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Diophantine inequalities with power sums

par Amedeo SCREMIN

Résumé. On appelle somme de puissances toute suite α : N → C
de nombres complexes de la forme

α(n) = b1c
n
1 + b2c

n
2 + . . . + bhcn

h,

où les bi ∈ Q et les ci ∈ Z sont fixés. Soit F (x, y) ∈ Q[x, y] un
polynôme unitaire, absolument irréductible, de degré au moins 2
en y. On démontre que les solutions (n, y) ∈ N× Z de l’inégalité

|F (α(n), y)| <
∣∣∣∂F

∂y
(α(n), y)

∣∣∣ · |α(n)|−ε

sont paramétrées par un nombre fini de sommes de puissances.
Par conséquent, on déduit la finitude des solutions de l’équation
diophantienne

F (α(n), y) = f(n),

où f ∈ Z[x] est un polynôme non constant et α est une somme de
puissances non constante.

Abstract. The ring of power sums is formed by complex func-
tions on N of the form

α(n) = b1c
n
1 + b2c

n
2 + . . . + bhcn

h,

for some bi ∈ Q and ci ∈ Z. Let F (x, y) ∈Q[x, y] be absolutely
irreducible, monic and of degree at least 2 in y. We consider
Diophantine inequalities of the form

|F (α(n), y)| <
∣∣∣∂F

∂y
(α(n), y)

∣∣∣ · |α(n)|−ε

and show that all the solutions (n, y) ∈ N×Z have y parametrized
by some power sums in a finite set. As a consequence, we prove
that the equation

F (α(n), y) = f(n),

with f ∈ Z[x] not constant, F monic in y and α not constant, has
only finitely many solutions.
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1. Introduction

The present paper deals with diophantine equations and inequalities
involving certain power sums, i.e. functions of n ∈ N of the form

(1) α(n) = b1c
n
1 + b2c

n
2 + . . . + bhcn

h ,

with c1 > c2 > . . . > ch > 0, where the bi, called the coefficients of α(n),
are (nonzero) algebraic numbers and the ci, called the roots of α(n), are
distinct integers or rationals. A power sum is non-degenerate if no quotient
of two distinct roots is a root of unity. It is well known that such functions,
even allowing the bi to be polynomials in n and the ci to be algebraic
numbers, satisfy linear recurrence relations. Since long ago, a number of
results concerning diophantine equations and inequalities with power sums
have been proved. Among the recent ones, we may mention, for instance,
the results by Kiss [9] who proved, under some assumptions on the absolute
values of the roots of α(n), that the inequality |sxq − α(n)| > ecn, where
α(n) is a non-degenerate power sum with algebraic roots and polynomial
coefficients, holds for integers s, x > 1 and q, provided that n and q are
large enough. Shorey and Stewart [14] proved that for any fixed δ > 0
the inequality |sxq − α(n)| > |c1|n(1−δ), where α(n) is non-degenerate with
algebraic roots and constant coefficients, holds for all the non-zero integers
s, x, for n > 0, and for every non-zero integer q > qo(α, P ), where P is the
greatest prime factor of s, assuming that sxq 6= b1c

n
1 and that in α(n) there

is a root with largest absolute value. This result was proved using estimates
for linear forms in logarithms due to Baker (see [1]). Pethö [10] proved for
non-degenerate power sums with h = 2 and coprime coefficients that if
α(n) = sxq holds for integers x 6= 0, q ≥ 2 and n > 0, then max{|x|, q, n}
is bounded by an effectively computable number depending on the greatest
prime divisor of s. Recently Corvaja and Zannier [2] have found new results
concerning the inequality |α(n)− yd| � |α(n)|ρ , where α(n) has positive
integral roots and rational coefficients, d ≥ 2 and ρ < 1 − 1/d. Using the
Schmidt Subspace Theorem (see [12]) they proved that if this inequality
has infinitely many solutions (n, y) ∈ N × Z, then all the solutions, but
finitely many, have y parametrized by some power sums in a finite set; also,
the numbers n such that (n, y) is a solution, except finitely many, form a
finite union of arithmetical progressions. As a consequence, for every d ≥ 2
the equation α(n) = yd has only finitely many solutions, if we suppose that
α(n) has positive integral roots and that two roots with largest absolute
value are coprime, apart from trivial cases, which are easy to classify. In
[3], under some assumptions on the size of the roots of α(n) and allowing
the coefficients and the roots of α(n) to be algebraic, they extended this
result to the more general equation F (α(n), y) = 0. This paper will not be
concerned with quantitative aspects, though the methods allow to estimate
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the number of relevant solutions. In the context of the paper by Corvaja
and Zannier ([3]), some extimates have been obtained by Fuchs [7], using
a quantitative version of the Subspace Theorem due to Evertse (see [6]).

In this paper we first study lower bounds for the quantity |F (α(n), y)|,
and in particular the inequality |F (α(n), y)| <

∣∣∂F
∂y (α(n), y)

∣∣ · |α(n)|−ε for
power sums with integral roots and algebraic coefficients, where F (x, y) is
an absolutely irreducible polynomial monic in y. We shall obtain (Theorem
3.1) that all the solutions (n, y) ∈ N×Z have y parametrized by some power
sums in a finite set. This conclusion is in a sense best possible, since the
same result doesn’t hold for ε < 0. In fact, suppose that F (α(n), y) has a
real zero yn for all sufficiently large n. Setting y(n) to be the nearest
integer to yn, we have (see [4])

|F (α(n), y(n)| = |y(n)− yn|
∣∣∂F

∂y
(α(n), ξ)

∣∣ <
∣∣∂F

∂y
(α(n), ξ)

∣∣
�

∣∣∂F

∂y
(α(n), y(n))

∣∣,
where y(n) ≤ ξ ≤ yn (or yn ≤ ξ ≤ y(n)).

Our proof shall use a result concerning the inequality |α(n)− y| < e−nε

derived by Corvaja and Zannier [2, Lemma 2] from Schmidt Subspace Theo-
rem. From Theorem 3.1 follows (Corollary 3.2) the generalization of the
result in [2, Theorem 3] to the inequality |F (α(n), y)| < |α(n)|1−

1
d
−ε, under

some assumptions on the Puiseux expansion at infinity of y as function of
x under the relation F (x, y) = 0. As a simple application (Corollary 3.3)
we shall deduce the finiteness of the solutions of the equation F (α(n), y) =
f(n), under the assumption that f(n) is a non constant polynomial and
that α(n) is not constant. This gives a generalization of the results in [2]
and [3].

2. Notation

In the present paper we will denote by ΣQ and ΣZ the rings of functions
on N of the form α(n) = b1c

n
1 + b2c

n
2 + . . . + bhcn

h, where the distinct roots
ci 6= 0 are in Q or in Z respectively, and the coefficients bi ∈ Q?. If K ⊂ C
is a number field, we will denote by KΣQ and KΣZ the ring of power
sums with coefficients in K.

The subrings of power sums with only positive roots will be denoted by
KΣ+

Q and KΣ+
Z . Working in this domain causes no loss of generality: the

assumption of positivity of the roots may usually be achieved by writing
2n + r instead of n, and considering the cases of r = 0, 1 separately.

Note that every constant power sum, i.e. a power sum with only one
root c1 = 1, belongs to Σ+

Z . Power sums will be denoted by Greek letters.
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3. Statements

Theorem 3.1. Let F ∈Q[x, y] be absolutely irreducible, monic and of de-
gree d ≥ 2 in y; let α(n) ∈ QΣZ, and let ε > 0 be fixed. Then there exists a
finite set of power sums {β1(n), . . . , βs(n)} ⊂ Σ+

Z such that every solution
(n, y) ∈ N× Z of the inequality

(2) |F (α(n), y)| <
∣∣∣∂F

∂y
(α(n), y)

∣∣∣ · |α(n)|−ε

satisfies y = βi(n), for a certain i = 1, . . . , s.
The set {β1(n), . . . , βs(n)} contains at most d2 non constant power sums.

Moreover, the set of natural numbers n such that (n, y) is a solution of (2)
is the union of a finite set and a finite number of arithmetic progressions.

For the formulation of Corollary 3.2 we need the following.

Definition. Let F (x, y)∈Q[x, y] be monic in y and of degree d ≥ 2 in y.
Let F (x, y) = (y − ϕ1(x)) · . . . · (y − ϕd(x)) be the factorization of F (x, y)
in the ring of Puiseux series in x at infinity. Here, for each j = 1, . . . , d,

ϕj(x) =
+∞∑

i=−kj

aij x−i/ej , with a−kjj 6= 0 and for a real determination of

x1/ej , is an expansion at infinity of y as function of x.
In the present paper we will call the polynomial F (x, y) ”regular” if for

every j, l = 1, . . . , d, with j 6= l, we have kj/ej 6= kl/el or a−kjj 6= a−kll.

Corollary 3.2. Let F (x, y)∈Q[x, y] be monic in y, absolutely irreducible,
regular, of degree d ≥ 2 in y. Let α(n) ∈ QΣZ ; let ε > 0 and c > 0 be
fixed. Then there exists a finite set of power sums {β1(n), . . . , βs(n)} ⊂ Σ+

Z
such that every solution (n, y) ∈ N× Z of the inequality

(3) |F (α(n), y)| < c · |α(n)|1−
1
d
−ε

satisfies y = βi(n) for a certain i = 1, . . . , s.
The set {β1(n), . . . , βs(n)} contains at most d2 non constant power sums.

Moreover, the natural numbers n such that (n, y) is a solution of (3), except
finitely many, make up a finite union of arithmetical progressions.

Corollary 3.3. Let F (x, y)∈Q[x, y] be monic in y, absolutely irreducible
and of degree d ≥ 2 in y; let f(n) ∈ Z[x] be a non constant polynomial;
let α(n) be a non constant power sum with integral roots and algebraic
coefficients. Then the equation

(4) F (α(n), y) = f(n)

has only finitely many solutions (n, y) ∈ N× Z.
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4. Auxiliary results

The following Lemma 4.1, proved in a more general version by Corvaja
and Zannier (see [2, Lemma 2]) using a version of the Subspace Theorem
due to H.P. Schlickewei (see [11], [12, Theorem 1, p. 178]), plays a crucial
role throughout the paper, since it contains the fundamental information
to prove Theorem 3.1.

Lemma 4.1. Let τ(n) ∈ QΣ+
Q, and let ε > 0 be fixed. Then there exists

a power sum β(n) ∈ Σ+
Z such that for all but finitely many solutions

(n, y) ∈ N× Z of the inequality

(5) |τ(n)− y| < e−nε,

we have y = β(n).
Moreover, the roots of β(n) are in the set of the roots of τ(n).

For the proof of Theorem 3.1 we need also some standard results from the
theory of algebraic functions fields, namely the theory of Puiseux expan-
sions. We recall here a simple version of the Puiseux Theorem concerning
the Puiseux expansions at the infinity for the polynomials of Q(x)[y]. More
general versions can be found in [5] and [8].

Theorem 4.2 (Puiseux Theorem). Let F (x, y) ∈ Q(x)[y] be an absolutely
irreducible polynomial, monic and of degree d in y. Then for i = 1, . . . , d
there exist ei ∈ N, 1 ≤ ei ≤ d, and Laurent series in x−1/ei

ϕi(x) =
+∞∑
k=vi

aik x−k/ei , i = 1, . . . , d

with vi ≤ 0, such that

F (x, y) =
∏

1=1,...,d

(y − ϕi(x)).

The Laurent series ϕ1(x), . . . , ϕd(x) are convergent for |x| large enough,
and the coefficients aij are elements of a finite field extension K of Q.

The Laurent series ϕ1(x), . . . , ϕd(x) coming from the Puiseux Theorem
are called Puiseux series of the polynomial F (x, y).

5. Proofs

Proof of Theorem 3.1. Plainly, we need to consider only the case that
(2) has infinitely many solutions. We shall consider solutions with n larger
than a certain constant N , since the finitely many solutions with n ≤ N
can be considered as constant power sums. Finally, we can suppose α(n)
not constant.
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Let F (x, y) = (y − ϕ1(x)) · . . . · (y − ϕd(x)), where

ϕj(x) =
+∞∑

i=−kj

aij x−i/ej , with a−kjj 6= 0 and 1 ≤ ej ≤ d for j = 1, . . . , d,

are the series of the Puiseux expansion at infinity of y as function of x (see
Theorem 4.2), i.e. ϕj(x) are the solutions of the equation F (x, y) = 0 in
the field of the Puiseux series.

Let us remark that by the Puiseux Theorem the series ϕj(x) exist and
the coefficients aij generate a finite field extension K of Q.

We have ∂F
∂y (x, y) =

d∑
j=1

F (x,y)
y−ϕj(x) , and so

(6) F (x, y) =
∂F

∂y
(x, y)

( d∑
j=1

1
y − ϕj(x)

)−1

holds.
From (6) we obtain that for each solution (n, y) of (2) the inequality

∣∣∂F

∂y
(α(n), y)

∣∣ · ∣∣∣ d∑
j=1

(y − ϕj(α(n)))−1
∣∣∣−1

<
∣∣∂F

∂y
(α(n), y)

∣∣ · |α(n)|−ε

holds. By (2), we can assume
∣∣∂F

∂y (α(n), y)
∣∣ 6= 0. It follows that

∣∣∣ d∑
j=1

(y − ϕj(α(n)))−1
∣∣∣ > |α(n)|ε

holds, and so for all the solutions of (2) we have

d∑
j=1

∣∣∣y − ϕj(α(n))
∣∣∣−1

> |α(n)|ε.

Let ε1 =
ε

2
. For n large enough the inequality

d∑
j=1
|y − ϕj(α(n))|−1 >

d·|α(n)|ε1 holds, and so for a certain j = 1, . . . , d we have |y−ϕj(α(n))|−1 >
|α(n)|ε1 . This means that for every solution (n, y) of (2) with n large enough
the inequality

(7) |y − ϕj(α(n))| < |α(n)|−ε1

is satisfied for a certain j = 1, . . . , d, with j depending on n.
We shall prove that for given j = 1, . . . , d there exists a finite set

{β1(n), . . . , βt(n)} ⊂ ΣZ such that every solution (n, y) of (7) has y = βi(n)
for a certain i = 1, . . . , t.

Once we prove this, the theorem will follow.
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Define a partition {M1, . . . ,Md} of the solutions (n, y) of (2) by prescrib-
ing that for every (n, y) ∈ Mi we have

|y − ϕi(α(n))| = min
1≤j≤d

{
|y − ϕj(α(n))|

}
.

We can consider separately the solutions in each subset Mi. It will suffice
to deal with i = 1.

Let us write

(8) ϕ1(x) =
+∞∑

i=−k

aix
−i/e1 = a−kx

k/e1+. . .+a−1x
1/e1+a0+a1x

−1/e1+. . . ,

for a real determination of x1/e1 , where k = k1 and ai = ai,1 for every
i ≥ −k.

Let α(n) =
h∑

j=1
bj cn

j , with cj ∈ Z, cj 6= 1 for some j and bj ∈ Q

∀ j = 1, . . . , h. We can suppose c1 > c2 > . . . > ch > 0.
For n large enough the series ϕ1(α(n)) converges, so we can write

(9) ϕ1(α(n)) =
0∑

i=−k

aiα(n)−i/e1 + O(α(n)−1/e1).

Choosing ε2 > 0 smaller than ε1 and 1/e1, for n large enough each solution

of |y −
+∞∑

i=−k

aiα(n)−i/e1 | < |α(n)|−ε1 satisfies

|y −
0∑

i=−k

aiα(n)−i/e1 | < |α(n)|−ε2 .

Put

(10) ϕ̃1(x) =
0∑

i=−k

aix
−i/e1 .

From now on we will consider the inequality

(11) |y − ϕ̃1(α(n))| < |α(n)|−ε2

instead of |y − ϕ1(α(n))| < |α(n)|−ε1 .
We can write α(n) = b1c

n
1 (1 + σ(n)), with σ(n) ∈ QΣQ, and σ(n) =

O((c2/c1)n).
For every l ∈ N we have

(12) α(n)l/e1 = b
l/e1

1 (cn
1 )l/e1(1 + σ(n))l/e1 ,

for a real determination (resp. real positive) of b
l/e1

1 (resp. c
l/e1

1 ). We will
fix this determination for the remaining part of the proof.
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Expanding the function t 7→ (1 + t)l/e1 in Taylor series, we have for
every l∈N

(13) (1 + σ(n))l/e1 = 1 +
m∑

j=1

Bj,l σ(n)j + O(|σ(n)|m+1),

where m is an integer to be chosen later and Bj,l, j = 1, . . . ,m, l ∈ N, are

the Taylor coefficients
(

l/ei
j

)
of the function t 7→ (1 + t)l/e1 .

From (12) and (13) we obtain

(14) α(n)l/e1 = b
l/e1

1 c
nl/e1

1

(
1 +

m∑
j=1

Bj,l σ(n)j
)

+ O
(
|σ(n)|m+1 · cnl/e1

1

)
.

Let us define, for every l ∈ N,

γl(n) :=
m∑

j=1

Bj,l σ(n)j ∈ QΣ+
Q.

Since (14) holds, we can write

(15) α(n)l/e1 = b
l/e1

1 c
nl/e1

1

(
1 + γl(n)

)
+ O

(
(cn

2/cn
1 )m+1 · cnl/e1

1

)
.

From (10) and (15) we obtain

(16) ϕ̃1(α(n)) =
0∑

i=−k

(
ai(b1c

n
1 )−i/e1

(
1+γ−i(n)

))
+O

(
(cn

2/cn
1 )m+1·cnk/e1

1

)
.

Let us write n = n1e1 + r, with 0 ≤ r < e1 ≤ d. We can rewrite (16) as
(17)

ϕ̃1(α(n)) =
0∑

i=−k

(
ai(b1c

r
1)
−i/e1c−n1i

1

(
1+γ−i(n)

))
+O

(
(cn

2/cn
1 )m+1 · cnk/e1

1

)
.

Since QΣ+
Q is a ring, we see that

τ(n) :=
0∑

i=−k

(
ai(b1c

r
1)
−i/e1c−n1i

1

(
1 + γ−i(n)

))
is a power sum with rational positive roots and algebraic coefficients. More-
over, its roots lie in the multiplicative group generated by the real e1-th
roots (as determined above) of the roots of the power sum α(n).

We can write

(18) ϕ̃1(α(n)) = τ(n) + O
(
(cn

2/cn
1 )m+1 · cnk/e1

1

)
.

So we have

|y − ϕ̃1(α(n))| =
∣∣y − τ(n)

∣∣ + O
(
(cn

2/cn
1 )m+1 · cnk/e1

1

)
,
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and from (11) we obtain

(19) |y − τ(n)| < |α(n)|−ε2 + O
(
(cn

2/cn
1 )m+1 · cnk/e1

1

)
.

Let us notice that for a fixed m large enough (cn
2/cn

1 )m+1c
nk/e1

1 < |α(n)|−ε2

holds for every n large enough. Choosing a suitable m large enough, every
solution of (19) with n large enough is also a solution of

(20) |y − τ(n)| < 2|α(n)|−ε2 .

Choosing ε3 > 0 small enough, 2|α(n)|−ε2 < e−nε3 holds for n large
enough, since |α(n)| −→ +∞ for n → +∞ (we are supposing α(n) not
constant).

Thus the inequality (20) implies

(21) |y − τ(n)| < e−nε3 .

Applying Lemma 4.1 we obtain that every solution of (21), with finitely
many exceptions, has y = β1(n), where β1(n) ∈ Σ+

Z . The roots of the
power sum β1(n) are in the set of the roots of τ(n), and so in the
multiplicative group generated by the real e1-th roots of the roots of the
power sum α(n).

Let us notice that the finitely many solutions (n, y) of (21) such that
y 6= β1(n) can be considered as constant power sums β2(n), . . . , βr(n) ∈ Σ+

Z
with a single root 1.

This means that for j = 1 every solution (n, y) of (7) has y = βi(n) for
a certain i ∈ {1, . . . , t}, where {β1, . . . , βt} ⊂ QΣZ, with t ≥ r.

In a similar way this result can be obtained for j = 2, . . . , d in (7). So we
have that every solution of (2) has y = βi(n) for a certain i ∈ {1, . . . , s},
where {β1, . . . , βs} ⊂ Σ+

Z , with s ≥ t.

Since each of the Puiseux series ϕj(x), j = 1, . . . , d, gives rise to at most
ej non constant power sums (remember that we chose 0 ≤ r < ej in (17)
and that ej ≤ d for every j = 1, . . . , d), the set {β1(n), . . . , βs(n)} contains
at most d2 non constant power sums.

Finally, we note that the roots of the power sums β1(n), . . . , βs(n) are
positive integers lying in the multiplicative group generated by the real e-th
roots, with 1 ≤ e ≤ d, of the roots of the power sum α(n).

This proves the Theorem. �

Proof of Corollary 3.2 As in the proof of Theorem 3.1, we shall consider
only solutions (n, y) of (3) with n larger than a certain constant N , since
the solutions with n ≤ N are finite in number and can be considered as
constant power sums.

Let F (x, y) = (y − ϕ1(x)) · . . . · (y − ϕd(x)), where
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ϕj(x) =
+∞∑

i=−kj

aij x−i/ej , with a−kjj 6= 0 and 1 ≤ ej ≤ d for j = 1, . . . , d,

are the series of the Puiseux expansion at infinity of y as function of x.
Let ε1 > 0 to be chosen later. In the proof of Theorem 3.1 we have shown

that there exists a finite set of power sums with positive integral roots and
rational coefficients {β1(n), . . . , βt(n)} such that, for every j = 1, . . . , d,
every solution (n, y) ∈ N× Z of the inequality

|y − ϕj(α(n))| < |α(n)|−ε1

has y = βi(n) for a certain i=1, . . . , t. Moreover, the set {β1(n), . . . , βt(n)}
contains at most d non constant power sums.

Let us consider sets M1, . . . ,Md of pairs (n, y) ∈ N × Z such that for
every (n, y) ∈ Mi we have

|y − ϕi(α(n))| = min
1≤j≤d

{
|y − ϕj(α(n))|

}
.

As before, we can consider separately each set, say M1.
For every i = 2, . . . , d, we have

(22) |y − ϕi(α(n))| ≥ 1
2
|ϕi(α(n))− ϕ1(α(n))|.

Since the polynomial F is regular, we can have either that ki/ei 6= k1/e1,
∀ i = 2, . . . , d, or that there exist some i∈ {2, . . . , d} such that ki/ei =
k1/e1, but a−kii 6= a−k11.

If ki/ei 6= k1/e1 ∀ i = 2, . . . , d, for n large enough we have

|y − ϕi(α(n))| ≥ 1
2
|ϕ1(α(n))− ϕi(α(n))| = 1

2
|(ϕ1 − ϕi)(α(n))|

> a · |α(n)1/d| ,
for a certain positive constant a > 0.

If there exist some i∈{2, . . . , d} such that ki/ei = k1/e1, but a−kii 6=
a−k11, since k1 ≥ 1 for these i, for n large enough we have

|y − ϕi(α(n))| > 1
2
|ϕ1(α(n))− ϕi(α(n))|

> f · |a−k11α(n)k1/e1 − a−kiiα(n)k1/e1 |

= f · |a−k11 − a−kii| · |α(n)k1/e1 |

> g · |α(n)1/e1 |

≥ g · |α(n)1/d|,
for certain positive constants f and g.

Therefore, for every i = 2, . . . , d, the inequality

(23) |y − ϕi(α(n))| ≥ h · |α(n)1/d|,
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holds for a certain constant h = min{a, g}.
From (23) it follows, with b = hd−1, that the inequality

|F (α(n), y)| = |y − ϕ1(α(n))| · |y − ϕ2(α(n))| · . . . · |y − ϕd(α(n))|

> b · |α(n)(d−1)/d−ε1 |

= b · |α(n)1−
1
d
−ε1 |

= b · |α(n)|1−
1
d
−ε1

holds for all pairs (n, y) ∈ N × Z with n large enough and y 6= βi(n) for
every i = 1, . . . , t.

Choosing ε1 > 0 small enough we obtain, for n large enough

b · |α(n)|1−
1
d
−ε1 > c · |α(n)|1−

1
d
−ε.

Therefore the inequality

|F (α(n), y)| > c · |α(n)|1−
1
d
−ε

holds for all the pairs (n, y) ∈ N×Z with n large enough and y 6= βi(n) for
every i = 1, . . . , t.

This means that each solution of (3) has y = βi(n), for a certain i =
1, . . . , s, with s ≥ t.

As in the proof of Theorem 3.1, we can obtain that the natural numbers n
such that (n, y) is a solution of the inequality, except finitely many, make up
a finite union of arithmetical progressions and that the roots of the power
sums β1(n), . . . , βs(n) are positive integers lying in the multiplicative group
generated by the real e-th roots, with 1 ≤ e ≤ d, of the roots of the power
sum α(n).

Since the set {β1(n), . . . , βt(n)} contains at most d non constant power
sums, and since we have d choices for the set Mi, the set {β1(n), . . . , βs(n)}
contains at most d2 non constant power sums. �

Remark 5.1. From Corollary 3.2 we can derive that if the inequality
(3) has infinitely many solutions, then there exists at least one power
sum β(n) ∈ Σ+

Z not constant such that (n, β(n)) is a solution. Since
F (α(n), β(n)) is a power sum, to have infinitely many solutions to (3)
the absolute value of the largest root of F (α(n), β(n)) must be smaller
than |c1|1−

1
d
−ε, where c1 is the largest root of α. This means that to have

infinitely many solutions the coefficients of the roots of the power sum
F (α(n), β(n)) with absolute value larger than |c1|1−

1
d
−ε must vanish. This

condition is easily verifiable in concrete cases with algebrical methods, so it
is easy to decide wheather the inequality (3), with a particular power sum
α(n), a particular polynomial F and a particular value of ε, has infinitely
many solutions or not.
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Remark 5.2. If the polynomial F is not regular, we can get a weaker
result than that of Corollary 3.2. Using the same notations of Corollary
3.2, let

(24) d = max
i=1,...,d

{
|{ϕj : kj/ej = ki/ei and akjj = akii}|

}
.

If F is not regular we have 2 ≤ d ≤ d. Without losing generality, let
ϕ1, . . . , ϕd be the d Puiseux series such that k1/e1 = . . . = kd/edo and
ak11 = . . . = akdd.

As in the proof of Corollary 3.2, we obtain that

|F (α(n), y)| = |y − ϕ1(α(n))| · . . . · |y − ϕd(α(n))|
· |y − ϕd+1(α(n))| · . . . · |y − ϕd(α(n))|

> c · |α(n)|−ε1 d ·
(
|α(n)|1/d

)d−d

= c · |α(n)|1−
d
d
−ε

holds for all the pairs (n, y) such that y 6= βi(n) for every i = 1, . . . , s,
where {β1(n), . . . , βs(n)} is a finite set of power sums with positive integral
roots and rational coefficients.

So for every c > 0 and for every ε > 0 fixed, every solution (n, y) ∈ N×Z
of the inequality

(25) |F (α(n), y)| < c · |α(n)|1−
d
d
−ε

has y = βi(n), for a certain i ∈ {1, . . . , s}.
Let us notice that if d 6= d, there exist ε > 0 such that 1− d

d − ε > 0.

Remark 5.3 If, under the notations of Corollary 3.2 and Remark 5.2,
we have d = d, with a proper substitution we can reduce the polynomial
F (x, y) to the cases considered above. Indeed, writing the series of the
Puiseux expansion of F (x, y) as

ϕj(x) = a−k xk/ej + . . . + a−g xg/ej +
+∞∑

i=−g+1

aij x−i/ej ,

with j = 1, . . . , d, where a−g is the last common term in every ϕj(x), we
have

F (x, y) =
d∏

j=1

(
y −

−g∑
i=−k

ai x
−i/ej −

+∞∑
i=−g+1

aij x−i/ej

)
.

Applying the substitution

y −
−g∑

i=−k

ai x
−i/ej 7−→ z,
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we obtain a new polynomial G(x, z) that, for the choice of the substitution,
can either be regular, and so we can apply Corollary 3.2, or satisfy the
hypothesis of Remark 5.2.

Proof of Corollary 3.3. Let d be defined as in (24). We can have that
either the inequality

(26) |F (α(n), y)| < |α(n)|1−
d
d
−ε,

with ε = 1
2d , has finitely many solutions (n, y) ∈ N× Z or infinitely many.

If (26) has only finitely many solutions, let us observe that, since α(n)
is not constant, for n large enough we have

2 |f(n)| < |α(n)|1−
d
d
−ε,

and so also the inequality |F (α(n), y)| < 2 |f(n)| has finitely many solu-
tions.

The solutions of F (α(n), y) = f(n) are contained in the set of solutions
of |F (α(n), y)| < 2 |f(n)|, and so they are only finitely many.

If (26) has infinitely many solutions, from Theorem 3.1 (if F (x, y) is
regular), Remark 5.2 (if d < d ) and Remark 5.3 (if d = d) we know that
they all have y = βi(n), for i = 1, . . . , s, where {β1, . . . , βs} is a set of
power sums with rational coefficients and positive integral roots.

For every i = 1, . . . , s, F (α(n), βi(n)) is a power sum that may be
constant.

If for a certain i F (α(n), βi(n)) is constant, we have

F (α(n), βi(n))
f(n)

n→∞
−−−−→ 0.

If for a certain i F (α(n), βi(n)) is not constant, we have∣∣∣F (α(n), βi(n))
f(n)

∣∣∣ n→∞
−−−−→ +∞.

In both cases F (α(n), βi(n)) can not assume the values of f(n) for
infinitely many n, and so the equation F (α(n), y) = f(n) has only finitely
many solutions. �

Remark 5.4. In Corollary 3.3 the assumption that |α(n)| is not constant is
necessary. Consider e.g. the case α(n) = 1, F (x, y) = y2+x, f(n) = n2+1,
that has as solutions the couples (n,±n), n ∈ N. In all the other statements
of the present paper this assumption is not required.
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