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Dyadic diaphony of digital sequences

par FrRIEDRICH PILLICHSHAMMER

RESUME. La diaphonie diadique est une mesure quantitative pour
Iirrégularité de la distribution d’une suite dans le cube unitaire.
Dans cet article nous donnons des formules pour la diaphonie di-
adique des (0, s)-suites digitales sur Zs, s = 1,2. Ces formules
montrent que, pour s € {1,2} fixé, la diaphonie diadique a les
mémes valeurs pour chaque (0, s)-suite digitale. Pour s = 1, il
résulte que la diaphonie diadique et la diaphonie des (0, 1)-suites
digitales particulieres sont égales, en faisant abstraction d’une
constante. On détermine l'ordre asymptotique exact de la dia-
phonie diadique des (0, s)-suites digitales et on montre que pour
s = 1 elle satisfait un théoreme de la limite centrale.

ABSTRACT. The dyadic diaphony is a quantitative measure for
the irregularity of distribution of a sequence in the unit cube. In
this paper we give formulae for the dyadic diaphony of digital
(0, s)-sequences over Zg, s = 1,2. These formulae show that for
fixed s € {1,2}, the dyadic diaphony has the same values for
any digital (0, s)-sequence. For s = 1, it follows that the dyadic
diaphony and the diaphony of special digital (0, 1)-sequences are
up to a constant the same. We give the exact asymptotic order of
the dyadic diaphony of digital (0, s)-sequences and show that for
s =1 it satisfies a central limit theorem.

1. Introduction

The diaphony Fi (see [19] or [7, Definition 1.29] or [12, Exercise 5.27, p.
162]) of the first N elements of a sequence w = (xy,)n>0 in [0,1)% is given
by
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where for k = (ki,...,ks) € Z° it is p(k) = [[;_, max(1, |k;]) and (,-)
denotes the usual inner product in R®. It is well known that the diaphony
is a quantitative measure for the irregularity of distribution of the first N
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points of a sequence. In fact, a sequence w is uniformly distributed modulo
1 if and only if limy o0 Fy(w) = 0. Throughout this paper we will call the
diaphony the classical diaphony.

In [11] Hellekalek and Leeb introduced the notion of dyadic diaphony
which is similar to the classical diaphony but with the trigonometric func-
tions replaced by Walsh functions. Before we give the exact definition
of the dyadic diaphony recall that Walsh-functions in base 2 can be de-
fined as follows: for a non-negative integer k£ with base 2 representation
k= km2™ + -+ + K12 + ko and a real x with (canonical) base 2 repre-
sentation x = 5 + 53 + - the k-th Walsh function in base 2 is defined
as

Walk(x) = (_1)x1’i0+12ﬁl+"'+xm+lﬁm.
For dimension s > 2, x1,...,25 € [0,1) and kq,..., ks € Ny we define
S
waly, g (21, ..., 2) == H Walkj (x4).
j=1
For vectors k = (ki,...,ks) € Nj and © = (z1,...,2s) € R® we write
walg(x) = waly, g (21,...,2s).

Now we can give the definition of the dyadic diaphony (see Hellekalek
and Leeb [11]).

Definition. The dyadic diaphony F> y of the first IV elements of a sequence
w = (xn)n>0 in [0,1)% is defined by

1/2
1 1 1= ’
Fon(w) = | 57— > TR | N ) walg(z,) :
kENG n=0
k40
where for k = (ki1,...,ks) € N3 it is (k) = [];_; ¥ (k;) and for k € N,

1 ifk=0,
(k) :{ 2" if 2" < k < 2"t with r € Ny.

Throughout the paper we will write r(k) = r if r is the unique determined
integer such that 2" < k < 271

It is shown in [11, Theorem 3.1] that the dyadic diaphony is a quanti-
tative measure for the irregularity of distribution of the first N points of
a sequence: a sequence w is uniformly distributed modulo 1 if and only
if imy 00 Fo,n(w) = 0. Further it was shown in [5] that the dyadic di-
aphony is — up to a factor depending only on s — the worst-case error for
quasi-Monte Carlo integration of functions from a certain Hilbert space.

We consider the dyadic diaphony of a special class of sequences in [0,1)%,
namely of so-called digital (0, s)-sequences over Zg for s = 1,2. Digital



Dyadic diaphony of digital sequences 503

(0, s)-sequences or more generally digital (¢, s)-sequences were introduced
by Niederreiter [15, 16] and they provide at the moment the most efficient
method to generate sequences with excellent distribution properties. We
remark that a digital (0, s)-sequence over Zg only exists if s =1 or s = 2.
For higher dimensions s > 3 the concept of digital (¢, s)-sequence over Za
with ¢ > 0 has to be stressed (see [15] or [16]).

Before we give the definition of digital (0, s)-sequences we introduce some
notation: for a vector ¢ = (v1,72,...) € Z$° and for m € N we denote
the vector in Z5' consisting of the first m components of ¢ by &(m), i.e.,
ém) = (71,...,7vm). Further for an N x N matrix C over Zy and for m € N
we denote by C(m) the left upper m x m submatrix of C.

Definition. For s € {1,2}, choose s N x N matrices C,...,Cs over Zg
with the following property: for every m € N and every 0 < n < m the
vectors

e m),...,é0m), e m),....e  (m)

rm—n
are linearly independent in Z5'. Here 5;‘(] ) is the i-th row vector of the
matrix C;. (In particular for any m € N the matrix Cj(m) has full rank
over Zy for all j € {1,...,s}.)

For n > 0 let n = ng + n12 + n22% + - - - be the base 2 representation of
n. For j € {1,...,s} multiply the vector @i = (ng,n1,...) with the matrix
&

Gyt = (2h,(1),23,(2),.. )| € Z°
and set

Finally set x,, := (xg), e xq(f)).

Every sequence (x,)n>0 constructed in this way is called digital (0, s)-
sequence over Zg. The matrices C1, ..., Cy are called the generator matrices
of the sequence.

To guarantee that the points @, belong to [0,1)® (and not just to [0, 1]%)
and also for the analysis of the sequence we need the condition that for
eachn > 0 and 1 < j < s, we have 27,(i) = 0 for infinitely many 4. This
condition is always satisfied if we assume that for each 1 < j < sandr >0
we have CZ’T = 0 for all sufficiently large i, where C;T are the entries of the
matrix C;. Throughout this paper we assume that the generator matrices
fulfill this condition (see [16, p.72] where this condition is called (S6)).

For example if s = 1 and if we choose as generator matrix the N x N
identity matrix, then the resulting digital (0, 1)-sequence over Zs is the well
known van der Corput sequence in base 2. Hence the concept of digital
(0, 1)-sequences over Zs is a generalization of the construction principle of

the van der Corput sequence.
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Note that finite versions of digital sequences over Zs (so-called digital
nets, see [16]) have a nice group structure, namely they are isomorphic to
Cartesian products of the group Zs. The characters of these groups however
are exactly the Walsh functions as defined above. For more information we
refer to [13]. This is the reason why it is more convenient to consider
the dyadic diaphony of digital sequences over Zs instead of the classical
diaphony. Furthermore this fact was used in many papers for computing
different notions of discrepancies of digital point sets (see, for example,
(2, 3,4, 5,6, 14, 17]).

For the classical diaphony it was proved by Faure [8] that
2

9

(1) (NEx@)? ==Y |
u=1

if w is a digital (0, 1)-sequence over Zy whose generator matrix C' is a non-
singular upper triangular matrix. Faure (and we shall do so as well) called
these sequences NUT-sequences. Here || - || denotes the distance to the
nearest integer function, i.e., ||z| := min(x — |z|,1 — (z — [z])). See also
[1, 9, 10, 18] for further results concerning the classical diaphony of special
1-dimensional sequences.

The aim of this paper is to prove a similar formula for the dyadic di-
aphony of digital (0, s)-sequences over Zs for s € {1,2} (see Theorems
2.1 and 3.1). These formulae show that for fixed s the dyadic diaphony
is invariant for digital (0, s)-sequences over Zg. Further we find that the
dyadic diaphony and the classical diaphony of NUT-sequences (s = 1) only
differ by a multiplicative constant (Corollary 2.2). We obtain the exact
asymptotic order of the dyadic diaphony of digital (0, s)-sequences over
Zy (Corollaries 2.3 and 3.2). Moreover it follows from our formula that
the squared dyadic diaphony of digital (0, 1)-sequences over Zo satisfies a
central limit theorem (Corollary 2.4). For digital (0, 2)-sequences we will
obtain a similar, but weaker result (Corollary 3.3).

2. The results for s =1

First we give the formula for the dyadic diaphony of digital (0, 1)-sequen-
ces over Zs. This formula shows that the dyadic diaphony is invariant for
digital (0, 1)-sequences over Z,.

Theorem 2.1. Let w be a digital (0,1)-sequence over Zz. Then for any

N > 1 we have

N2
2u

(NFyn(w)>=3)"
u=1

We defer the proof of this formula to Section 4.
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Remark. In Theorem 2.1 we have an infinite sum for the dyadic diaphony
of a digital (0, 1)-sequence over Zg. This formula can easily be made com-
putable since for 1 < N < 2™ we have |[N/2"|| = N/2% for u > m + 1.

Therefore we have
2 . ﬁ 2
om ) -

m
(2) (NEon(w)?=3)
u=1
From Theorem 2.1 we find the surprising result that the classical di-
aphony and the dyadic diaphony of a NUT-sequence are essentially the
same.

N
2u

Corollary 2.2. Let w be a NUT-sequence over Zy. Then for any N > 1

we have
V3
Fanw) = —Fn(w).

Proof. This follows from Theorem 2.1 together with Faures formula (1). O

From (2) one can see immediately that the dyadic diaphony of a digital
(0, 1)-sequence over Zsg is of order Fy n(w) = O(y/log N/N). But we can
even be much more precise. From a thorough analysis of the sum in (2)
we obtain the exact dependence of the dyadic diaphony of digital (0, 1)-
sequences over Zs on /log N/N.

Corollary 2.3. Let w be a digital (0,1)-sequence over Zy. For N < 2™ we
have

4 2(=1)™ 1
NF 2oy 2 —
( 27N(w)) =3 + 3 9.9m g.92m
and )
. (NFQ N(w)) 1
1 : = .
1]1\[115;10p log N 3log2

The proof of this result will be given in Section 5. We just remark that
the result for the limsup follows also from a result of Chaix and Faure [1,
Théoréme 4.13] for the classical diaphony of the van der Corput sequence
together with Corollary 2.2 and Theorem 2.1.

In [6] it is shown that the star discrepancy and all L,-discrepancies of
the van der Corput sequence in base 2 satisfy a central limit theorem. The
same arguments as in the proof of [6, Theorem 2| can now be used to obtain
the subsequent result.

Corollary 2.4. Let w be a digital (0,1)-sequence over Zy. Then for every
real y we have

SV < (VE @) < o Ny Viom N | = 00)+o(0)
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where

1 Yy 2

denotes the normal distribution function and logy denotes the logarithm to
the base 2. Le., the squared dyadic diaphony of a digital (0,1)-sequence
over Zo satisfies a central limit theorem.

Remark. Together with Corollary 2.2 we also obtain a central limit theo-
rem for the square of the classical diaphony of NUT-sequences.

Proof. As already mentioned, the proof follows exactly the lines of the
proof of [6, Theorem 2]|. One only has to compute the expectation and the
variance of the random variable

m
Sm =Y 1 X2°|%,
w=1

where X is uniformly distributed on [0,1). By tedious but straightfor-
ward calculations we obtain ES,,, = m/12 and VarS,, = m/432 + 7(1 —
272m) /1620. O

3. The results for s = 2

We give the formula for the dyadic diaphony of digital (0,2)-sequences
over Zg which shows that the dyadic diaphony is invariant for digital (0, 2)-
sequences as well.

Theorem 3.1. Let w be a digital (0,2)-sequence over Zs. Then for any
N > 1 we have

9N
(NFQ,N(W)>2: ZZ u
u=1

We defer the proof of this formula to Section 4.

Remark. In Theorem 3.1 we have an infinite sum for the dyadic diaphony
of a digital (0,2)-sequence over Zs. Again this formula can easily be made
computable. For 1 < N < 2™ we have

9L ||IN|? N\24+3m
2—7 JR— PR—
(3) (NFon(w)) —4;:1: o “+<2m) 1

From (3) one can see immediately that the dyadic diaphony of a digital
(0,2)-sequence over Zg is of order F5 y(w) = O(log N/N). Also here we
obtain from a thorough analysis of the sum in (3) the exact dependence of
the dyadic diaphony of digital (0, 2)-sequences over Zg on log N/N.
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Corollary 3.2. Let w be a digital (0,2)-sequence over Zo. Then for any
N < 2™ we have

9 M ™™ 11 m
< 4y Ty T _
(NEey(w)? < T + =+ = +0 (57)
and
(NFy y(w))? 1

I o N2~ 8(log2)?”
The proof of this result will be given in Section 5. Following this proof
the O(m/2™)-term in the above bound can easily be made explicit.
Unfortunately we could not show that the squared dyadic diaphony of a
digital (0,2)-sequence over Zy satisfies a central limit theorem. However,
we were able to prove the following result.

Corollary 3.3. Let w be a digital (0,2)-sequence over Zo. Then for any
€ > 0 we have

1 3 NEnw)\? 3
lim —#{N<2™ 0 — — —_— o =1
mgnw2m#{ < 32 = < logy N <32+6

Proof. By tedious but straightforward calculations using Theorem 3.1 we
obtain

2m—1
S (NPon(w))? = %m2zm + O(m2™)
N=0
and
2m—1
4 dom 3om
];)(sz,]v(w)) = Togg™ 2" T Om2m).

From this the result immediately follows. [

4. The proofs of Theorems 2.1 and 3.1

For the proofs of Theorems 2.1 and 3.1 we need the subsequent lemma.
This result was implicitly proved in [6]. For the sake of completeness we
provide the short proof.

Lemma 4.1. Let the non-negative integer U have binary expansion U =
Uy+Ui2+ -4+ Up_12™ L. For any non-negative integer n < U — 1 let
n=ng+m2+ -+ nu_12""1 be the binary representation of n. For
0<p<m-—1letU(p) :=Up+---+Uy2P. Let by,bi,...,by—_1 be arbitrary
elements of Zs, not all zero. Then
U-1

E (_1)b0n0+”'+b7n—1n7n71 — (_1)bw+1Uw+1+"'+b7n71Um712w+1 U

2w+1

)

n=0
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where w is minimal such that b, = 1.

Proof. From splitting up the sum we obtain

U-1
Z(_l)bon0+---+bm—1nm—1
n=0
2w+1(Uw+1+"~+Um712m_w_2)—1
= Z (_1)”111(_1)bw+lnw+1+"'+bm—1nm71
n=0
U(w)—1
+ Z (_1)nw(—1)bw+1Uw+1+~-~+bm71Um—1
n=0
U(w)—1
_0_|_(_1>bw+1Uw+1+---+bm_1Um_1 Z (_1)nw
n=0
— (1)U ttbnoaUno LU @) if U(w) <2v,
vl —U(w) if U(w) > 2%,
U . U 1
— (_1)bw+1Uw+1+"'+bm71Um712w+1 % 2151-‘1—}1) lf 2u(,3_U1) < bR
g i S > L
= (_1)bw+1Uw+1+'“+bm—1Um—12w+1 gu(;fl) _

U(w)
2w+1

= H 21£]+1 H the result follows. [

Now we can give the

Proof of Theorem 2.1. Let 2" < k < 2"t!. Then k = kg + k12 + - - - + k.27
with k; € {0,1}, 0 < i < r and k. = 1. Let (-,-) denote the usual inner
product in Z3° and let ¢; € Z35° be the i-th row vector of the generator
matrix C of the digital (0, 1)-sequence (for short we write C' instead of C}
here). Since the i-th digit x, (i) of the point z,, i € N, n € Ny, is given by
(Ci, 1) (see Definition 1) we have

Since )

N-1 N-1
Z walg(z,) = Z (_1)ko<€1,ﬁ>+---+kr(a+1,ﬁ>
n=0 n=0
N-1
(4) = (—1) kot i)
n=0

Let C = (Ci7j)z‘,j21~ For ke N k=ky+ki24---+k2", k; € {0,1},
0 <i<randk, =1 define u(k) :==min{l > 1 : kocy;+---+krcrp1; = 1}.
Note that since C' generates a digital (0, 1)-sequence over Zs we obviously
have u(k) < r + 1. For fixed k, 2" < k < 27t let b = (bo,by,...)T :=
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koCi + -+ + kpCry1. Let N = No+ N2+ -+ Nm,12m_1. If u(k‘) < m we
obtain from (4) together with Lemma 4.1,

N-1 N-1 . N-1
Z waly,(z,) = (_1)<ban) — Z(_l)nobﬂ'f'""‘rnmflbm—l
n=0 n=0 n=0
N-1 N
_ 1\ uk) =1t — (1 NVu(r)bur) o gulk)
1) 1) 2| 21
n=

But if u(k) > m the above equality is trivially true. Therefore we have

o0

1 N |[\?
2 _ u(k)
2ANFN @) = ; 92r (k) <2 gu(k) >
00 2rtl_q 2
=S ¥ |5
922r 2u(k)
r=0 k=2r
o) r+1 22rtl 1
=D 52 2w 2t
r=0 u=1 k=2"
u(k)=u
0 2 0 ortl_q
=D | X = 2
u=1 r=u—1 k=2"
u(k)=u
2rtl_g
Now we have to evaluate the sum > 1 forr>wu—1and v > 1. This is
D
the number of vectors (ko,...,k-_1)' € Z} such that
0
ko :
. 0
(5) Ctr+1)" | - =1 /s
11{71"—1 Ty+1
Tr41
for arbitrary xy41,...,2y41 € Z2. (Recall that for an integer m > 1 we
denote by C(m) the left upper m x m submatrix of the matrix C, see

Section 1.)
We consider two cases:
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(i)
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Assume that r = u — 1. Then system (5) becomes

ko 0

Cir+1)" : |
(r+1) b 0
1 1

Since the (r + 1) x (r + 1) matrix C(r 4+ 1)T is regular over Zs it
is clear that there exists a vector k = (ko, ..., ky) € Z5*t such that
Cr+1)Tk = (0,...,0,1)T. Assume that k. = 0, then we have
C(r)"(koy...,kr—1)" = (0,...,0)". Again we know that C(r)" is
regular over Zs and therefore we obtain kg = --- = k,_; = 0. Hence
k= 6, the zero vector in Zg“. This is now a contradiction since k
is a solution of the system C(r+1)Tk = (0,...,0,1)T. Therefore we

have
2u_1

> o1=1

k=2u—1
u(k)=u

Assume that r > u. Since C(r) is regular over Zs it is clear that
D(r) := (C(r)T)~1 is regular over Zy. Hence for any vector k € Z;
there is a vector [ € Z4 such that k = D(r)l. Therefore system (5)
can be rewritten as

Cr+1)7 < D(f’)f> Y

Tyu+1

Tr41

with [ € Zy. Now we use the definition of the matrix D(r) and find
that the above system is equivalent to the system

0

1 0 0 0

0 1 0 0 o 0

001 ..... O _ 1 +€T+1(7,+1)T7
00 ...0 1 lr—1 Putl

dy dy ... d_y d, :

Tr41



Dyadic diaphony of digital sequences 511

where (dy,...,dy) = (¢1y41,...,Crr41)D(r). Now one can easily
see that for arbitrary xy41,...,z, there exists exactly one solution
[ = (loy .-, l,ﬂ_l)T € Zy such that the first r lines of the above system
are fulfilled. Further there is exactly one possible choice of x, 1 € Zo
such that this vector [ is a solution of the above system. Therefore

we obtain
artl_q

Z 1=29"

k=2"
u(k)=u

Now we have
o0
ANFn (@) =3
u=1
The result follows. [
Proof of Theorem 3.1. Let w = (x,,)n>0 be a digital (0,2)-sequence over Zs.
Let &, = (2n,yn) for n > 0. Clearly the sequences (x,)n>0 and (Yn)n>0
are digital (0, 1)-sequences over Zy. We have

Z walg ()

N

2u

2 1 [e’)
2 _
2u<22(u 1) +Zﬁ2r u) =6

2

(NFy n(w Z w

keNQ
k;éo

72227‘

1
+3 Z 92r(k)+2r(l)

’

+7Z22'r

N-1 2

Z walg (zn,)wal; (yn)

N-1 2

Z walg (x,, )wal;(yn)
n=0

[e.e]

1 1
8 Z 92r(k)+2r (1)
k=1

where for the last equality we used Theorem 2.1. We have to consider

(6)

Y

2u

2

00 1 N-1
Y= Z PR OEO) Z waly (zn,)wal; (yn)
k=1 =

Assume that 2" < k < 27Tl and 2t <1 < 2!+1. Then k = ko+k12+- - -+k,2"
with k; € {0,1}, 0 <i <rand k, =1 and | = lg + 112 + -+ + ;2" with
[;€{0,1},0<j <tandl; = 1. Let ¢; € Z$° be the i-th row vector of the
generator matrix C; and let J; € Z3° be the i-th row vector of the generator
matrix Cq, i € N. Since the i-th digit z,,(7) of x,, is given by (&, 7) and the
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i-th digit y, (i) of yy is given by (d;, i) (see Definition 1) we have

N-1 N-1
> waly(an)waly(yy) = ) (—1)f0(@m G il Ty,7i) 4o (o y1,7)
n=0

3
o

=2

(_1) <k0€1+"‘+k'r5r+l+l0(i1+"'+lt6fi+17T—i> .

I
=)

n

Let C7 = (Ci,j)i,jzl and Cy = (di,j)i,jZL Define
u(k, l) = min{j >1: k‘ocl’j + -+ kTCT-‘rLj + lOdl,j + -+ ltdt+1,j = 1}.

Since C1,Cy generate a digital (0,2)-sequence over Zz we obviously have
u(k,l) <r+t+2. As in the proof of Theorem 2.1 we now apply Lemma
4.1 and obtain

N-1

N
n=0
Therefore we have
~ 2
B L o || N
5= Z CPIOEErUR by
kl=
or+1_19t+1_1 N
B 2u(k,l)
D D S S |
r,t=0 k=2r =2t
42 22712t
= Z 227‘+2t Z Z Z b
=0 k=2r =2t
u(k,l)=u

27‘+171 2t+171

We have to evaluate the double-sum Z Z lforl <u<r+t+2.
k=2r =2t

u(k,l)=u
To this end we define the (r + ¢+ 2) x (r 4+t 4+ 2) matrix

1,1 cee Crp11 dy coo o dpy1

c ... C d .. d
Corty=| 2 ST L

Cly4t42 -+ Crglptt+2 Aiptet2 - dip1r4t2

Note that since C1, Cs generate a digital (0, 2)-sequence over Zg, it follows
that C(r,t) is regular.
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Now the value of the above double-sum is exactly the number of digits
koy ... kr—1,10,...,l4—1 € Zo such that

" 0
]frfl 0
(7) C(r,1) l = 1
'0 LTy+1
ly—
f ! Tr4t42
for arbitrary xy+1, ..., Zr+er2 € Zo. We consider three cases:
(i) Assume that u =r 4t + 2. Then system (7) becomes
0
(8) Clrtyh=| °
0
1
Since C(r, t) is regular there exists a vector h= (koy. sk oy .oy 1e) T
€ Z5T2 b # 0, such that C(r,t)h = (0,...,0,1)T. Assume that
{; = 0. Then
ko
C1,1 cee Cry11 d171 e dt71 0
C1,2 cee Cry12 dLQ e dt72 ]{JT _
.............................................. lo 0
Clytt42 -+ Crloit+2 dipyed2 - dipyie2 : 1
li—1
But then
ko
c1,1 cee Cryld dy oo dg : 0
1,2 cer Cry12 dyp oo dyo k. N
.............................................. lo :
Clytttl -+ Cralptttl Aipter1l - dipierl . 0
lt—1

Since the above matrix is again regular we obtain that the vector
(koy -y kryloy. ..y li—1) = (0,...,0) and therefore h = 0, a contradic-
tion. Hence l; = 1 and in the same way one can show that k, = 1. We
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have shown that system (8) has exactly one solution and therefore

we have
ortl_12t+lq

YooY 1=1

k=2 =2t
u(k,l)=u
(ii) Assume that v =7+t + 1. Let = € Zg. Since C(r,t) is regular there
exists exactly one vector he Zg”” such that

C(r,t)h = (0,...,0,1,z)"

Assume that £ is of the form h = (koy ... kro1, 1,00, 11, )T €
Zg””. In particular we have

c11 oo G110 din ... dig1n 0
9) 12 .. Cg12  dig ... dip1p P
Clytt -+ Crylptt digpat -+ diplptt 0
Since
c1,1 ¢l din di 1
1,2 cra  dip di2
Cly+t -+ Crrtt dl,rth e dt,r+t

is regular we find that h is the unique solution of (9). Hence h is
exactly the same vector as in the first case where u =+t + 2. But
then / cannot be a solution of C(r,t)h = (0,...,0,1,z)T. Therefore

we obtain
27‘+1 1 2t+1
> Z 1=0.
k=2r =2t
u(k,l)=u
(iii) Assume that 1 < wu < r+t. We rewrite system (7) in the form
0
ko :
c1,1 Cri1 dq1 di1 _ 0
1,2 Cr2 dy2 di o : 1
....................................... kr_1 o
= Tyu+1 +Yrt
Cl,r+t cov Cropyt dl,rth cee dt,r+t lo .
Clytt41 -+ Crpgttrl Aipgtrl - dppietl :
Clygt42 « - Crptt+2 Alpyts2 oo dipieg2 - Tyt
Tr4i41

Lr4t+2
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where .4 = (1,0 + dig1,1, -+ Crpt g2 + dt+1,r+t+2)T € ZQHH-
Since the upper (r 4+ t) x (r + t) sub-matrix of the above matrix is
regular we find for arbitrary xy41,...,Z,4¢ exactly one solution of
the first r 4+ ¢t rows of the above system. This solution can be made
a solution of the whole system by an adequate choice of x, 441 and
ZTyryt+2. Therefore we have

2rtl_pottl_g

> =2t

k=2m [=2t
—_——
u(k,l)=u

Now we have

00 1 r+t N 2 ( ) N 2
= _ 2 +t— 2(r+t+2
X = Z 92r+2t <Z2 ' u T2 or+t+2 >
r,t=0 u=1
r+t 2
N
_ u
Z 2r+t 22 2u + 16 Z or+t+2
r,t=0 r,t=0
00 2 [e's)
1 N
_ u
> 5 ZWHGZ@ > 1
u=1 r,t=0 u=2 r,t=0
r+t>u r+t=u—2
[e's] 2 2
N w41 N
S s o -
u=1 w=u
[e’e) 2 2
=3 |5l (w=1)
u=1
[es] 2
= | (18u—12).
u=1

The result follows by inserting this expression into (6). O

5. The proofs of Corollaries 2.3 and 3.2

We will say that a real 8 in [0,1) is m-bit if 8= % + .-+ + b= with b; €
{0,1}. Le., an m-bit number is of the form k/2™ with k € {0,1,...,2m—1}.
The essential technical tool for the proof of Corollary 2.3 is provided by

Lemma 5.1. Assume that 3 = 0,b1ba ... (this here and in the following
always means base 2 representation) has two equal consecutive digits bib;11
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with i < m — 1 and let i be minimal with this property, i.e.,
6=0,01...0100b;42... or
£ =0,10...0100b;42 ... or
6=0,01...1011b;42... or
6=0,10...1011b;43 ... .
Replace 3 by
v=0,10...1010b;42 ... resp.
v=0,01...10100;42 ... resp.
v=0,10...0101b;42 ... resp.
~v=0,01...0101b;42... .

Then

m—l o m—1 "o % (1 — (;)Z)Q (1 —7) in the first two cases,
Sl = Y i O x T 2

u=0 u=0 3 (1 — 3 ) T in the last two cases,

where 7 := 0,b;12b;13. ...

Remark. In any case we have >." "1 ||244? > S27 1 [|244]1? with equality
iff 7 =1 in the first two cases and iff 7 = 0 in the last two cases.

Proof of Lemma 5.1. This is simple calculation. We just handle the first
case here.

m—1
(10) > 2zl = 112811
u=0
‘ i1
= P = 12817 + > _l124@nI* — 12BII%).
u=0
Here ||v]| = % (1 + %) — 577 and [[2°6]| = %. Further, for even u we have

1 2utl T 1 2utt T
el = 3 (1- 5 )+ 5 and 1208 = 3 (1- 5 )+ g
and for odd u we have

1 2utl T 1 2utl T
el = 3 (14 5 ) -5 and 1208 =3 (14 25 ) - e

Inserting this into (10) we obtain

m—1 2
S (2 - 122617 = g (14 57) (=)

u=0

The other cases are calculated in the same way. [
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From Lemma 5.1 we obtain the subsequent result concerning the max-
imum of X 1|246||% over all 5. We remark that in [14] the authors
considered the same problem without the square at the || - ||-function.

Lemma 5.2. Consider § € R with the canonical base 2 representation
(i.e., with infinitely many digits equal to zero). Then there exists

m 1 2 1

m—1
2u 2:7 - _1m o
mﬁ“;}” AP =g +5 = D" 575w ~ 57 9om

and it is attained if and only if B is of the form By with

O ()

Remark. Note that

2 (0 (L™ _ [ 0,1010...101 if m s odd,
3 2 1 0,1010...011 if m is even,

1<1_ (_1>m> { 0,0101...011 if m is odd,

3 2 0,0101...101 if m is even.

Proof of Lemma 5.2. For any v = 0,c1¢a ... ¢pCm+1 - - - with fixed ¢1, ..., ¢y
the sum ZT;ol |2%7||? obviously becomes maximal if ¢,, = 0 and ¢y 41 =
Cmt2 =+ =1, orif ¢, =1 and ¢jp41 = ¢t2 = --- = 0. Hence by Lemma
5.1 the

and

m—1
sup 3 1245
& u=0
only can be attained, respectively approached by
$1=0,1010...10111... or
(b, is the last zero)
(s =0,0101...01 or
£ =0,1010...11
(b, is the last one)
if m is even, and by
By =0,0101...10 111... or
(b, is the last zero)
85 =0,1010...01 or
Bs =0,0101...11
(b, is the last one)
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if m is odd.
Now we check easily that

2 1
27-2m  27.22m

Z 12°Bull* = 5 + e

for k=1,... ,6 and the result follows. [
We give the Proof of Corollary 2.3. We have

m

N

2u

max
N<2m
- u=1

2 ml m 1 9 1
— Qu 2:: e Z (=1 .
ﬂl;rflLa)t()itT;)H BIF =g +5 = D" 5w ~ 57w

by Lemma 5.2. The result follows now together with (2). O

For the proof of Corollary 3.2 we can in principle proceed as for the proof
of Corollary 2.3. However, in this case the detailed computations are by
far more involved than above. First we have

Lemma 5.3. Assume that 0 = 0,b1by ... has two equal consecutive digits
bibir1 with i < m — 1 and let i be minimal with this property, i.e.,
3=0,01...0100bs5... or
£8=0,10...0100b;43 ... or
3=0,01...1011b;ss... or
6=0,10...1011b;45 ... .
Replace B by
v=0,10...1010b;42 ... resp.
v=0,01...10100;42 ... resp.
v=0,10...0101b;42 ... resp.
~v=0,01...0101b;42... .

Then
m—1 m—1
o 2u P m = u) = > 28] (m — u)+
u=0 u=0
N2 .
(1 _ (—2? ) —-i4 ﬁ (% — (—1)2)) (1 —7) in the first two cases,

N2 .
(1 _ (—21) ) — iy 27‘%21. (% — (—1)1)> T in the last two cases,

<3

o3

where 7 := 0,b;12b;13. ...

Remark. In any case, for m > 3, we have > . H2“’y|] (m —u) >

o 124817 (m = w).
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Proof of Lemma 5.3. We have

m—1
D2y = 1248117 (m — )
u=0
i—1
= m|y[?=(m=) 12’81+ (12“ @I (m —u = 1) — [2°B]*(m — u)) .
u=0

The result now follows as in the proof of Lemma 5.1 by some tedious but
straightforward algebra. [
With Lemma 5.3 we obtain

Lemma 5.4. We have
m—1
u 2 o
ﬁzﬁit; 12B]*(m — u)

BB GO ) oo
TtEtatem (Ft+arl-—m)(mts) if m is odd.

For even m the mazimum is attained if and only if

0,0101...0110 = 1 (1+ 5—~) and
7= 01010 1010:5(1—L)
,1010... : o) -
For odd m the mazimum is attained if and only if
0,0101...011 = 1 (14 5&) and
B = _inoh
0,1010...101 = % (1 — 57) -

Proof. For short we write fi,(3) := S [|248]2(m — u). Let m > 2 be
even. It follows from Lemma 5.3 that the m-bit number § which maximizes
our sum has to be of the form

B =0,0101...01bym_1bym or [Bo=0,1010...10bm_1bm.

First we deal with 5y = 0,0101...01b,,_1b,,. Now we consider four cases
corresponding to the possible choices for b,,_1 and b,,.

o If (by—1,bm) = (0,0), then
m2 m 1 8 m 16m 161 64 1
fm(ﬂl):74'*—*—*7—*27—*7—*7-
18 18 81 272m 27922m  g812m 8] 22m
o If (by—1,bm) = (1,1), then
fopy =" gm 1 10m 25 m 201 100 1
ML T 18 81 L 272m 2722m | glom g1 22m’
o If (by—1,bm) = (1,0), then
m2 m 8 4 m 4 m 8 1 16 1

) =g ¥ 13 51 T 2ram ~ 2roen Tz s
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o If (by—1,bm) = (0,1), then

m> m 8 2m 1 m 41 4 1
S TS TR T T TR TS 2SS T T
Therefore we find that the choice (by,—1by) = (1,0) gives the maximal
value, i.e., 1 = 0,0101...0110. For By = 0,1010...10b,,_1b,, we find
in the same way that (by—1,bm) = (1,0) gives the maximal value, i.e.,

B2 =0,1010...1010. Since

m> m 8 1 (4 1 2 8
m =Jm = <t+t<tagtsn |51 — 55 9
Jm(B1) = fm(B2) = 3495+ 51 om <27< 2m)(m+3> 81-2m>
the result follows for even m > 2.

For odd m > 3 the result can be proved analogously. [
We give the Proof of Corollary 3.2. We have

m 2

N

2u

m—1 2
8 m
B U G12(m— ag) = T T ( )
u—ﬁm%%itugzo 12“gllI*(m—-—u) = —+-—=+-—-+4+0

max —
18 18 81 2m

N<2m
- u=1

by Lemma 5.4. The result follows now together with (3). O

Acknowledgement

The author is supported by the Austrian Science Foundation (FWF),
Project S9609, that is part of the Austrian National Research Network
“Analytic Combinatorics and Probabilistic Number Theory”. Furthermore,
the author wishes to thank Peter Kritzer for his comments for improving
the style of the paper and Ligia Loretta Cristea for the translation of the
abstract.

References

[1] H. Cuaix AND H. FAURE, Discrépance et diaphonie en dimension un. Acta Arith. 63 (1993),
103-141.

[2] J. Dick AND F. PILLICHSHAMMER, Multivariate integration in weighted Hilbert spaces based
on Walsh functions and weighted Sobolev spaces. J. Complexity 21 (2005), 149-195.

[3] J. Dick AND F. PILLICHSHAMMER, Dyadic diaphony of digital nets over Zz. Monatsh. Math.
145 (2005), 285-299.

[4] J. Dick AND F. PILLICHSHAMMER, On the mean square weighted Lo-discrepancy of random-
ized digital (t,m, s)-nets over Zs. Acta Arith. 117 (2005), 371-403.

[5] J. Dick AND F. PILLICHSHAMMER, Diaphony, discrepancy, spectral test and worst-case error.
Math. Comput. Simulation 70 (2005), 159-171.

[6] M. DrRMOTA, G. LARCHER AND F. PILLICHSHAMMER, Precise distribution properties of the
van der Corput sequence and related sequences. Manuscripta Math. 118 (2005), 11-41.

[7] M. DrmMOTA AND R.F. TicHy, Sequences, Discrepancies and Applications. Lecture Notes in
Mathematics 1651, Springer-Verlag, Berlin, 1997.

[8] H. FAURE, Discrepancy and diaphony of digital (0,1)-sequences in prime base. Acta Arith.
117 (2004), 125-148.

[9] H. FAURE, Irregularites of distribution of digital (0,1)-sequences in prime base. Integers 5
(2005), A7, 12 pages.



(10]

11]
(12]

(13]

14]
(15]
[16]
(17]
(18]

(19]

Dyadic diaphony of digital sequences 521

V.S. GROZDANOV, On the diaphony of one class of one-dimensional sequences. Internat. J.
Math. Math. Sci. 19 (1996), 115-124.

P. HELLEKALEK AND H. LEEB, Dyadic diaphony. Acta Arith. 80 (1997), 187-196.

L. KutPERs AND H. NIEDERREITER, Uniform Distribution of Sequences. John Wiley, New
York, 1974.

G. LARCHER, H. NIEDERREITER AND W.CH. SCHMID, Digital nets and sequences constructed
over finite rings and their application to quasi-Monte Carlo integration. Monatsh. Math.
121 (1996), 231-253.

G. LARCHER AND F. PILLICHSHAMMER, Sums of distances to the nearest integer and the
discrepancy of digital nets. Acta Arith. 106 (2003), 379-408.

H. NIEDERREITER, Point sets and sequences with small discrepancy. Monatsh. Math. 104
(1987), 273-337.

H. NIEDERREITER, Random Number Generation and Quasi-Monte Carlo Methods. No. 63
in CBMS-NSF Series in Applied Mathematics. STAM, Philadelphia, 1992.

F. PILLICHSHAMMER, Digital sequences with best possible order of La—discrepancy. Mathe-
matika 53 (2006), 149-160.

P.D. PrOINOV AND V.S. GROZDANOV, On the diaphony of the van der Corput-Halton se-
quence. J. Number Theory 30 (1988), 94-104.

P. ZINTERHOF, Uber einige Abschatzungen bei der Approzimation von Funktionen mit Gle-
ichverteilungsmethoden. Sitzungsber. Osterr. Akad. Wiss. Math.-Natur. K1. IT 185 (1976),
121-132.

Friedrich PILLICHSHAMMER

Universtéat Linz

Institut fiir Finanzmathematik
Altenbergerstrasse 69

A-4040 Linz, Austria

E-mail : friedrich.pillichshammer@jku.at



