determinant

(b− n)bn−1.

Moreover the automorphism group of L contains

〈−In〉 × Sn,
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where the symmetric group Sn acts by permuting the coordinates.
For a subset J ⊆ {1, . . . , n} let vJ be the “characteristic vector”, i.e.

(vJ)i =
{

1 i ∈ J
0 i 6∈ J

.

Then the Dirichlet domain D centered in 0 with respect to the 2(2n−1)+1
vectors vJ , −vJ (where J ⊆ {1, . . . , n}) has circumradius R with

R2 =
n

12b
(3b2 + n2 − 3nb− 1).

In particular

max(L) ≤ n

12b
(3b2 + n2 − 3nb− 1).

Proof. Since In and Jn commute, they can be diagonalized simultaneously.
Therefore the eigenvalues of bIn − Jn are (b − n) (multiplicity 1) and b
(multiplicity (n−1)), from which one gets the positive definiteness of L and
the determinant. It is clear that 〈−In〉 × Sn acts on L as automorphisms.
It remains to calculate the Dirichlet domain D. By definition a vector
x = (x1, . . . , xn) belongs to D, if and only if

|b
∑
k∈J

xk − |J |
n∑

k=1

xk| ≤
b|J | − |J |2

2

for all ∅ 6= J ⊂ {1, . . . , n}. Modulo the action of Sn we may assume that

x1 ≥ x2 ≥ . . . ≥ x` ≥ 0 > x`+1 ≥ x`+2 ≥ . . . ≥ xn

for some ` ∈ {0, . . . , n}. Then x ∈ D ⇔

b

j∑
k=1

xk − j

n∑
k=1

xk ≤
bj − j2

2
, for j = 1, . . . , `

and

−b

j∑
k=1

xn−k+1 + j
n∑

k=1

xk ≤
bj − j2

2
, for j = 1, . . . , n− `.

We first show that D is bounded, i.e. that (x, x) is bounded for x ∈ D.
Then it is clear that the points of maximal norm in D are the vertices of D,
these are the elements of D, where at least n of the inequalities describing
D become equalities. Hence we may assume that all the inequalities above
are equalities, which determines the vertex x uniquely.

To show that D is bounded, we note that the `-th inequality above reads
as

(b− `)
∑̀
k=1

xk − `

n∑
k=`+1

xk ≤
b`− `2

2
.
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Since xk ≤ 0 for k ≥ ` + 1, this implies that

∑̀
k=1

xk ≤
`

2
.

Since all xk ≥ 0 for k ≤ `, one has 0 ≤ xk ≤ `
2 for k = 1, . . . , `. Similarly

one gets 0 ≤ −xk ≤ n−`
2 for k = ` + 1, . . . , n. Therefore the norm of x and

hence D is bounded.
Now assume that x is a vertex of D. Then

b

j∑
k=1

xk − j
n∑

k=1

xk =
bj − j2

2
, for j = 1, . . . , `

and

−b

j∑
k=1

xn−k+1 + j
n∑

k=1

xk =
bj − j2

2
, for j = 1, . . . , n− `.

The difference of the `-th and the last equality yields
n∑

k=1

xk =
2`− n

2

from which one now easily gets that

xk =
b + 2`− n + 1− 2k

2b
, for k = 1, . . . , `

and

−xn−k+1 =
b− 2` + n + 1− 2k

2b
, for k = 1, . . . , n− `.

Therefore one calculates

(x, x) = b

n∑
k=1

x2
k − (

n∑
k=1

xk)2 =
1

12b
(n3 − n + 3nb2 − 3n2b)

as claimed. �

Corollary 4.1. The Hermite-like thickness of the lattice Lb,n is

τ(Lb,n) ≤ τ(n, b) :=
R2

n
√

det(L)
=

n(3b2 + n2 − 3nb− 1)

12b(b− n)1/nb
n−1

n

.

For n ≥ 2 and b > n the function τ(n, b) attains its unique global minimum
for b = n + 1. Then the lattice Ln+1,n ∼ A#

n is similar to the dual lattice
of the root lattice An.
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4.2. Some real cyclotomic fields. One motivation to consider the lat-
tices Lb,n is that the trace form of the maximal real subfield of a cyclotomic
number field with prime power discriminant is the orthogonal sum of lat-
tices similar to Lb,n. Let Tp := pI(p−1)/2 − 2J(p−1)/2 such that 1

2Tp is the
Gram matrix of Lp/2,(p−1)/2 and let Up := pIp−1−Jp−1 be the Gram matrix
of Lp,p−1 ∼ A#

p−1. Then we get

Proposition 4.1. Let p be a prime, a ∈ N and let ζ := ζpa be a primitive
pa-th root of unity in C. Let K := Q[ζ + ζ−1] be the maximal real subfield
of the pa-th cyclotomic number field and OK := Z[ζ + ζ−1] be its ring of
integers.

a) If p > 2 is odd then the lattice (OK , T (1)) is isometric to a lattice
with Gram matrix

⊥
pa−1−1

2 pa−1Up ⊥ pa−1Tp.

b) If p = 2 then let α := 2 + ζ + ζ−1 ∈ OK . Then (OK , 21−aT (α)) is
isometric to the standard lattice Z2a−2

.

Proof. Let K̃ := Q[ζ]. Then the trace of ζi ∈ K̃ over Q is

Trace eK/Q
(ζi) =

 0 i 6≡ 0 (mod pa−1)
−pa−1 0 6= i ≡ 0 (mod pa−1)
pa−1(p− 1) i = 0

Let Θi := ζi + ζ−i ∈ OK (i = 1, . . . , pa−1(p− 1)/2).
a) Assume first that p is odd. Then Θ1 is a unit in OK , and hence the Θi

(i = 1, . . . , pa−1(p− 1)/2) form a Z-basis of OK . One calculates

Trace(ΘiΘj) =


0 if i 6≡ ±j (mod pa−1)
−pa−1 if i ≡ ±j 6≡ 0 (mod pa−1), i 6= j
(p− 1)pa−1 if i = j 6≡ 0 (mod pa−1),
−2pa−1 if i ≡ ±j ≡ 0 (mod pa−1), i 6= j
(p− 2)pa−1 if i = j ≡ 0 (mod pa−1),

where now Trace is the trace of K over Q. Hence with respect to T (1), OK

is the orthogonal sum of lattices Li

OK =⊥(pa−1−1)/2
i=1 Li ⊥ L0

where Li is spanned by the Θj with j ≡ ±i (mod pa−1) and has Gram
matrix pa−1Up for i > 0 and pa−1Tp for i = 0.
b) If p = 2 then (1,Θ1, . . . ,Θ2a−2−1) is a Z-basis of OK for which the Gram
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matrix of T (α) has the form

2a−1


1 1
1 2 1

1 2 1
1 2 1

. . . . . .


(only the non zero entries are given). This lattice is easily seen to be similar
to the standard lattice. �

Corollary 4.2. Let K be as in Proposition 4.1 and assume that p is odd.
Then

max(OK , T (1)) ≤ pa−2

24
(pa+2 − pa − 3p + 3).

Proof. The maxima max(Tp) and max(Up) of the lattices with Gram matrix
Tp respectively Up satisfy

max(Tp) ≤
p3 − 4p + 3

24p

and

max(Up) =
p2 − 1

12
.

If a = 1 then the claim follows immediately. If a ≥ 2, then

max(OK , T ) ≤ pa−1
(pa−1 − 1

2
p2 − 1

12
+

p3 − 4p + 3
24p

)
=

pa−2

24
(pa+2 − pa − 3p + 3).

�

Since

n := [K : Q] =
pa−1(p− 1)

2
we find with Proposition 2.1:

Corollary 4.3. Let K be as in Proposition 4.1. If p is odd then the Eu-
clidean minimum of K satisfies

M(K) ≤
(max(OK , T )

n

)n/2 ≤
(pa(p + 1)− 3

12p

)n/2 = zn
√

DK

where

z =
1

2
√

3

(pa+1 + pa − 3
p

)1/2
p−a/2p

1+p1−a

2(p−1) <
1

2
√

3
1.6 <

1
2
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(where we assume a ≥ 2 if p = 3). The value of z tends to 1
2
√

3
(from

above) when p tends to infinity.
If p = 2 then

M(K) ≤
(τ(OK , T (α))

γmin(OK)
)n/2 = 2−n

√
DK .

5. Thin totally real fields.

In [3] a number field K is called thin, if τmin(OK) < γmin(OK). We call
K weakly thin, if τmin(OK) ≤ γmin(OK). By Theorem 2.1, thin fields are
Euclidean and it is usually also possible to show that weakly thin fields are
Euclidean.

Table 1: Candidates for totally real thin fields.

n b(n) DK K thin α

2 27 5 Q[
√

5] + 1

8 Q[
√

2] + 10 + 3
√

2

12 Q[
√

3] + 2 +
√

3

13 Q[
√

13] + 13 + 3
√

13

17 Q[
√

17] + 187 + 45
√

17

21 Q[
√

21] + 5 +
√

21

24 Q[
√

6] + 13 + 5
√

6

3 221.2 49 Q[ζ7 + ζ−1
7 ] + 1

81 Q[ζ9 + ζ−1
9 ] + 1

148 Q[x]/(x3 + x2 − 3x− 1) + 1− 18x̄ + 10x̄2

169 Q[x]/(x3 + x2 − 4x + 1) ?

4 2000 725 Q[x]/(x4 − x3 − 3x2 + x + 1) + 1
1125 Q[ζ15 + ζ−1

15 ] + 9− 4(ζ15 + ζ−1
15 )

1600 Q[
√

2,
√

5] ?
1957 Q[x]/(x4 − 4x2 − x + 1) ?
2000 Q[ζ20 + ζ−1

20 ] (+) 2− ζ20 − ζ−1
20

5 19187.6 14641 Q[ζ11 + ζ−1
11 ] + 1

The first column lists the degree, followed by the bound b(n) (rounded
to the first decimal place for n = 3 and n = 5). Then we list all totally real
fields K of degree n and DK smaller this bound. A + in the second last
column indicates that K is thin, a (+) says that K is weakly thin and a ?
means that we don’t know whether K is thin or not. The last column gives
an α ∈ K such that τ(OK , T (α)) is smaller (respectively equal) to n

D
1/n
K

if K is thin (respectively weakly thin). Note that all fields in the Table 1
are Euclidean (see e.g. [11]). For degrees > 2 we do not have a general
algorithm to calculate τmin(OK) for a given number field K.

Theorem 5.1. All totally real weakly thin fields are listed in Table 1.
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Proof. By [3, Proposition 10.4] there are only finitely many (weakly) thin
fields, since the general lower bounds on the Hermite-like thickness of an n-
dimensional lattice (see [6]) give an upper bound on D

1/n
K for a thin field K.

In particular all thin totally real fields have degree n ≤ 5 (see [3, Proposition
10.4]). The thinnest lattice coverings are known up to dimension n ≤ 5 ([6,
Section 2.1.3]) and provided by the dual lattice A#

n of the root lattice An

with
τ(A#

n ) =
n(n + 2)

12(n + 1)(n−1)/n
.

This gives the bound

DK ≤
( n

τ(A#
n )

)n = 12n (n + 1)n−1

(n + 2)n
=: b(n).

Together with the list of fields of small discriminant in [8] this implies that
the totally real thin fields are among the ones listed in Table 1. �

It is an interesting question to find good lower bounds for τmin(OK) other
than the general bounds for lattices.

Note added in proof: In the meantime Mathieu Dutour, Achill Schür-
mann and Frank Vallentin [13] have shown that the three remaining can-
didates for thin fields marked with a question mark in Table 1 are not
thin.
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[13] M. Dutour, A. Schürmann, F. Vallentin, A Generalization of Voronoi’s Reduction The-

ory and Applications, (preprint 2005).



454 Eva Bayer-Fluckiger, Gabriele Nebe

Eva Bayer-Fluckiger
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