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ABSTRACT. We consider a general class of monotone equilibrium
problems, which involve nonsmooth convex functions, in a real Banach
space. We combine the D-gap function approach and regularization
techniques and suggest a descent type algorithm to find solutions to the
initial problem.

1. INTRODUCTION

Let U be a nonempty closed and convex subset of a real reflexive Banach
space F, ¢ : ' x F — R an equilibrium bifunction, i.e. t(u,u) = 0 for every
u € U. In addition, we assume that ¢ (u, -) is convex and lower semicontinuous
for each u € E.

We consider equilibrium problem (EP for short) of the form: Find a point
u* € U such that

Y(u*,v) >0 Yo e U. (1)

It is well known that equilibrium problems represent rather general and suit-
able format for the formulation and investigation of various complex problems
arising in Economics, Mathematical Physics, Transportation, Operations Re-
search and other fields. Moreover, they are closely related to other general
problems of Nonlinear Analysis such as fixed point, optimization, complemen-
tarity and variational inequality ones. For this reason, various aspects of EPs
were investigated by many researchers (see e.g. [1]-[4] and references therein).

One of the most popular approaches to solve various problems of Nonlinear
Analysis is to convert them into a suitable optimization problem with the help
of so-called gap functions. In particular, in [5] this approach was applied for
smooth EPs in a Banach space setting, in [6],[7] we applied this approach to
the problem (1) involving a non-smooth function, and we presented descent
methods, converging strongly to a solution. However, these methods need
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additional strong monotonicity properties to ensure convergence. In [8], it
was suggested to combine the descent methods with regularization technics
for solving monotone variational inequalities. In this paper, combining so the
descent and regularization techniques, we will construct a converging method
for EPs in a common monotone case.

2. REGULARIZATION OF EQUILIBRIUM PROBLEMS

First, we recall several well-known properties of EPs; see e.g. [1]-[3].
The equilibrium bifunction v is said to be
(i) monotone, if, for all u,v € E, we have

U(u,v) + (v, u) <0;

(ii) strictly monotone, if, for all u,v € E,u # v, we have
Y(u,v) + (v, u) < 0;
(iii) strongly monotone with constant 7, if, for all u,v € E, we have
V(u,v) + (v, u) < —7|lu — v

Proposition 2.1. (i) If ¢¥(-,v) is hemicontinuous for each u € U and 1 is
monotone, then the solutions set of EP(1) coincides with that of the dual prob-
lem
vt eU: Y(u,v*) <0 Yu e U (2)

and it s conver and closed.

(i) If 1 is strictly monotone, then EP(1) has at most one solution.

(153) If (-, v) is hemicontinuous for each v € U and v is strongly monotone,
then EP(1) has a unique solution.

In this section, in addition to the assumptions of Section 1, we shall suppose
that ¢ is monotone, and that ¢(-,v) is hemicontinuous for each v € U. We
denote by U* the solutions set of EP(1).

Suppose that there exists an equilibrium bifunction ¢ : £ x £ — R which
possesses the following properties:

(a) ¢ is strongly monotone with constant 7 > 0,

(b) for all u,v € E it holds that p(u,v) < ||lul||lv — u]l;

(¢) ¢(+,v) is hemicontinuous for each v € E and ¢(u,-) is convex and lower
semicontinuous for each u € E.

For instance, if there exists a hemicontinuous strongly monotone operator
B : E — E* such that | B|| < 1, we can set

p(u,v) = (B(u),v —u). (3)
If F is a Hilbert space, the simplest choice for B is the identity map, i.e

p(u,v) = (u, v —u).
We now consider the perturbed problem: Find a point u. € U such that
(ue,v) + ep(ue,v) >0 Yv e U, (4)

where ¢ is a positive parameter.
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Set ®(u,v) = ¥(u,v) + ep(u,v), then ® is an equilibrium bifunction, which
is strongly monotone with constant 7, moreover, ®(-,v) is hemicontinuous for
each v € F and ®(u,-) is convex and lower semicontinuous for each u € FE.
Applying now Proposition 2.1 with ¢ = ®, we conclude that EP(4) has always
a unique solution.

Theorem 2.1. If U* # 0, then {u.} — u’ as e — 0, where
u, € U™ o(ur w) >0 Yw e U™. (5)

Proof. First we note that EP(5) has the unique solution w; due to Propo-
sition 2.1. If u* € U*, then

Y(u*,u) >0 and Y(ue, u™) + ep(ue,u*) > 0.
Adding these inequalities gives

ep(us, u’) = —[(u", ue) + ¥ (us,u")] = 0.
Since ¢ is strongly monotone it follows that
—ep(u*, ue) = —e[p(ue, u*) + p(u’, ue)] + epue, u*) > erlluc —u*||*, (6)
and
[u"]] = 7llue —u”]].

So, the sequence {u.} is bounded, hence it has weak limit points. Note that
in view of Proposition 2.1 (i),

D (u, u:) = P(u,u.) + ep(u,u.) <0 Vue U.

Since ®(u,-) is convex and lower semicontinuous, it is weakly lower semicon-
tinuous and, for any limit point «’ of {u.}, we have

0 > lim[¢)(u, ue) + ep(u, u.)] = lim (u,ue) = Y(u,u') Yu e,

e—0

i.e. o solves problem (2), and, in view of Proposition 2.1 (i), it solves EP
(1) too. So, all the weak limits of {u.} are contained in U*. Using (6) with
u* =u,, le.

— (U, ue) 2 7llus —up %,
we have by setting ¢ — 0

0> —p(uy, v) > 7w —w||* > 0,

where «’ is any limit point of {u.}. Therefore, lir% ue = uf, as desired. O
£—

The result above is clearly an extension of the known convergence properties
of the Browder-Tikhonov approximations from variational inequalities; see e.g.
[9].
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3. GAP AND D-GAP FUNCTIONS

From now on, we shall consider EP(1) where

ZU(U,, U) = h(ua U) + f(u) - f(v)a
h : Ex E — R is a differentiable equilibrium bifunction, h(u,-) is convex

for each u € E and f : F — R is a convex continuous, but not necessarily
differentiable function. In other words, the problem is to find «* € U such that

h(u*,v) + f(u*) — f(v) >0  YoeU (7)

In what follows we shall consider the simplified variant (3) for the perturba-
tion bifunction ¢ and we shall suppose that B : E' — E* is a linear continuous
operator which is strongly monotone with constant 7 > 0 and || B|| < 1. Then,
the perturbed EP is formulated as follows: Find u. € U such that

h(ue,v) + f(ue) — f(v) + e(Bue,v —u.) >0 Yv € U, (8)

where € > 0 is a given number.

We denote by U* the solutions sets of EP(7). From Proposition 2.1 it follows
that EP(8) has always a unique solution. Moreover, in view of Theorem 2.1,
if U* # 0, then {u.} — u’ as ¢ — 0, where

u, € U": (Buy,w—uy)>0  YweU"
For brevity, we set h.(u,v) = h(u,v) + e(Bu,v — u). Thus, h. is the cost
bifunction in the regularized EP. Clearly, h. is strongly monotone. Therefore,

in order to solve EP(8) with fixed ¢, we can apply the D-gap function approach
from [6].

Set
OE) (u,v) = —he(u,v) — f(v) + f(u) — 0.5a]jv — ul]?
and
) (u) = sup O (u,0) = @) (u, v (u)), (9)
ve

where « is a fixed number. The function ,u((f) can serve as a gap function for

EP(8). Note that the inner maximization problem in (9) always has the unique
L@ € N -
solution ve’ (u), since ®g’ (u, -) is strongly concave and continuous.
The optimality condition for EP(8) and for the inner problem in (9) can be

formulated in the form of the mixed variational inequalities.

Proposition 3.1. [6, Propositions 2.1 and 2.3] (i) An element u. solves EP(8)
if and only if u. € U and

(Viohe(ue,us),v —ue) + f(v) — f(ue) >0 Yo eU. (10)

(ii) For all v € U it holds that
(Vohe (W, vq (1)) + a(va(u) —u'), v — v, (u)) +
f(v) = fva(u)) =

The basic properties of the gap function ,ugf) can be obtained by using the

similar results from [6, Proposition 2.4].

0 wey 1D
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Proposition 3.2. (i) It holds that u((f)(u) >0 for everyu e U.
(ii) If ) (u) = 0 and u € U, then u € U?.
(11i) The following properties are equivalent:
(a) ue Ur; (b) u= v((f)(u); (c) u((f)(u) =0anducU.
Therefore, EP(8) can be in principle replaced with the constrained optimiza-

tion problem:

- ©)
min — g (w).

The gap function ,ugf ) is however non-smooth in general and this fact may

create additional difficulties in developing a suitable descent method. In order
to obtain a smooth problem we turn to so-called D-gap functions.

Let us now consider the function
W) (1) = p () — 1) (w),

where 0 < a < . In order to obtain the basic properties of w((fﬂ) we need the
following auxiliary assertion.

Proposition 3.3. For every u € E, we have
lu = o5 (W) < 205 (w) /(B — @) < [lu— v (u)||? 12
Proof. By definition,
V) = O (u, 08 () — 0 (u, 0 (u))
> 0 (u, 05 (u) — q>(ﬁa)(u,v(6) (W) > (3 —a)|u— UE;)(U)HZ/?,

i.e. the left inequality in (12) holds. Similarly, we obtain the right inequality
in (12). O
The next proposition, which follows directly from Propositions 3.2 and 3.3,

says that the D-gap function wffg possesses the gap properties not only on the
feasible set U but over the whole space too.

Proposition 3.4. (i) It holds that w&aﬁ)(u) >0 for every u € E.
(i) It is true that wéffﬁ)(u) =0<=ueclU;.

Thus, the perturbed EP(8) is equivalent to the unconstrained minimization
problem

min — wc(j@), (u). (13)

uek
However, this problem can have in principle local minima which differ from
the global ones. For this reason, it is more suitable to replace EP(8) with the
problem of finding a stationary point of problem (13) that is

Vi (u) = 0.
This result needs certain additional assumptions.
(A1) The map V,h(-,-) is uniformly Lipschitz continuous with constant Ly,.
(A2) The map V, h(-,-) is continuous.
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(A3) The map V,h(u,-) is monotone for each fized u € E.

Note that it follows from (A1) that V,h.(,-) is uniformly Lipschitz continuous
with constant L) = L,+1. Also, it follows from (A3) that V,h.(u, -) is strongly
monotone for each fixed u € E.

For each u € U, we set

H(u) = Vyh(u,v)|y=,
then
H.(u) = Vyho(u,v)|y=y = H(u) + eBu.
Since h is monotone, then so is H (see [11, Proposition 2.1.17]). Moreover,
it follows that the bifunction h. is strongly monotone with constant 7 and so
is the map H. : £ — E*.

The following results are crucial for applying D-gap functions to nonsmooth
EPs of form (7).

Proposition 3.5. (i) Let (A1) and (A2) hold. Then the function w((fﬁ) is
continuously differentiable and
V%M>=Vhw%m>Vh%mw»
+ Bu—vf () = alu— vl ().

it) Let (A1),(A2) and (A3) hold. Then Vw(a) u) = 0 implies that uw € U’.
af €

The proofs of this results follow directly from Theorems 4.1 and 5.1 in [6],
respectively.

The smoothing property of D-gap functions for mixed variational inequali-
ties was noticed by Konnov [10].

Assertion (ii) shows that the initial non-smooth and constrained problem
(8) can be replaced with the problem of finding a stationary point of a contin-

uously differentiable function 1/1556) This problem can be solved with the help
of the usual unconstrained optimization methods. We intend to describe such
a method in the next section.

4. SOLUTION METHOD

We first establish an error bound with the help of the D-gap function. Let
us introduce the additional condition.

(A4) The map V,h(-,-) is uniformly Lipschitz continuous on each bounded
subset of E X E.

Lemma 4.1. Let (A1) and (A4) hold. Then
v — wl| < Al — o ()| Vo' € B, (14)

where ¥ = (B + 2L})/(eT), ue solves EP(8).
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Proof. Take an arbitrary point v’ € E. For brevity, set v = vg) (u'). Adding
(10) with v = ¢" and (11) with o = 3, v = u. gives
0 < (Vyho(ue,u.) — Vyhe(u',v'),v" —us) + v — o, u. — ')
= (Vyhe(ue,u:) — Vyhe (v, u'), v — u.)
+ (Vyh (v u') — Vyhe(uW, '), v —ue) + B0 — ', u. —0').

Since H is monotone, we have

eTlluc — |2 < (Vohe(ue,ue) — Vohe (W o), u* — u')
< (Vohe(ue, ue) — Viyhe (W', '), 0" — ')
+ (Vyh (v u') — Vyhe (W, V), v/ — )
+ (Vyhe(u,u) — Vyhe (W, 0), 0" —u)
+ B = u.— ) + B —u i =)

Since V,h.(u/, ) is monotone, it follows that

(Voh(u',u") — Vyh(u',0"),0" — ) <0.
Besides, it is clear that 3(v' — v/, 4 — v') < 0. Taking into account both the
inequalities and (A1),(A4), we obtain

erllu =[P < Ljflu —w|||]v" — |
+ Lypllur = [[Jo" = || + Bllu = [[[[v" = ],

i.e. (14) holds with 4 = (6 + 2L})/(eT). O

From this proposition, we can get the following global error result for EP(8).

Theorem 4.1. Let (A1) and (A4) hold. Then there exists a constant 5 > 0
which is independent of € and such that

llu el <FYGw) Vuel,
where u. solves EP(8).

Proof. Combining Proposition 3.3 and Lemma 4.1, we have

e¥llu —uel|* < [2(8 + Ly)*/(7%(8 — a)|vbap(u) = F¢as(u)  Vu € E,
as desired. 0
Set

r(u) = v (u) — v5 (u),

s(u) = alu — o (w)] - Blu — v§ ().

Now we state an algorithm for EP(8), which can be viewed as an application
of the algorithm from [6].

Algorithm.

Step 0: Select an initial point u° € E and parameters p > 0,0 € (0,1),v > 0.
Set k= 0.

Step 1: 1f ¢Sﬁ) (u¥) = 0, then stop, u* is a solution of EP.

Step 2: Set d* = r(u*) + ps(u®).

Step 3: Compute m as the smallest nonnegative integer such that

POk + 0md*) — Wk <~y (||r ()] + plls ()2
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Step 4: Set Ay = 0™, uF =¥ + \d*, k =k + 1 and go to Step 1.

A convergence result for this algorithm follows directly from Theorem 6.2
in [6].

Theorem 4.2. Let (A1), (A3) and (A4) hold. Then the sequence {u*}, gen-
erated by the algorithm with p € (0,p) and v < e7/2, converges strongly to a
unique solution of EP(8).

Now we can describe a solution method for monotone EP(7).

Choose a number 6 > 0, a positive sequence {g;} \, 0 and a point 2" € F.
For each [ = 1,2,... we have a point z/~! € F and set ¢ = ¢; and u® = 2/~1.
Afterwards we apply the algorithm above and obtain a point

uf € {ue B |y (u) < ¢}
such that
P (k) < ), (15)

Then we set 2/ = uF and 1 =1+ 1.

Theorem 4.3. Let all the assumptions of Theorem 4.2 hold. If EP(7) is
solvable, then
lim 2!

%
= Uy,
l—o0

Proof. Using Theorem 4.1, we have
7 = ua|l* < AW,
In view of (15) we now obtain
eillz! = uq |® < 3%
It follows that
12 = unll < N2 = we |l + llue, = unll < llue, = wpll + 54/ €f,

Due to Theorem 2.1 {u.,} — u},, hence we obtain lim 2! = u}, as desired. [J

Note that many problems in Mathematical Physics and various saddle point
problems involve non strictly monotone bifunctions; see e.g. [1], [12], [13].
Hence, our approach can be applied for rather broad classes of problems.
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