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On some remarkable properties of the

two-dimensional Hammersley point set in base 2

par Peter KRITZER

Résumé. Nous examinons une classe spéciale de (0,m, 2)-réseaux
en base 2. Particulièrement, nous nous occupons du réseau de
Hammersley en deux dimensions qui joue un rôle spécial parmi ce
type de réseaux, puisque nous démontrons que c’est le plus mal
distribué quant à la discrépance à l’origine. En le montrant, nous
améliorons un majorant connu pour la discrépance à l’origine de
(0,m, 2)-réseaux en base 2. De plus, nous démontrons qu’on peut
obtenir des réseaux avec une discrépance à l’origine très basse en
transformant le réseau de Hammersley d’une manière appropriée.

Abstract. We study a special class of (0,m, 2)-nets in base 2. In
particular, we are concerned with the two-dimensional Hammers-
ley net that plays a special role among these since we prove that
it is the worst distributed with respect to the star discrepancy.
By showing this, we also improve an existing upper bound for the
star discrepancy of digital (0,m, 2)-nets over Z2. Moreover, we
show that nets with very low star discrepancy can be obtained by
transforming the Hammersley point set in a suitable way.

1. Introduction

For a point set x0, . . . ,xN−1 in [0, 1)s the star discrepancy D∗
N is defined

by
D∗

N := sup
J

∣∣AN (J)N−1 − λ(J)
∣∣ ,

where the supremum is extended over all intervals J ⊆ [0, 1)s of the form
J =

∏s
j=1[0, αj), 0 < αj ≤ 1, AN (J) denotes the number of i with xi ∈ J ,

and λ is the Lebesgue measure.
The concept of (digital) (t, m, s)-nets provides an efficient method to

construct point sets with small star discrepancy. An extensive survey on
this topic is given by Niederreiter in [8] (other related monographs are, for
example, [3] and [6]). The general definition of a (t, m, s)-net can be found
in [8].
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Here, we study a special class of (t, m, s)-nets in base 2, so-called digital
(t, m, 2)-nets over Z2 (where Z2 is the finite field with two elements), which
are point sets consisting of N = 2m points x0, . . . ,xN−1 in [0, 1)2 generated
as follows. Choose two m × m-matrices C1, C2 over Z2 such that for all
integers d1, d2 ≥ 0 with d1 + d2 = m − t, the first d1 rows of C1 together
with the first d2 rows of C2 form a linearly independent set over Z2. For i ∈
{0, . . . , 2m−1} let i have base 2 representation i = i0+i12+· · ·+im−12m−1,
with ik ∈ Z2 for 0 ≤ k ≤ m− 1. For fixed i, multiply Cj , 1 ≤ j ≤ 2, by the
vector of digits of i, which gives

Cj · (i0, . . . , im−1)T =: (y(j)
1 , . . . , y(j)

m )T ∈ Zm
2 .

Let

x
(j)
i :=

m∑
k=1

y
(j)
k

2k

and define xi := (x(1)
i , x

(2)
i ). Then the point set {x0, . . . ,x2m−1} is a digital

(t, m, 2)-net over Z2 and the matrices C1, C2 are called the generating ma-
trices of the digital net. However, we do not restrict ourselves to studying
digital nets here, but we will make repeated use of the concept of digital
nets that are digitally shifted by m-bit vectors. These are constructed by
a slight variation in the net generating procedure outlined above: choose 2
vectors ~σ1, ~σ2 with

~σj = (σ(j)
1 , . . . , σ(j)

m )T ∈ Zm
2

and set, for each i ∈ {0, . . . , 2m − 1},

x
(j)
i :=

m∑
k=1

y
(j)
k ⊕ σ

(j)
k

2k

for 1 ≤ j ≤ 2, where ⊕ denotes addition modulo 2. Shifted digital (t, m, 2)-
nets are still (t, m, 2)-nets, however, in general they are no digital nets any
more, since they do not necessarily contain the origin. If we consider the set
of all digital (t, m, 2)-nets over Z2 that are digitally shifted by m-bit vectors
(these include ordinary digital (t, m, 2)-nets by choosing ~σ1 = ~σ2 = ~0), this
set corresponds to the set of all the (t, m, 2)-nets in base 2 that can be
constructed in a way proposed by Niederreiter in [8, p. 63] who defined
digital nets in a more general manner than we did here.

It was shown by Niederreiter (see, e. g., [8]) that for the star discrepancy
of any (t, m, 2)-net in base 2 (not necessarily digital) we have

2mD∗
2m ≤ 2t

⌊m− t

2
+

3
2

⌋
,

where bxc denotes the greatest integer less than or equal to x. In [7],
Larcher and Pillichshammer showed that, for any digital (0,m, 2)-net over
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Z2, the following upper bound on the star discrepancy holds:

2mD∗
2m ≤ m

3
+

19
9

.

It was also shown in [7] that the constant 1/3 in this bound is best possi-
ble, due to the following observation. The simplest example for a digital
(0,m, 2)-net over Z2 is the well-known Hammersley net H which is gener-
ated by the matrices

C1 =


1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 1

 , C2 =


0 . . . 0 1
... . . . . . . 0

0 . . . . . .
...

1 0 . . . 0

 .

The exact value of the star discrepancy of the Hammersley net over Z2 is
given in several articles (see, e.g., [1], [5], [7]). For m = 1 it is 0.75, and for
m ≥ 2 we have

2mD∗
2m(H) =

m

3
+

13
9
− (−1)m · 4

9 · 2m
.

It is—due to the upper bound of Larcher and Pillichshammer—clear that
the Hammersley net therefore is (in terms of the star discrepancy) the
worst distributed digital (0,m, 2)-net over Z2 with respect to the leading
term m/3. However, it still might be the case that there is a digital net
with its star discrepancy lying in the gap between the upper bound and
the star discrepancy of H. In this paper, we are going to show that this is
impossible and that H (without any shift) is the worst distributed net of all
the digital (0,m, 2)-nets over Z2 that are digitally shifted by m-bit vectors
concerning the star discrepancy—not only with respect to the leading term
but with respect to the precise value. By this result, the upper bound of
Larcher and Pillichshammer is further improved (Section 2).

In [7, Theorem 6], Larcher and Pillichshammer mention special digital
(0,m, 2)-nets over Z2 that have relatively low star discrepancy. Larcher and
Pillichshammer even conjecture that these are the best digital (0,m, 2)-nets
over Z2 with respect to the star discrepancy. In the same paper, the authors
also give lower bounds on the star discrepancy of this special class of nets,
namely

(1.1) 2mD∗
2m ≥ m/5.

In spite of the bad distribution properties of the unshifted Hammersley net,
certain shifts of the Hammersley net yield very well distributed (0,m, 2)-
nets (with respect to the star discrepancy). Shifts of the Hammersley point
set have already been examined by Halton and Zaremba [5], who showed
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that the star discrepancy of a special digital shift of H satisfies

(1.2) 2mD∗
2m = m/5 + O(1).

In [4], H. Faure improves (1.2) by giving a digital shift of the Hammersley
net such that

(1.3) 2mD∗
2m ≤ m/6 + O(m

1
2 ).

In Section 3 we give special shift vectors by which the star discrepancy of
the Hammersley net can be made very small, improving these results.

In [2], it is shown that for any digital (t, m, 2)-net over Z2 the following
generalization, which is also best possible in the leading term, of the upper
bound of Larcher and Pillichshammer holds.

(1.4) 2mD∗
2m ≤ 2t

(m− t

3
+

19
9

)
.

A by-product of the results in Section 3 will be the construction of (t, m, 2)-
nets with particularly low star discrepancy in comparison to this bound.

2. Upper Bounds for the Star Discrepancy of Shifted Digital
(0,m, 2)-Nets

In the beginning of this section, let us introduce some notation. For
given k, l ≥ 1, we denote by Ik×k the k × k-identity matrix and by 0k×l

the k × l-zero matrix. We denote by ⊕ addition modulo 2. If we use ⊕
with vectors, we mean componentwise addition modulo 2. For α ∈ [0, 1]
we say that α is m-bit if α is of the form α = α12−1 + · · · + αm2−m with
αi ∈ Z2 for 1 ≤ i ≤ m. We denote the vector of digits of α, (α1, . . . , αm)T ,
by ~α. Moreover, for 0 ≤ α, β ≤ 1, the discrepancy function ∆(α, β) of a
(t, m, 2)-net is defined by

∆(α, β) := A2m

(
[0, α)× [0, β)

)
− 2mαβ.

If we want to stress that we are dealing with a special (t, m, 2)-net P , we
might also write ∆(P, α, β) and A2m

(
P, [0, α) × [0, β)

)
respectively. It is

well known (see for example [7]) that the supremum in the definition of the
star discrepancy of a digital (0,m, 2)-net that is digitally shifted by m-bit
vectors can be replaced by a maximum over a finite set with an error of at
most 2/2m − 1/22m. We have

2mD∗
2m ≤ 2 + max

α,β
m−bit

|∆(α, β)| − 2−m.

We also have the following
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Lemma 2.1. The exact value of the star discrepancy of a (digitally shifted)
digital (0,m, 2)-net P over Z2 is given by

max

max
α,β

m−bit

∣∣∣∣∣AN

(
[0, α)× [0, β)

)
N

− αβ

∣∣∣∣∣ , max
α,β

m−bit

∣∣∣∣∣AN

(
[0, α]× [0, β]

)
N

− αβ

∣∣∣∣∣
 .

Proof. The result is easily verified by employing the fact that all the coor-
dinates of all the points of P are m-bit and that ∆(P, α, β) = 0 for α = 1
and β m-bit or β = 1 and α m-bit. �

Multiplying the generating matrices, C1, C2, of a digital (0,m, 2)-net by
the same regular m × m-matrix from the right does not change the point
set except for the order of the points. Thus, we can assume without loss of
generality that C1 = Im×m. Dealing with digital shifts of digital (0,m, 2)-
nets over Z2, it is sufficient to consider only shifts in the second coordinate,
since we have

Lemma 2.2. Let Y be a net that is obtained by digitally shifting a dig-
ital (0,m, 2)-net with generating matrices C1 = Im×m and C2 by vectors
~σ1, ~σ2 ∈ Zm

2 . Then Y can also be obtained by replacing the vectors ~σ1, ~σ2

by vectors ~τ1 = ~0 and ~τ2 = C2 · ~σ1 ⊕ ~σ2 ∈ Zm
2 .

Proof. For i ∈ {0, . . . , bm− 1} denote the vector of digits of i by~i. Observe
that{

(Im×m ·~i⊕ ~σ1, C2 ·~i⊕ ~σ2), 0 ≤ i ≤ bm − 1
}

=

=
{

(~i, C2 · (~i⊕ ~σ1)⊕ ~σ2), 0 ≤ i ≤ bm − 1
}

=

=
{

(Im×m ·~i, C2 ·~i⊕ C2 · ~σ1 ⊕ ~σ2), 0 ≤ i ≤ bm − 1
}

.

�

We are now ready to study digital shifts of a digital (0,m, 2)-net over Z2

and the star discrepancy of the nets obtained. By what has been outlined
above, it is no loss of generality to assume that the generating matrices
of the underlying digital net are C1 = Im×m and C2 = ((ci,j))m

i,j=1, and it
suffices to consider only shifts ~σ = (σ1, . . . , σm)T in the second coordinate.
Corresponding to the notation introduced in [7, Section 2], let for 1 ≤ u ≤
m− 1

C ′
2(u) :=

c1,m−u+1 . . . cu,m−u+1
...

...
...

c1,m . . . cu,m


−1

,

Moreover, for given m-bit α and β, let

~γ := C2 · ~α⊕ ~β, ~γ(u) := (γ1, . . . , γu)T , ~σ(u) := (σ1, . . . , σu)T .
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Further, let for 0 ≤ u ≤ m− 1

µ(u) :=

 0 if u = 0
0 if (~η(u)|C ′

2(u) · ~e1) = 1
f(u) else,

where f(u) = max{1 ≤ j ≤ u : (~η(u)|C ′
2(u) · ~ei) = 0; i = 1, . . . , j}, ~η(u) :=

~γ(u) ⊕ ~σ(u), and ~ei is the i-th unit vector in Zu
2 . We will make repeated

use of the following lemma.

Lemma 2.3. Let Y be a point set obtained by digitally shifting a dig-
ital (0,m, 2)-net over Z2 (with generating matrices C1 = Im×m, C2 =
((ci,j))m

i,j,=1) in the second coordinate by ~σ = (σ1, . . . , σm)T ∈ Zm
2 . For any

α and β m-bit, the discrepancy function satisfies

(2.1) ∆(Y, α, β) =
m−1∑
u=0

‖2uβ‖ (−1)σu+1g(u, α, β, ~η, C2),

where ~η := ~γ ⊕ ~σ, ‖.‖ denotes the distance to the nearest integer function,
and the function g satisfies |g(u, α, β, ~η, C2)| ≤ 1. In particular, if Y is a
digitally shifted version of the Hammersley net H, we have

(2.2) ∆(Y, α, β) =
m−1∑
u=0

‖2uβ‖ (−1)σu+1(αm−u ⊕ αm+1−(u−µ(u))),

where αi is the i-th digit of α, and where we set αm+1 := 0.

Proof. In the proof of Theorem 1 in [7] it is shown that for the discrepancy
function of an unshifted digital (0,m, 2)-net P over Z2 and m-bit α and β
we have

(2.3) ∆(P, α, β) =
m−1∑
u=0

‖2uβ‖ g(u, α, β,~γ, C2),

where the precise form of g(u, α, β,~γ, C2) is obtained by considering Walsh
functions of the coordinates of the points of P . These Walsh functions are
of the form walk(x) = (−1)(~k|~x), for an m-bit x ∈ [0, 1] and an integer k ∈
{0, . . . , 2m−1}, where ~k and ~x are the digit vectors of k and x, respectively,
and (·|·) denotes the usual inner product. Since for m-bit x, y ∈ [0, 1] we
have walk(x ⊕ y) = walk(x)walk(y) (where ⊕ denotes digitwise addition
modulo 2), it is, by following the proof of Theorem 1 in [7], no problem to
show the generalization of (2.3) to (2.1) for a digitally shifted digital net
Y .

If Y is the digitally shifted Hammersley point set, the special form of the
function g is derived in complete analogy with Example 2 in [7]. �
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Remark. Note that Lemma 2.3 implies

(2.4) |∆(Y, α, β)| ≤
m−1∑
u=0

‖2uβ‖

for any m-bit α, β and for any (0,m, 2)-net Y in base 2 that is obtained by
shifting a digital (0,m, 2)-net by m-bit vectors.

Before we state the main result of this section, we give some notation
and auxiliary results that will be needed in the proof.

Let m ≥ 0 be given. For 0 ≤ j ≤ m and 0 ≤ k ≤ 2j − 1 define

Mk,j := {k2m−j , . . . , (k + 1)2m−j − 1}.
It is obvious that for j ≥ 1 and even k

(2.5) Mk,j ∪Mk+1,j = M k
2
,j−1.

For short, we denote, for given k and j, the elements of Mk,j in increasing
order by

M
(1)
k,j < M

(2)
k,j < · · · < M

(2m−j)
k,j ,

i. e., M
(i)
k,j = k2m−j + i− 1 for 1 ≤ i ≤ 2m−j .

Lemma 2.4. Let a function V1 : {0, . . . , 2m − 1} → {0, . . . , 2m − 1} be
defined as follows. For i ∈ {0, . . . , 2m − 1}, i = i0 + i12 + · · ·+ im−12m−1,
let ~i = (i0, . . . , im−1)T be the digit vector of i. We define, for given ~σ =
(σ1, . . . , σm)T ∈ Zm

2 , V1(i) to be the number with the digit vector

(i0 ⊕ σm, . . . , im−1 ⊕ σ1)T .

Then V1 and T1 := V −1
1 are bijective and have the following additional

property. For given m ≥ 0, 0 ≤ j ≤ m, and 0 ≤ k ≤ 2j − 1,

V1(Mk,j) = Ml1,j , T1(Mk,j) = Ml2,j

with certain l1, l2 ∈ {0, . . . , 2j − 1}.

Proof. Any set Mk,j consists of all i with digit vectors ~i = (i0, . . . , im−1)T

where i0, . . . , im−j−1 can be chosen arbitrarily and im−j , . . . , im−1 are fixed.
From this the result follows easily. �

Lemma 2.5. Let

L =
(

A B
C D

)
be a regular m×m-matrix, where A is an (m− j)× (m− j)-matrix and D
is a j × j-matrix. Let

L−1 =
(

X Y
U V

)
,
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where X is an (m− j)× (m− j)-matrix and V is a j × j-matrix. Then

det Ldet V = detA and det Ldet X = detD.

Proof. The first assertion is shown in [9, Theorem 2.3] for complex matrices.
The generalization to matrices over arbitrary fields and the proof of the
second assertion are straightforward. �

Lemma 2.6. Let D1 = Im×m and D2 = ((di,j))m
i,j=1 be the generating

matrices of an arbitrary digital (0,m, 2)-net over Z2 and denote the row
vectors of D2 by ~d1, . . . , ~dm. Let V2 : {0, . . . , 2m−1} → {0, . . . , 2m−1} be the
following function. For i ∈ {0, . . . , 2m − 1}, denote by ~i = (i0, . . . , im−1)T

the digit vector of i. We define V2(i) to be the number with the digit vector(
(~dm|~i), . . . , (~d1|~i)

)T
.

Then T2 := V −1
2 is bijective, linear and, for given m ≥ 0, 0 ≤ j ≤ m, and

0 ≤ k ≤ 2j − 1,

T2(Mk,j) = {M (1)
l1,j ,M

(2)
l2,j , . . . ,M

(2m−j)
l
2m−j ,j}

for some l1, . . . , l2m−j ∈ {0, . . . , 2j − 1}.

Proof. Applying V2 to an i, ~i is transformed into

(
(~dm|~i), . . . , (~d1|~i)

)T =

~dm
...
~d1

 ·

 i0
...

im−1

 .

The matrix (~dm . . . ~d1)T is a flipped version of D2. By the regularity of D2

it is obvious that V2 and T2 are isomorphisms. Moreover, the matrix can
be written as

L :=

(
D

(1)
2 D

(2)
2

D
(3)
2 D

(4)
2

)
, where D

(4)
2 =

dj,m−j+1 . . . dj,m
...

...
...

d1,m−j+1 . . . d1,m

 .

Since D1 and D2 generate a digital (0,m, 2)-net, and D1 = Im×m, it follows
that D

(4)
2 is regular. This, however, by Lemma 2.5, means that the matrix

L−1 is such that

L−1 =
(

L(1) L(2)

L(3) L(4)

)
where L(1) is a regular (m− j)× (m− j)-matrix.

An arbitrary Mk,j consists of all i with digit vectors ~i = (i0, . . . , im−1)T

where i0, . . . , im−j−1 can be chosen arbitrarily and im−j , . . . , im−1 are fixed.
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Applying T2 to such an i means multiplying L−1 by~i. Since L(1) is regular,
it follows that the matrix (

L(1) L(2)
)

maps the i in Mk,j , where the first m−j components of~i run through Zm−j
2

and the rest is fixed, onto Zm−j
2 . This yields the result. �

Lemma 2.7. Let V : {0, . . . , 2m − 1} → {0, . . . , 2m − 1} be the function
defined by V := V1 ◦ V2, i.e. V (i) = V1(V2(i)), then V is bijective and for
T := V −1 = V −1

2 ◦ V −1
1 = T2 ◦ T1 it is true that

(2.6) T (Mk,j) = {M (1)
l1,j ,M

(2)
l2,j , . . . ,M

(2m−j)
l
2m−j ,j}

for certain li ∈ {0, . . . , 2j − 1}. Moreover, for j ≥ 1 and for even k,

T (Mk,j) ∪ T (Mk+1,j) = T (M k
2
,j−1) = {M (1)

l1,j−1,M
(2)
l2,j−1, . . . ,M

(2m−j+1)
l
2m−j+1 ,j−1}

for certain li ∈ {0, . . . , 2j−1 − 1}.

Proof. The first assertion follows immediately from Lemmas 2.4 and 2.6.
The second assertion follows from the first together with Equation (2.5). �

We are now ready to prove

Proposition 2.1. Let H = {x0, . . . ,x2m−1}, xi = (x(1)
i , x

(2)
i ) for 0 ≤ i ≤

2m−1, be the (0,m, 2)-Hammersley net over Z2 , generated by C1 and C2 as
given above. Let Y = {y0, . . . ,y2m−1}, yi = (y(1)

i , y
(2)
i ) for 0 ≤ i ≤ 2m − 1,

be the net that is obtained by shifting any fixed digital (0,m, 2)-net over Z2

in the second coordinate by an arbitrary vector ~σ = (σ1, . . . , σm)T ∈ Zm
2 .

Then, for all α, β m-bit, we have

AN

(
Y, [0, α]× [0, β]

)
≤ AN

(
H, [0, α]× [0, β]

)
.

where N = 2m.

Proof. Let α, β be m-bit. Define, for j ∈ {1, 2},

Hj := {i ∈ {0, . . . , 2m − 1} : x
(j)
i ≤ α},

Yj := {i ∈ {0, . . . , 2m − 1} : y
(j)
i ≤ α}

Then we have

AN

(
H, [0, α]× [0, β]

)
= |H1 ∩H2|, AN

(
Y, [0, α]× [0, β]

)
= |Y1 ∩ Y2|.

Let us now try to find out which i ∈ {0, . . . , 2m − 1} lie in H1 and H2.
Concerning H1, we first observe that, for i = i0 + i12 + · · ·+ im−12m−1,

x
(1)
i = i02−1 + i12−2 + · · ·+ im−12−m,
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Thus, i lies in H1 if and only if
m−1∑
j=0

im−1−j2j ≤ a,

where a = 2mα. Note that a ∈ {0, . . . , 2m − 1}. We can order the i ∈
{0, . . . , 2m − 1} according to the value of x

(1)
i , starting with x

(1)
i = 0 and

then increasing. This gives a sequence

i(0) = 0, i(1) = 2m−1, i(2) = 2m−2,

i(3) = 2m−2 + 2m−1, i(4) = 2m−3, i(5) = 2m−3 + 2m−1,

i(6) = 2m−3 + 2m−2, . . .

Due to the special form of the sequence, it is not difficult to see that, for
given j, the i(n) always hit the sets Mk,j (0 ≤ j ≤ m, 0 ≤ k ≤ 2j − 1)
defined above in a special order. The i(n) first hit M

(1)
0,j , then all M

(1)
k,j with

even k, and finally all M
(1)
k,j with odd k. Then, the same pattern repeats

itself for another index r, such that again M
(r)
0,j is hit before all M

(r)
k,j with

even k which are again hit before all M
(r)
k,j with odd k, etc. Thus,

(2.7) |H1 ∩M0,j | ≥
∣∣∣H1 ∩ {M (1)

k1,j , . . . ,M
(2m−j)
k
2m−j ,j}

∣∣∣
for k1, . . . , k2m−j ∈ {0, . . . , 2j − 1}, and

(2.8)
∣∣∣∣ ∣∣∣H1 ∩ {M (1)

k1,j , . . . ,M
(2m−j)
k
2m−j ,j}

∣∣∣− ∣∣∣H1 ∩ {M (1)
l1,j , . . . ,M

(2m−j)
l
2m−j ,j}

∣∣∣ ∣∣∣∣ ≤ 1

for any choice of k1, . . . , k2m−j , l1, . . . , l2m−j ∈ {0, . . . , 2j − 1}. To be more
precise, there can be at most one index r ∈ {1, . . . , 2m−j} such that∣∣∣H1 ∩ {M (r)

kr,j}
∣∣∣ 6= ∣∣∣H1 ∩ {M (r)

lr,j}
∣∣∣ .

Looking at H2, it is clear by the form of C2 that i ∈ H2 if and only if
m−1∑
j=0

ij2j ≤ b,

where b = 2mβ ∈ {0, . . . , 2m − 1}.
Let us now come to Y1, Y2. Y is a shifted digital net, where the digital

net is generated by two matrices, D1 and D2 = ((di,j))m
i,j=1. Again we can

assume D1 = Im×m, so D1 = C1 and Y1 = H1. On the other hand, by the
way a digital net is constructed and by the way a digital net is shifted, it
is easy to see that i = i0 + i12 + · · ·+ im−12m−1 lies in Y2 if and only if

(~d1|~i)⊕ σ1

2
+

(~d2|~i)⊕ σ2

22
+ · · ·+ (~dm|~i)⊕ σm

2m
≤ β.
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Here, ~d1, . . . , ~dm denote the row-vectors of the matrix D2. The latter con-
dition is equivalent to

m−1∑
j=0

(
(~dm−j |~i)⊕ σm−j

)
· 2j ≤ b.

Let now V, T : {0, . . . , 2m−1} → {0, . . . , 2m−1} be defined as in Lemma 2.7.
The condition on the i in Y2 means that i ∈ Y2 if and only if V (i) ∈ H2 which
is of course equivalent to i ∈ T (H2). So, T (H2) = Y2 and, consequently,
Y1 ∩ Y2 = H1 ∩ T (H2). The crucial step is to show that

|Y1 ∩ Y2| = |H1 ∩ T (H2)| ≤ |H1 ∩H2| .
Let p be maximal such that 2p is a divisor of b + 1, i.e., there is an integer
l such that l2p = b + 1. Then we can write H2 = {0, . . . , b} in the form

{0, . . . , 2p − 1} ∪ . . . ∪ {(l − 1)2p, . . . , l2p − 1} = M0,m−p ∪ . . . ∪Ml−1,m−p.

Note that l always satisfies l ≤ 2m−p. It is clear that

Y2 = T (H2) = T (M0,m−p∪. . .∪Ml−1,m−p) = T (M0,m−p)∪. . .∪T (Ml−1,m−p),

which results in

H1 ∩ T (H2) = H1 ∩
l−1⋃
k=0

T (Mk,m−p) =
l−1⋃
k=0

(
H1 ∩ T (Mk,m−p)

)
.

Since T is bijective and the Mk,m−p are pairwise disjoint it follows that

|H1 ∩ T (H2)| =
l−1∑
k=0

|H1 ∩ T (Mk,m−p)| =: B(l − 1,m− p).

On the other hand, however,

|H1 ∩H2| =
l−1∑
k=0

|H1 ∩Mk,m−p| =: A(l − 1,m− p).

We now show that, for any possible value of m− p,

B(l − 1,m− p) ≤ A(l − 1,m− p)

by induction on the number l of sets Mk,m−p involved. Note that l ≥ 2
cannot be even. Indeed, if this would be the case, it would follow that p
was not chosen maximal. For l = 1, T (M0,m−p) is, by (2.6), of the form

{M (1)
k1,m−p, . . . ,M

(2p)
k2p ,m−p}

for certain k1, . . . , k2p ∈ {0, . . . , 2m−p− 1}. Equation (2.7) then implies the
result for any admissible value of m− p.

We have to do the induction step from l to l + 2 ≤ 2m−p where l is odd.
Since l + 2 ≥ 3 is odd, it even follows that l + 2 ≤ 2m−p − 1. This also
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implies m − p ≥ 2 such that the sets Mk,m−p−1 and Mk,m−p−2 exist for
suitable k. We have to show that B(l + 1,m− p) ≤ A(l + 1,m− p).

We first consider A(l,m− p) and B(l,m− p). As l is odd, by (2.5),

A(l, m−p) = A
(
(l−1)/2,m−p−1

)
, B(l,m−p) = B

(
(l−1)/2,m−p−1

)
.

Suppose (l − 1)/2 is even. Then l̄ := (l − 1)/2 + 1 is odd and l̄ ≤ l since
l ≥ 1. Moreover, l̄ ≤ 2m−p−1. Since (l+2)2p = b+1 and l̄ is odd, it follows
that p + 1 is maximal such that l̄2p+1 = b + 1− 2p. By setting p̄ := p + 1,
the induction hypothesis yields

B
(
(l − 1)/2,m− p̄

)
≤ A

(
(l − 1)/2,m− p̄

)
.

If (l− 1)/2 is odd, we can again subtract 1 and divide by 2 and iterate the
procedure until we finally sum over k ∈ {0, . . . , ¯̄l} with even ¯̄l. Then again
¯̄l + 1 ≤ l. In any case, it follows by the induction hypothesis that

(2.9) B(l,m− p) = B
(
(l − 1)/2,m− p− 1

)
≤

≤ A
(
(l − 1)/2,m− p− 1

)
= A(l, m− p).

Suppose now that

B(l + 1,m− p) > A(l + 1,m− p).

Then, by Equation (2.9), and due to the fact that∣∣ |H1 ∩ T (Ml+1,m−p)| − |H1 ∩Ml+1,m−p|
∣∣ ≤ 1,

we must have
(2.10)
B(l,m−p) = B

(
(l−1)/2,m−p−1

)
= A

(
(l−1)/2,m−p−1

)
= A(l, m−p)

and
|H1 ∩ T (Ml+1,m−p)| > |H1 ∩Ml+1,m−p| .

Suppose that

(2.11)
∣∣∣H1 ∩ T (M l+1

2
,m−p−1)

∣∣∣ > ∣∣∣H1 ∩M l+1
2

,m−p−1

∣∣∣ .
Consider now A

(
(l+1)/2,m−p−1

)
and B

(
(l+1)/2,m−p−1

)
. For l = 1,

(l + 1)/2 = 1. Then, by (2.5),

A(1,m−p−1) = |H1 ∩M0,m−p−2| , B(1,m−p−1) = |H1 ∩ T (M0,m−p−2)| .

For l ≥ 3, (l + 1)/2 + 1 ≤ l, and we can proceed as in the derivation of
Equation (2.9). In both cases the induction hypothesis yields

B
(
(l + 1)/2,m− p− 1

)
≤ A

(
(l + 1)/2,m− p− 1

)
.

If, however, Equation (2.11) holds, it would follow that

B
(
(l − 1)/2,m− p− 1

)
< A

(
(l − 1)/2,m− p− 1

)
.
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This would be a contradiction to Equation (2.10). So, we must have

|H1 ∩ T (Ml+1,m−p)| > |H1 ∩Ml+1,m−p| .
and

(2.12)
∣∣∣H1 ∩ T (M l+1

2
,m−p−1)

∣∣∣ ≤ ∣∣∣H1 ∩M l+1
2

,m−p−1

∣∣∣ ,
Let

T (Ml+1,m−p) := {M (1)
s1,m−p, . . . ,M

(2p)
s2p ,m−p},

where s1, . . . , s2p ∈ {0, . . . , 2m−p − 1}. Let r be the index such that

(2.13)
∣∣∣H1 ∩ {M (r)

sr,m−p}
∣∣∣ > ∣∣∣H1 ∩ {M (r)

l+1,m−p}
∣∣∣ .

If sr was odd, we would have a contradiction since l + 1 is even and so
M

(r)
l+1,m−p must be hit by the sequence of the i(n) before M

(r)
sr,m−p. So sr

must be even. By Equation (2.12) we must have

|H1 ∩ T (Ml+2,m−p)| < |H1 ∩Ml+2,m−p| .
Let

T (Ml+2,m−p) := {M (1)
t1,m−p, . . . ,M

(2p)
t2p ,m−p},

where t1, . . . , t2p ∈ {0, . . . , 2m−p − 1}. Due to the way the sequence of the
i(n) hits the sets Mk,j and due to Equation (2.13), it follows that∣∣∣H1 ∩ {M (r)

tr,m−p}
∣∣∣ < ∣∣∣H1 ∩ {M (r)

l+2,m−p}
∣∣∣ .

Then, however, since l + 1 is even and l + 2 is odd, we would finally get
that∣∣∣H1 ∩ {M (r)

sr,m−p}
∣∣∣ > ∣∣∣H1 ∩ {M (r)

l+1,m−p}
∣∣∣ ≥

≥
∣∣∣H1 ∩ {M (r)

l+2,m−p}
∣∣∣ > ∣∣∣H1 ∩ {M (r)

tr,m−p}
∣∣∣ ,

and so ∣∣∣∣ ∣∣∣H1 ∩ {M (r)
sr,m−p}

∣∣∣− ∣∣∣H1 ∩ {M (r)
tr,m−p}

∣∣∣ ∣∣∣∣ ≥ 2.

This would be a contradiction since the sets involved have at most one
element. This yields the result. �

From Proposition 2.1 we deduce

Theorem 2.1. Let H = {x0, . . . ,x2m−1} be the (0,m, 2)-Hammersley net
over Z2, generated by C1 and C2 as given above. Let Y = {y0, . . . ,y2m−1}
be the net that is obtained by shifting a fixed digital (0,m, 2)-net over Z2

in the second coordinate by an arbitrary vector ~σ = (σ1, . . . , σm)T ∈ Zm
2 .

Then,

D∗
N (Y ) ≤ D∗

N (H) =
(

m

3
+

13
9
− (−1)m · 4

9 · 2m

)
2−m,
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where N = 2m. Moreover, this bound is sharp, and it is attained when Y
is the Hammersley point set.

Proof. For calculating the star discrepancy of Y it is sufficient to consider
only the intervals [0, α) × [0, β) and [0, α] × [0, β] with α, β m-bit (see
Lemma 2.1). By Equation (2.4),∣∣AN

(
Y, [0, α)× [0, β)

)
N−1 − αβ

∣∣ = |∆(Y, α, β)| · 1
N

≤ 1
N

·
m−1∑
u=0

‖2uβ‖ .

From [7] we get

1
N

·
m−1∑
u=0

‖2uβ‖ ≤ max
α,β m−bit

|∆(H,α, β)| · 1
N

≤ D∗
N (H),

so

(2.14)
∣∣AN

(
Y, [0, α)× [0, β)

)
N−1 − αβ

∣∣ ≤ D∗
N (H).

Let us now consider the intervals [0, α]× [0, β]. On the one hand, we clearly
have:

AN

(
Y, [0, α]× [0, β]

)
N−1 − αβ ≥ AN

(
Y, [0, α)× [0, β)

)
N−1 − αβ.

On the other hand, by Proposition 2.1,

(2.15) AN

(
Y, [0, α]× [0, β]

)
N−1 − αβ ≤ AN

(
H, [0, α]× [0, β]

)
N−1 − αβ.

The result now follows by Equation (2.14) and by observing that the
absolute value of the right hand side in Equation (2.15) is bounded by
D∗

N (H). �

Remark. Theorem 2.1 improves the bound on 2mD∗
2m of (unshifted) digital

(0,m, 2)-nets over Z2 by Larcher and Pillichshammer. Moreover, we have
found the worst among all digital (0,m, 2)-nets over Z2 that are shifted by
m-bit vectors with respect to the star discrepancy.

3. Digital Shifts of the Hammersley Net

Theorem 2.1 implies that any digital m-bit shift applied to H cannot
have negative effects on the star discrepancy. In fact it can be shown that
any digital shift different from ~0 of the Hammersley net results in a real
improvement of the star discrepancy.

Theorem 3.1. Let H be the (0,m, 2)-Hammersley net over Z2, and denote
by S the Hammersley net that is shifted by a shift vector ~σ ∈ Zm

2 \ {~0} in
the second coordinate. Then, for m ≥ 3, we have

D∗
N (S) < D∗

N (H),

where N = 2m.
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Proof. For m = 3, the result is easily verified numerically. For m ≥ 4 it
is, by Lemma 2.1, sufficient to consider only the intervals [0, α) × [0, β)
and [0, α] × [0, β] for m-bit α, β. Let us start with intervals of the form
[0, α)× [0, β). By using Equation (2.4) together with Theorem 2 in [7],

∣∣AN

(
S, [0, α)× [0, β)

)
−Nαβ

∣∣ ≤ m−1∑
u=0

‖2uβ‖ ≤ m

3
+

1
9
− (−1)m 1

9 · 2m

< ND∗
N (H).

Let us now turn to intervals of the form [0, α]× [0, β] with α and β m-bit.
By Proposition 2.1,

AN

(
S, [0, α]× [0, β]

)
−Nαβ ≤ AN

(
H, [0, α]× [0, β]

)
−Nαβ ≤ ND∗

N (H).

Suppose

AN

(
S, [0, α]× [0, β]

)
−Nαβ = ND∗

N (H).

This implies

AN

(
H, [0, α]× [0, β]

)
−Nαβ = ND∗

N (H).

In [7, Proof of Theorem 4b], the authors show that D∗
N (H) is always at-

tained for intervals of the form [0, α0 − 2−m]× [0, β0 − 2−m], where α0 and
β0 are m-bit, and they give the exact values of α0 and β0 for which ND∗

N
is attained (for the exact values of α0 and β0, see [7, Theorem 4b]). Thus,
α = α0 − 2−m, β = β0 − 2−m,

AN

(
H, [0, α]× [0, β]

)
−Nαβ = AN

(
H, [0, α0 − 2−m]× [0, β0 − 2−m]

)
−N(α0 − 2−m)(β0 − 2−m)

= ∆(H,α0, β0) + α0 + β0 − 2−m,

and

AN

(
S, [0, α]× [0, β]

)
−Nαβ = ∆

(
S, α0, β0

)
+ α0 + β0 − 2−m

for one of the pairs (α0, β0). This implies ∆(H,α0, β0) = ∆
(
S, α0, β0

)
. For

all possible choices, it can easily be verified that (α0, β0) is such that

∆(H,α0, β0) =
m−1∑
u=0

‖2uβ0‖ .

Moreover, β0 is such that ‖2uβ0‖ > 0 for all u ∈ {0, 1, . . . ,m−1}. However,
since ~σ 6= ~0, it then follows by Equation (2.2) in Lemma 2.3 that

∆
(
S, α0, β0

)
< ∆(H,α0, β0)
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and we have a contradiction. Therefore,

ND∗
N (H) > AN

(
S, [0, α]× [0, β]

)
−Nαβ

≥ AN

(
S, [0, α)× [0, β)

)
−Nαβ

> −ND∗
N (H)

and this yields the result. �

With Theorem 3.1, we know that non-trivial shifts of H yield an improve-
ment in the star discrepancy. For some special shifts, this improvement is
particularly remarkable, as the next theorem shows.

Theorem 3.2. Let m ≥ 6. Moreover, let

~σ = (1, 1, . . . , 1︸ ︷︷ ︸
k com−
ponents

, 0, 0, . . . , 0)T ,

where k = (m + 6)/2 if m is even, and k = (m + 5)/2 if m is odd. Let S
be the point set obtained by shifting the Hammersley point set by ~σ in the
second coordinate. Then

ND∗
N (S) ≤ m

6
+ c,

where N = 2m, with c = 7/6 if m is even and c = 4/3 if m is odd.

Proof. We show the result for even m. The result for odd m is obtained
similarly. Let m be even and let k := (m + 6)/2. By Equation (2.2) and
by Theorem 2 in [7], we easily find that, for α, β m-bit,

∆(S, α, β) ≥ −
k−1∑
u=0

‖2uβ‖ ≥ −
(k

3
+

1
9
− (−1)k

9 · 2k

)
.

Similarly, we have

∆(S, α, β) ≤
m−1∑
u=k

‖2uβ‖ =
m−k−1∑

u=0

∥∥∥2u+kβ
∥∥∥ ≤ m− k

3
+

1
9
− (−1)m−k

9 · 2m−k
.

Thus, it follows that

|∆(S, α, β)| ≤ max
{k

3
+

1
9
− (−1)k

9 · 2k
,
m− k

3
+

1
9
− (−1)m−k

9 · 2m−k

}
.

Since

∆(S, α, β) ≤ AN

(
S, [0, α]× [0, β]

)
−Nαβ ≤ ∆(S, α, β) + 2,

we find that

ND∗
N (S) ≤ max

{k

3
+

1
9
− (−1)k

9 · 2k
,
m− k

3
+

19
9
− (−1)m−k

9 · 2m−k

}
.
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However, it can easily be seen that

k

3
+

1
9
− (−1)k

9 · 2k
≤ m

6
+

10
9

+
1

1152
.

Similarly,
m− k

3
+

19
9
− (−1)m−k

9 · 2m−k
≤ m

6
+

10
9

+
1
18

.

The result follows. �

A slight drawback of the result in Theorem 3.2 is that it only holds
for m ≥ 6. By a little modification we can extend Theorem 3.2 to the
subsequent proposition which will then help to establish a result on (t, m, 2)-
nets.

Proposition 3.1. Let, for m ≥ 1, S be the point set that is obtained as
follows. First, shift H by the shift vector

~σ = (1, 1, . . . , 1︸ ︷︷ ︸
k com−
ponents

, 0, 0, . . . , 0)T ,

where k = m/2 if m is even and k = (m + 1)/2 if m is odd. Finally, add
2−m−1 to each coordinate of each point, i.e., the points are moved into the
middle of the squares induced by the mesh with resolution 2−m in [0, 1)2.
Then we have

ND∗
N (S) ≤ m

6
+ c,

where N = 2m and c is a constant lower than 4/3.

Proof. The proof is based on the same principle as the proof of Theorem 3.2.
Since the points of S are (m + 1)-bit, it is necessary to estimate the value
of ∆(S, α, β) for (m + 1)-bit numbers α and β. This is achieved by bound-
ing ∆(S, α, β) in terms of ∆(S, α′, β′) or ∆(S, α′′, β′′), where α′, β′ are the
largest m-bit numbers less than α and β, and α′′, β′′ are the smallest m-bit
numbers greater than α and β, respectively. This part of the proof is a mere
technicality which is dealt with by distinguishing different cases, according
to whether the (m + 1)-st digits of α and β are zero or not. The values
of ∆(S, α′, β′) and ∆(S, α′′, β′′) can then conveniently be estimated by the
same methods as in the proof of Theorem 3.2, since the number of points
of a shifted Hammersley point set in a half-open m-bit interval does not
change by moving the coordinates of the points by the quantity 2−m−1.

In a similar way, one obtains the desired bounds on the expression
|AN (S, [0, α]× [0, β])−Nαβ| for (m + 1)-bit α and β. �

Remark. Note that the nets obtained by the constructions in Theorem 3.2
and Proposition 3.1 are essentially better than Larcher’s and Pillichsham-
mer’s nets mentioned in the introduction (cf. Equation (1.1)), but they are
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no digital nets even though they are easily constructed from digital nets.
Moreover, the bounds on the star discrepancy in Theorem 3.2 and Propo-
sition 3.1 should be compared to the bounds in Equations (1.2) and (1.3).

From Proposition 3.1, we immediately get the following Theorem con-
cerning the construction of (t, m, 2)-nets with particularly low star discrep-
ancy (cf. Equation (1.4)).

Theorem 3.3. For any m ≥ 1, 0 ≤ t ≤ m, there exists a (t, m, 2)-net P
in base 2 that satisfies

2mD∗
2m(P ) ≤ 2t

(m− t

6
+ c
)
,

where c < 4/3.

Proof. The result follows by taking 2t copies of the (0,m−t, 2)-Hammersley
net, transforming them as outlined in Proposition 3.1, and applying a two-
dimensional version of Theorem 2.6 in Chapter 2 in [6]. �
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