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ABSTRACT. In this paper, we introduce the concept of a Mann-type
double-sequence random iteration scheme and show that if it is strongly
convergent then it converges to a random fixed point of continuous con-
tractive type random operators. The iteration is a random version of
double-sequence iteration introduced by Moore (Comput. Math. Appl.
43(2002), 1585-1589).

1. INTRODUCTION

Several iteration processes have been established for the constructive
approximation of solutions to several classes of (nonlinear) operator equa-
tions and many important convergence results have been obtained in
terms of these iterative processes( cf. e.g., [1, 3, 5, 6, 9, 13]). Most of
these convergence results require that the operator is of the strong (ac-
cretive or pseudocontractive) type whereas a few of them do not need the
strong type property. Moreover, Mann-type and Ishikawa iteration pro-
cesses play a key role in most of these convergence results. Most recently,
a new Mann-type iteration process called Mann-type double-sequence it-
eration process was introduced be Moore [8].

On the other hand, random fixed point theory has attracted more and
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more in recent years since the article by Bharucha-Reid [7] come out in
1976. We note some recent works on random fixed points in [2, 10, 11].
In order to construct iterations for finding fixed points of random op-
erators defined on linear spaces, random Ishikawa iteration scheme was
introduced in [4].

In this paper, we will introduce the concept of a Mann-type double-
sequence random iteration scheme. We will show that if this random
iteration scheme converges strongly then it converges to a random fixed
point of continuous contractive type random operators defined in the
context of a separable Hilbert space.

2. PRELIMINARIES

NOTATIONS: In this paper X is a separable Hilbert space, (€2, X)
is measurable space (i.e, 3 is a sigma-algebra of subsets of Q), C is a
nonempty subset of X, 2¢ is the family of all subsets of C' and N is the
set of all nonnegative integers.

CONCEPTS: A mapping p : Q — 29 is called measurable if for any open
subset U of C, p ' (U) ={w € Q : p(w)NU # P} € . A mapping
T:QxC — Cis called a random operator if for any x € C, T(.,x)
is measurable. A measurable mapping f : Q@ — C is called a random
fixed point of random operator T : Q x C' — C' if for every w € €2,
f(w) = T(w, f(w)). A random operator T : Q@ x C' — C' is said to be
continuous if, for fixed w € Q, T'(w,.) is continuous.

DOUBLE SEQUENCE.[8] Let E be a normed linear space. By a
double sequence in E is meant functions f;, : 2 — E defined by
frm(w) == wy, € E,V k,n € Ny. The double sequence {wy,} is said to
converge strongly to w* if for each € > 0, there exist integers K, N > 0,
such that ||wy, —w*|| <e,VE>K,n>N.ItVkr>K, ns>N,we
have ||wg, — wys|| < €, then the double sequence is said to be Cauchy.
MANN ITERATION SCHEME.[9] Let L be a linear space, 7" : L —
L be a mapping and xg € L. Then the sequence {x,} defined iteratively
by:

Tpi1 = (1 —cp)x, + ey Tx,, n € Ny

x
where 0<¢, <1 and >, ¢ <
n=0

is called the Mann iteration scheme.

bf DOUBLE-SEQUENCE RANDOM MANN ITERATION SCHEME.
Suppose that C' be a nonempty convex subset of a separable Hilbert
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space X, Ty : Q x C' — C be random operators. The double sequence of

functions { fx.n }k>0n>0 generated from an arbitrary measurable function
fo0 : @ — C defined by

fk,n+1(w) - (1 - cn)fk,n(w) + CnTk(wv fk,n(w))7

we N, k,née N (2.1)
where
0<ec, <1, neblN (2.2)
and
O0< lime,=h<1, (2.3)

n—oo
is called double-sequence random mann iteration scheme.
Since C'is convex clearly, fi ., is a mapping from 2 — C for all k,n € Nj.

CONTRACTIVE INEQUALITY A. Let C' be a nonempty convex
subset of a Hilbert space X. A mapping S : C' — (' is said to satisfy
contractive inequality A if for all z,y € C,

1Sz = Syl|* < allz —y|” +blly = SylI* (1 + ||« — Sz|*)
+§ llz = Syll* (1 + o — Sz||* + [ly — Sz||*),

d
where a,b,d >0, k>0, b+§<i.

CONTRACTIVE INEQUALITY B. Let C' be a nonempty convex
subset of a separable Hilbert space X. The random operator T : QxC —
C is said to satisfy contractive inequality B if for all z,y € C,

IT(w, 2) = T(w, y)|
<allz —y|* +blly = T(w,y)|* (1 + [l = T(w,2)|") (2.4)
+(§) e = T(w,y)|I* 1+ [lo = T(w, 2)|* + lly — T(w, x)|"),

1
where a,b,d >0, k>0, b+g<1. (2.5)

3. MAIN RESULTS

Theorem 3.1. Let X be a separable Hilbert space, C' be a nonempty
closed convex subset of X, T : Q2 x C — (' be a continuous random
operator such that for all w € €, T satisfies contractive inequality B.
Let {bx}r>0 C (0,1) be a sequence such that limg_..b; = 1.

For an arbitrary but fixed ¢t € C, and for each k£ > 0, define T, : QO x C —
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C by T(w,z) = (1 —bg)t +biT(w, z). Suppose that the double-sequence
random Mann iteration scheme satisfying
3
41— (b+d/2)]

is strongly convergent. Then it converges to a random fixed point of T

<h<1 (3.1)

Proof. Since 0 < b+d/2 < 1/4, clearly 3/4(1 — (b+ d/2)) < 1. So the
positive number h satisfying (3.1) exists. Let {fx,(w)} be constructed
by (2.1)-(2.3) with h satisfying (3.1) and {fx.(w)} be strongly conver-
gent. Then for all w € Q, if for each fixed k, frn(w) — fi(w) asn — oo
and then f;(w) — f(w) as k — oo, then

frn(w) — fw) as k,n— oo. (3.2)

Since C' is closed, it follows that f is a mapping from 2 — C'. Since C'is
a subset of a separable Hilbert space X, for any continuous random oper-
ator F' and any measurable function g from Q — C, G(w) = F(w, g(w))
is also a measurable function [12]. It thus follows from (2.1)-(2.3) that
{fx.n} is a sequence of measurable functions. Hence, f : Q — C, being
the limit of a sequence of measurable functions, is also measurable. For
w € Q, from (2.1) and parallelogram law we have

1f(w) —
= [[f(w) = feps1(w) + frns1(w) —
<2 f(w) = frnrr (@) + 2| fenir (w) — Ti(w,
(
) —

2
|

Ti(w, f(w))
Ti(w, f(w))]”
f(w))

2
|

w

=2 f(w) = frar(w)]
+2 (1 = ea) fun(w) + eaTe(w, frn(w)) = Te(w, f(w))|”
< 2| f(w) = frar ()| +4(1 = e0)? || fen(w) = Ti(w, f(w)[* +
46, | Te(w, fion(w)) = Tilw, f(w))|.
Therefore by (2.4) we obtain
1 (w) = T(w, fw)I” < B+ den(y + a), (3:3)

where

0= (§) Wil = T, SDIF,

= 1+ || frn(w) = Tew, fin(@)|* + |Lf(w) = Ti(w, fralw)]®,
B=2]f(w) = frn(@)I” +4(1 = c0)? | frn(w) = Te(w, f(w))]*,
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v = al frn(w) = fw)|*
+b 1 f(w) = To(w, fw)|* (14 | fen(w) = Te(w, frm(w)]*) -
Since

||fk,n(w) — Tk(w, fk,n(w))HQ _ ||fk‘,n(w) — fk,n-i—l(w)H : (34)

2
Cn

It follows that

1 (w) = T(w, frn(w))* < 2[1f (w) = fin(w)]? (3.5)
+2 | fn(w) = Ti(w, fi(w))])”

2
= 200) = i)+ (5 ) o) = om0
Using (3.4) and (3.5) in (3.3), we have, for all w € Q,

1f (w) = Te(w, f(w))|* < 8" +4ch (4" + @),

where

0 =" () Mun(w) = Titw. f) I

o =14 207(0) = a4 (5 + 5 ) Wial) = frma (@I,

n

*—=9 Hf(w) - fk,n-&-l(w)HZ + 4(1 — Cn)2 ‘|fk7n(w) — Tk(w’ f(w))HQ’
v = al fun(w) — f(w)]
+b || f(w) — Ty (w, f(w))]|” (1 + [ frn(w) = frnta(w)]] ) ‘

2
Ch

Letting k,n — oo, using (3.2), (2.3) and the fact that 7} are continuous
random operators, we obtain, for w € (2,

()~ T, F)) | < 41— ) ) ~ T, F()]
w2 {7 (w) = T S+ () 1) = T, frw)I

= - np e (o4 5) i) - . s P

From (2.5) and (3.1) we have

d 1
1—h)?+h*b+ = -.
(1R S) <
Therefore, for all w € Q and k > 0, we have f(w) = T'(w, f(w)). This

completes the proof.
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Following is the immediate consequence of theorem 3.1.
Corollary 3.1. Let X be a Hilbert space, C' be a nonempty closed
convex subset of X, S : ' — C be a function satisfying contractive
inequality A. Suppose that the Mann iteration scheme satisfying
3
41— (b+d/2)]

is convergent. Then it converges to a fixed point of T

<h<l1

REFERENCES

[1] R. E. Bruck. The iteration solution of the equation y € x + Tx for a monotone
operator T in Hilbert spaces. Bull, Amer. Math. Soc. 79 (1973), 1259-1262
[2] Beg and Shahzad N. Random fized point theorems for nonexpansive and contrac-
tive type random opeartors on Banach spaces. J. Appl. Math. Stoc. Anal. 1994,
7: 569-580.
[3] C. E. Chidume and C. Moore. Fized point iteration for pseudocontractive maps.
Proc. Amer. Math. Soc. 127 (1999), 1163-1170
[4] B. S. Choudhury. Convergence of a random iteration scheme to a random fized
point. J. Appl. Math. Stoc. Anal. 8 (1995), 139-142
[5] J. A. Park. Mann-iteration process for the fixed point of strictly pseudocontractive
mappings in some Banach spaces. J. Korean Soc. 31(1994), 333-337
[6] S. Ishikawa. Fized points by a new iteration method.. Proc. Amer. Math. Soc. 44
(1974), 147-150
[7] Bharucha-Reid A T. Fized point theorems in probabilistic analysis. Bull. Amer.
Math. Soc. 1976, 82: 641-645
[8] C. Moore. A double-sequence iteration process for fized points of continuous pseu-
doconstructions. Comput. Math. Appl. 43 (2002), 1585-1589
[9] W. R. Mann. Mean value methods in iteration. Proc. Amer. Math. Soc. 4 (1953),
506-510
[10] Adrian Constantin. A random fized point theorem for multifunctions. Stoch.
Anal. & Appl. 12(1994), 65-73
[11] G. Mustafa. Some random coincidence and random fized point theorems for non-
self hybrid contractions. Canadian Math. Bull. (2003), in press.
[12] C. J. Himmelberg. Measurable relations. Fund. Math. 87(1975), 53-72
[13] B. E. Rhoades. Fized point iterations for certain nonlinear mappings. J. Math.
Anal. Appl. 183(1994), 118-120

DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA,
HEFEI, ANHUI 230026, P.R.CHINA

E-mail address: mustafa_rakib@yahoo.com

Received July 8, 2003



